
Citation: Li, Y.; Li, S.; Li, D.; Gao, Y.;

Kong, S.; Liu, J.; Liu, S.; Ma, Y.; Zhou,

H.; Ren, D.; et al. In Vivo Tissue

Distribution and Pharmacokinetics of

FITC-Labelled Hizikia fusiforme

Polyphenol–Polysaccharide Complex

in Mice. Foods 2024, 13, 3019. https://

doi.org/10.3390/foods13183019

Academic Editor: Philippe Michaud

Received: 3 September 2024

Revised: 18 September 2024

Accepted: 20 September 2024

Published: 23 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

foods

Article

In Vivo Tissue Distribution and Pharmacokinetics of
FITC-Labelled Hizikia fusiforme Polyphenol–Polysaccharide
Complex in Mice
Yutong Li 1,2,3, Shangkun Li 1,2,3, Di Li 1,2,3, Yuan Gao 1,2,3, Shuhua Kong 1,2,3, Jingyi Liu 1,2,3, Shu Liu 1,2,3,
Yichao Ma 1,2,3 , Hui Zhou 1,2,3, Dandan Ren 1,2,3, Qiukuan Wang 1,2,3 and Yunhai He 1,2,3,*

1 College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China;
13848442033@163.com (Y.L.); 18736192663@163.com (S.L.); ldiss42@163.com (D.L.);
17853545180@163.com (Y.G.); kkkongshuhua@163.com (S.K.); 18623901902@163.com (J.L.);
liushu@dlou.edu.cn (S.L.); 18640876812@163.com (Y.M.); zhouhui@dlou.edu.cn (H.Z.);
rdd@dlou.edu.cn (D.R.); wqk320@dlou.edu.cn (Q.W.)

2 Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University,
Dalian 116023, China

3 National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
* Correspondence: hyh@dlou.edu.cn; Tel.: +86-138-4084-7973

Abstract: In this study, a quantitative method based on fluorescein isothiocyanate (FITC)-labelled
Hizikia fusiforme polyphenol–polysaccharide complex (HPC) and its purified fractions (PC1, PC4) was
used, and its pharmacokinetics and tissue distribution were investigated in mice. The results showed
that the FITC-labelled method had good linearity (R2 > 0.99), intra-day and inter-day precision (RSD,
%) consistently lower than 15%, recovery (93.19–106.54%), and stability (RSD < 15%), which met the
basic criteria for pharmacokinetic studies. The pharmacokinetic and tissue distribution results in
mice after administration showed that all three sample groups could enter the blood circulation. and
HPC-FITC had a longer half-life (T1/2: 26.92 ± 0.76 h) and mean retention time (MRT0–∞: 36.48 h)
due to its larger molecular weight. The three groups of samples could be absorbed by the organism
in a short time (0.5 h) mainly in the stomach and intestine; the samples could be detected in the urine
after 2 h of administration indicating strong renal uptake, and faecal excretion reached its maximum
at 12 h. The samples were also detected in the urine after 2 h of administration. This study provides
some theoretical basis for the tissue distribution pattern of polyphenol–polysaccharide complex.

Keywords: Hizikia fusiforme; polyphenol–polysaccharide complex; fluorescent labelling; pharmacoki-
netics; tissue distribution

1. Introduction

Hizikia fusiformis, an edible brown algae that grows on intertidal rocks along the
northwestern Pacific coastline, belongs to the class Sargassum, order Sargassum, and family
Sargassoideae [1]. In recent years, several studies have isolated and identified a variety
of compounds with diverse pharmacological properties from Hizikia fusiformis, including
polysaccharides [2,3], phenolic compounds [4,5], fucoxanthin, and fucoidan [6–8]. These
compounds exhibit a range of effects, such as antioxidant [9], anti-inflammatory [10], hypo-
glycemic [11], hypolipidemic [12], and anti-aging [13] activities. However, the nutritional
and commercial potential of Hizikia fusiformis remains underexploited.

Among the various bioactive compounds in algae, phenols have garnered significant
attention due to their superior free radical scavenging activity. However, phenolic com-
pounds are structurally unstable, whereas algal polysaccharides possess a stable structure
but exhibit lower activity than polyphenols [14]. With advancing research on polyphenols
and polysaccharides, natural polyphenol–polysaccharide complexes have been extracted
from terrestrial plants. Magdalena et al. obtained polyphenol–polysaccharide complex
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from the flowers of Sanguisorba officinalis L., Erigeron canadensis L., and from Fragaria vesca L.
and Rubus plicatus, which were able to protect human peripheral blood mononuclear cells
(PBMCs) from γ-irradiation damage while maintaining the radiosensitivity of the myeloge-
nous leukemia K562 cell line [15]. Joy et al. demonstrated that polyphenol–polysaccharide
complex extracted from sprouted quinoa yogurt was effective in promoting the release
of GLP-1 from NCI-H716 cells [16]. Currently, studies on polyphenol–polysaccharide
complexes have predominantly focused on terrestrial medicinal plants, with research
mainly concentrating on their isolation, purification, structural identification, and biolog-
ical activity. However, there is a lack of research on their metabolic absorption patterns
in vivo [17].

Recent studies have shown that fluorescent labelling [18], radioisotope labelling [19],
and other methods can improve the sensitivity and specificity of in vivo detection of
polysaccharides. Fluorescein isothiocyanate (FITC) is a fluorescence-based detection tech-
nique that has been widely used for drug microanalysis because of its specificity, sensitivity,
and low-detection threshold [20]. Xu et al. studied FITC-labelled fucoidan and exam-
ined its ability to pass through a monolayer of Caco-2 cells, and the results showed that
the FITC fucodian was detected at concentrations up to 1000 µg/mL and did not affect
cell proliferation, indicating no toxic effect [21]. Fei et al. investigated the cytotoxicity
of Cy5.5-labelled Cucurbita moschata polysaccharide (PPc-Cy5.5) on Caco-2 and RIN-m5F
cells for 36 h as measured by CCK-8 assay. The results were evaluated and showed that
cell survival was greater than 95% at different concentrations of PPc-Cy5.5. indicating
that the preparation is safe [22]. The fluorescent labelling method has less effect on the
biological activity of polysaccharides and is not cytotoxic [23]. Pharmacokinetics can quan-
titatively study the pattern of change during drug metabolism such as drug absorption,
tissue distribution, metabolism, and elimination [24]. Currently, most pharmacokinetic
studies have focused on polysaccharides [25] or polyphenols [26], but there is no stan-
dardised method for quantitatively detecting the pharmacokinetics and tissue distribution
of polyphenol–polysaccharide complex in vivo. This lack of standardisation has largely
limited the commercial development and application of polyphenol–polysaccharide com-
plex. Given these limitations, it is crucial to establish robust qualitative and quantitative
assays for polyphenol–polysaccharide complex, as well as their pharmacokinetics and
tissue distribution, in biological samples such as blood, tissues, and excreta from mice.

In this study, the Hizikia fusiformis polyphenol–polysaccharide complex and its puri-
fied fractions were synthesised as fluorescently labelled products of the Hizikia fusiformis
polyphenol–polysaccharide complex by connecting them with FITC through Tyr as a linker
arm. By exploring the feasibility of the method, the pharmacokinetics and tissue distri-
bution of polyphenol–polysaccharide complexes and their purified fractions in plasma
were studied. This study successfully clarified the pharmacokinetics of the polyphenol–
polysaccharide complex in vivo, addressing a gap in the research on the distribution of
natural polyphenol–polysaccharide complex in vivo. This method not only promotes the de-
velopment of pharmacological activities of natural polyphenol–polysaccharide complex but
also provides a reference for the detection and analysis of other polyphenol–polysaccharide
complexes with bioactive substances.

2. Materials and Methods
2.1. Materials

Hizikia fusiforme was purchased from Dongtou, Zhejiang Province, stored in the Na-
tional Seaweed Processing Research and Development Technology Sub-centre (Dalian,
China) and identified as Hizikia fusiforme by Prof. Zhang Zeyu, an algae expert from
Dalian Ocean University (No. DLOU-24.03.15). FITC (purity > 99.0%) was purchased
from Sigma Corporation (St. Louis, MO, USA). Sodium bicarbonate, sodium dihydrogen
phosphate, disodium hydrogen phosphate, and sodium chloride were purchased from
Shanghai Sinopharm Chemical Reagent Co Ltd. (Shanghai, China). Anhydrous ethanol
was purchased from Jiangsu Wuxi Yasheng Chemical Co Ltd. (Wuxi, China). Tyramine was
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purchased from Aladdin Holding Group Limited (Shanghai, China). All other chemicals
were of analytical grade and above.

2.2. Preparation and Purification of HPC

According to our previous study [13] with slight modifications, the Hizikia fusiforme
polyphenol–polysaccharide complex was extracted using an enzymatic method combined
with an alkaline method. The supernatant obtained from the enzymatic and alkaline
extraction was combined, and ethanol was added to a final concentration of 70%. Centrifu-
gation was carried out to obtain the precipitate, which was lyophilised to give the crude
polyphenol–polysaccharide complex named as HPC. HPC was made into a 15.0 mg mL−1

solution and uploaded onto a DEAE-Sepharose Fast Flow weak anion exchange column
(1.6 × 30 cm). Gradient elution with 2.5 M NaCl solution and phosphate buffer at a flow
rate of 1.0 mL min−1 was performed, and an automatic collector was used to collect the
eluate to obtain the purified HPC. The total carbohydrate content was monitored by the
phenol-sulphuric acid method [27], the total phenol content by the forintol method [28], and
the protein content by the Caulobacter Brilliant Blue method [29]. The purified fractions
PC1 and PC4 were finally selected for subsequent studies.

2.3. Preparation of FITC Labelled HPC and Its Purified Fractions

For the FITC fluorescent labelling, we referred to the method of Dong et al. [30], with a
small modification: 0.4 g HPC, PC1, and PC4 were added to 15 mL of 0.2 mol/L phosphate
buffer (pH = 8), 0.4 g of Tyr and 0.15 g of sodium cyanoborohydride, and the reaction was
carried out on a shaking table (Longyue Instrument Co., Ltd. Shanghai, China) at 37 ◦C
for 96 h. The supernatant was collected by centrifugation at 37 ◦C for 96 h, 10,000 r/min;
4 vol of ethanol was added, then centrifuged, and the precipitates were lyophilised, i.e.,
T-HPC, T-PC1, and T-PC4. 0.4 g of T-HPC, T-PC1, and T-PC4 was dissolved in 20 mL of
0.5 mol/L sodium bicarbonate solution, and 0.4 g of FITC was added and reacted in the
dark for 24 h. After centrifugation, the supernatant was collected, 4 vol of ethanol was
added, then centrifugation and lyophilisation of the precipitates took place: HPC-FITC,
PC1-FITC, PC4-FITC.

2.4. Chemical Composition Analysis before and after FITC Labelling

In order to understand the effect of fluorescent labelling on polyphenol–polysaccharide
complex, we determined the chemical composition of the samples.

2.4.1. Chemical Composition Analyses

The total carbohydrate content, total phenol content, and protein content of the sam-
ples before and after labelling were determined according to the method in Section 2.2.

2.4.2. Monophenols, Monosaccharide Composition, and Molecular Weights

The molecular weight distribution was detected by high-performance gel-permeation
chromatography (HPGPC) using a Shimadzu RID-20A oscillometric refractive detector
(Shimadzu Corporation, Tokyo, Japan). The gel chromatography column was equipped
with a TSK-gel G5000PWxl (7.5 mm × 30.0 cm, TOSOH Co., Ltd., Tokyo, Japan) at a flow
rate of 0.5 mL/min, and the injection volume was 20 µL (before and after FITC-labelled
samples), and the retention times of the peaks were determined using dextran glycosides
with different molecular weights as the standards [31].

The monosaccharide content was determined by high performance liquid chromatogra-
phy (HPLC) [32]. Briefly, the samples before and after FITC labelling were acid-hydrolysed
with trifluoroacetic acid (TFA) solution at 110 ◦C for 8 h. Subsequently, 1-phenyl-3-methyl-
5-pyrazolone (PMP) was added to the acid hydrolysate and derivatised at 70 ◦C for 40 min,
followed by the addition of chloroform to remove residual PMP derivatisation. Finally,
the monosaccharide composition of each group of samples was analysed on an Agilent
ZORBAX Eclipse XDB C-18 column (4.6 × 250 mm, 2.7 µm, Agilent, Santa Clara, CA, USA).
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The monophenol composition referred to the method of Ahilya et al. with slight
modifications [33]. Briefly, methanol–water–acetic acid (30:69:1) was added to the samples
before and after FITC labelling, vortexed for 2 min, left to stand for 2 min, and the samples
were then subjected to a water bath at 70 ◦C for 50 min, and the supernatant was obtained
by centrifugation over a 0.22 µm membrane. An Agilent ZORBAX Eclipse XDB C-18
column (4.6 × 250 mm, 2.7 µm, Agilent, Santa Clara, CA, USA) was used. The monophenol
composition of each group of samples was analysed according to the retention time of
the standards.

2.5. Determination of HPC-FITC, PC1-FITC, and PC4-FITC Substitution Degree

FITC was used as the standard, and the concentration of 0.25 µg/mL was prepared.
Amounts of 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7 mL of the standard solution of 0.25 µg/mL of
FITC were pipetted into a brown PC tube, and then added with deionised water to make up
to 5 mL, and the fluorescence intensity of each component was measured at λex = 490 nm
and λem = 530 nm with fluorescence iconometer (Varioskan LUX, Thermo Fisher Scientific,
Beijing, China), with the reference to the method of Yan et al. [34].

2.6. Fourier Transform Infrared Spectroscopy Analysis

FT-IR was used to determine the infrared spectra of HPC, PC1, and PC4 and the three
sets of samples after FITC labelling [32]. Spectra were collected at a resolution of 2 cm−1

for wave numbers ranging from 400 to 4000 cm−1.

2.7. Animal Experiments

ICR mice (SPF grade, 30 ± 4 g, male) were purchased from Liaoning Changsheng
Biotechnology Co., Ltd. (Shenyang, China) under the Certificate of Conformity No. SCXK-
Liao-2023-074, and the animal experiments were approved by the Animal Ethics Committee
of the Ocean University of Dalian (No. DLOU-20231116). The animals were housed in a
12 h circadian light cycle, after seven days of acclimatisation, as shown in Figure 1 and
were divided into four groups according to the gavage samples: blank (normal saline);
HPC-FITC (14.15 mg/kg); PC1-FITC (31.45 mg/kg); and PC4-FITC (33.67 mg/kg). All
mice were fasted before the experiment, but were allowed to drink freely. Samples were
given 48 h before execution, and after gavage, five mice were randomly selected at different
time points (0.5, 1, 2, 4, 6, 8, 12, 24, 48 h) (Figure 1). Blood was collected from the orbits
and then the spine was dislocated and killed, and blood, heart, liver, spleen, stomach,
kidney, small intestine, large intestine urine, and faeces were collected for subsequent
analysis. Tissue samples were rinsed with saline using absorbent paper to dry the surface
water and weighed, added with appropriate amount of PBS solution (pH = 7.2) to prepare
as 10% tissue homogenate, and the fluorescence intensity of polyphenol–polysaccharide
complex in plasma and tissues was determined at different time points. They were cared
for in accordance with the National Research Council’s Guide for the Care and Use of
Laboratory Animals.

2.8. Development of a Method for the Quantitative Analysis of FITC by HPC and Its
Purified Fractions
2.8.1. Establishment of Quantitative Analytical Methods and Sample Preparation

Appropriate amounts of HPC-FITC, PC1-FITC, and PC4-FITC were weighed and
prepared into a 1 mg/mL standard solution with PBS buffer, and the standard solution was
diluted with PBS buffer to form the standard solution with the following concentrations: 1,
2, 4, 8, 10, 20, 30, 40, and 50 µg/mL.

Amounts of 100 µg/mL of HPC-FITC, PC1-FITC, and PC4-FITC standard solutions
were added to the plasma of the blank group, 10% tissue and excreta homogenate, and
diluted to three concentrations of 0.5 µg/mL, 5 µg/mL, and 25 µg/mL.
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2.8.2. Determination of Sample Recovery, Precision, and Stability

The recovery rate was calculated by monitoring the fluorescence intensity of the
fluorescently labelled polyphenol–polysaccharide complex solution containing the three
concentrations at five different times of the day. The recovery rate was actual concentra-
tion/theoretical concentration × 100.

Precision was determined by monitoring each group of samples for five working days
and calculating the relative standard deviation (RSD, %) between intra-day and inter-day
periods to test the precision of the method.

The stability of the samples was calculated by measuring the fluorescence intensity of
low-, medium- and high-concentration samples under different conditions: room tempera-
ture (48 h); −20 ◦C (15 days); repeated freezing and thawing (3 times).

2.9. Establishment of Standard Curves for Plasma and Homogenised Tissue, and Excreta

The standard solutions of plasma, homogenised tissues, and excreta were prepared at
concentrations of 0.5, 1, 2.5, 5, 10, 20, and 25 µg/mL, and the fluorescence intensity was
measured by aspirating 200 µL of the samples at each concentration, and the standard
curves of the mass of polyphenol–polysaccharide complex versus the fluorescence intensity
were plotted, and the linear equations were calculated.

2.10. Analysis of Plasma Pharmacokinetics

The fluorescence intensity in plasma was measured using the non-atrial model of DAS
(Drug and Statistics) 2.0 software (Chinese Pharmacology Society, Shanghai, China), and the
pharmacokinetics were calculated in mice after a gavage of HPC-FITC, PC1-FITC, and PC4-
FITC. The pharmacokinetic parameters of HPC-FITC, PC1-FITC, and PC4-FITC were calcu-
lated as the ratio of maximum blood concentration (Cmax), time to reach maximum blood
concentration (Tmax), elimination half-life (T1/2), area under the concentration-time curve
(AUC), mean residence time (MRT), ratio of plasma clearance (CL), and bioavailability (F).

2.11. Determination of Tissue and Faecal Samples

The fluorescence intensity of the tissue and excreta homogenate samples was measured
and brought into the standard curve established in Section 2.9; the concentrations of the
three groups of samples were calculated in the mouse tissue and excreta, respectively,
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and the cumulative excretion in mice and the cumulative excretion as a percentage of the
administered dose at 48 h were calculated separately.

2.12. Statistical Analyses

Each experiment had at least three parallel data and the results were expressed as
mean ± SD. Data were processed and statistically analysed using DAS 2.0 and SPSS 26.0
software. p < 0.05 indicates significant differences. All figures were produced by Origin
2021 and Figdraw 2.0.

3. Results and Discussion
3.1. Chemical Composition Analysis of HPC and Purified Fractions before and after FITC Labelling

The total carbohydrate content, total phenol content, protein content, and molecular
weight of HPC (68.32 ± 0.28%, 59.43 ± 0.07 mg GAE/g, 3.17 ± 0.19%), PC1 (45.61 ± 0.16%,
18.42 ± 0.03 mg GAE/g, 1.13 ± 0.09%), and PC4 (50.43 ± 0.25%, 40.33 ± 0.21 mg GAE/g,
1.43 ± 0.43%) are shown in Table 1. After the fluorescence labelling reaction, both the total
carbohydrate content (60.81 ± 0.21%, 38.52 ± 0.37%, 43.67 ± 0.17%), total phenol content
(49.28 ± 0.18 mg GAE/g, 12.96 ± 0.10 mg GAE/g, 35.71 ± 0.07 mg GAE/g), and protein
content (1.98 ± 0.03%, 0.46 ± 0.01%, 0.93 ± 0.01%) showed a slight decrease compared to
the unlabelled samples, which could be attributed to the alkaline conditions used during
the labelling process. The monosaccharide composition analysis revealed that the primary
monosaccharides in HPC, PC1, and PC4 were Man, Glu, Gal, and Fuc, and the composition
remained nearly unchanged after labelling, indicating that the labelling process did not
significantly affect the monosaccharide composition of the polyphenol–polysaccharide
complex. This observation is consistent with the findings of Dong et al. [30]. Similarly,
the monophenol composition before and after labelling showed negligible variation. The
molecular weights (Mws) of the polyphenol–polysaccharide complexes and their purified
fractions were HPC: 346.8 kDa, PC1: 328.0 kDa, PC4:129.3 kDa; the Mws after FITC
labelling were HPC-FITC: 337.6 kDa, PC1: 319.8 kDa, PC4: 121.4 kDa. This indicated that
the retention time of the three sample groups during the assay process was nearly identical
before and after labelling, although there was a slight reduction in molecular weight after
fluorescent labelling (Figure 2B–D). This result is in line with the findings of Ting et al. [35].
Collectively, these findings demonstrate that FITC-labelled polyphenol–polysaccharide
complexes maintain their structural integrity with minimal impact on their molecular
framework. Thus, the results indicate that fluorescent labelling does not significantly alter
the physicochemical properties and chemical composition of the samples.
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Table 1. Chemical composition of the sample.

HPC PC1 PC4 HPC-FITC PC1-FITC PC4-FITC

Total carbohydrates (%, w/w) 68.32 ± 0.28 a 45.61 ± 0.16 a 50.43 ± 0.25 a 60.81 ± 0.21 b 38.52 ± 0.37 b 43.67 ± 0.17 b

Total phenols (mg GAE/g) 59.43 ± 0.07 a 18.42 ± 0.03 a 40.33 ± 0.21 a 49.28 ± 0.18 b 12.96 ± 0.10 b 35.71 ± 0.07 b

Protein content (%) 3.17 ± 0.19 a 1.13 ± 0.09 a 1.43 ± 0.43 a 1.98 ± 0.03 b 0.46 ± 0.01 b 0.93 ± 0.01 b

Molecular weight (kDa) 346.8 328.0 129.3 337.6 319.8 121.4

Monosaccharide composition (%)
Man 14.58 11.97 10.30 13.47 12.01 10.68
Rha 1.40 1.79 2.91 1.43 1.81 2.37
GluA 0.45 0.21 5.25 0.77 0.18 4.86
GalA 0.94 0.40 2.06 1.06 0.45 2.94
Glu 9.91 1.14 5.99 9.76 1.37 5.14
Gal 24.60 25.53 15.71 24.77 25.84 14.28
Xyl 2.75 2.05 1.91 2.61 1.68 2.03
Fuc 45.35 56.87 55.83 46.12 56.65 57.69

Monophenol composition (%)
GA 59.30 22.75 37.07 58.96 23.16 36.28
EGC 24.66 68.32 47.76 24.18 68.47 48.11
EC -- 4.03 -- -- 3.65 --
ECG 12.32 4.89 -- 13.28 4..27 --
CG 3.8 -- 15.16 3.57 -- 15.60

Note: A different superscript letter on the same line indicates a significant difference (p < 0.05); Man, mannose;
Rha, rhamnose; GluA, glucuronic acid; GlaA, galactose acid; Glu, glucose; Gal, galactose; Xyl, xylose; Fuc, fucose;
GA, gallic acid; EGC, (-) epigallocatechin; C, catechin hydrate; EC, epicatechin; ECG, (-) epicatechin gallate; CG,
catechin gallate.

3.2. Validation of Fluorescent Labelling
3.2.1. Degree of Substitution

As shown in Figure 2A, the FITC standard curve (demonstrated the regression equa-
tion: y = 54566x − 28.194 (R2 = 0.9992)), indicated excellent linearity. By substituting the
measured fluorescence intensities of HPC-FITC, PC1-FITC, and PC4-FITC into this standard
curve, the average substitution degrees of FITC in HPC, PC1, and PC4 were found to be
0.471%, 0.212%, and 0.198%, respectively. Notably, the fluorescence substitution rate of
HPC-FITC was significantly higher than that of PC1-FITC and PC4-FITC. This difference
may be attributed to the smaller molecular weights of PC1 and PC4 and their fewer re-
ducing ends. During the repeated alcohol precipitation process used to obtain fluorescent
markers, the incomplete precipitation of labelled PC1-FITC and PC4-FITC likely led to some
loss of these fractions [36]. The above results indicate that FITC was successfully labelled
on the polyphenol–polysaccharide complex. However, it remains unclear whether the
FITC labelling has any effect on the structure of the polyphenol–polysaccharide complex,
which still requires further investigation. The synthesis process and chemical structures are
illustrated in Figure 3A.
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3.2.2. Fourier Transform Infrared Spectroscopy

Figure 3B–D shows the FT-IR spectra of HPC-FITC, PC1-FITC, and PC4-FITC. The
absorption intensities of the functional groups in HPC-FITC, PC1-FITC, and PC4-FITC
differ, the intense and broad absorption peak at 3400 cm−1 is associated with the tensile
vibration of O-H. The feeble absorption peak at 2950 cm−1 might be attributed to C-H
tensile vibration. The stretching vibration peaks of C=O and C=O=C were detected at
1625 cm−1 and 1250 cm−1, and the characteristic peaks of sugar appeared at all the above
four points. The symmetrical stretching vibration peak of pyranose was witnessed at
1060 cm−1. At 882 cm−1; this indicates that sulfate is attached to the C4 position of fucose,
and that the fluorescence labelling reaction did not affect the sugar backbone [13,32,37]. The
vibrational peaks of the C-S bond at around 1160 cm−1 and the characteristic absorption
peaks of aromatics at around 1440 cm−1 [36] confirm that FITC was successfully attached
to the sugar chain. This suggests that the labelling process did not alter the sugar chain
structure, which is consistent with the results of the previous monosaccharide compositions.
These findings indicate that the polyphenol–polysaccharide complexes were successfully
labelled, establishing a basis for subsequent in vivo experiments.

3.3. Establishment and Validation of Quantitative Analysis Methods
3.3.1. Standard Curve Plotting

According to the standard curve, we measured the fluorescence intensity in heart,
liver, spleen, stomach, kidney, large intestine, small intestine, faeces, urine and plasma after
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adding three groups of samples. The correlation coefficients of the linear regression equa-
tions for each biological tissue sample were all greater than 0.99 (Table 2), demonstrating
good linearity in the range of 0.5–25 µg/mL. This indicates that the linear equations meet
the requirements for pharmacokinetic studies.

Table 2. The linear regression equation and the correlation coefficients of biological samples.

HPC-FITC PC1-FITC PC4-FITC

Heart y = 1525.7x − 551.44 R2 = 0.9992 y = 1063.9x − 263.73 R2 = 0.9991 y = 1464.6x − 175.6 R2 = 0.9995
Liver y = 1474.2x − 462.06 R2 = 0.9990 y = 981x − 44.61 R2 = 0.9998 y = 1486.7x − 202.96 R2 = 0.9998

Splenic y = 1526.7x − 321.98 R2 = 0.9994 y = 1090x − 155.77 R2 = 0.9990 y = 1559.3x − 244.09 R2 = 0.9994
Stomach y = 1477.4x − 183.7 R2 = 0.9964 y = 1058x − 76.085 R2 = 0.9995 y = 1468.9x − 163.09 R2 = 0.9994
Kidney y = 1609.8x − 578.4 R2 = 0.9993 y = 1048.6x − 59.47 R2 = 0.9994 y = 1533.6x − 190.5 R2 = 0.9986

Large intestine y = 1700.6x − 106.23 R2 = 0.9993 y = 1251.2x − 178.64 R2 = 0.9955 y = 1699.7x − 173.27 R2 = 0.9996
Small intestine y = 1866.8x − 242.15 R2 = 0.9994 y = 1388.1x − 378.35 R2 = 0.9979 y = 1888x + 136.49 R2 = 0.9999

Faeces y = 2347.6x − 372.51 R2 = 0.9996 y = 1609x − 242.69 R2 = 0.9995 y = 2231.7x − 42.249 R2 = 0.9988
Urine y = 2411.8x + 1003.9 R2 = 0.9995 y = 1563.3x + 936.52 R2 = 0.9998 y = 2353.1x + 444.9 R2 = 0.9999

Plasma y = 1332x − 155.09 R2 = 0.9991 y = 1025.9x − 43.727 R2 = 0.9989 y = 1440.8x − 75.757 R2 = 0.9992

3.3.2. Recovery, Precision, and Stability

The recoveries, precision, and stability of the quantitative analysis methods for HPC-
FITC, PC1-FITC, and PC4-FITC were evaluated. The results showed that the recover-
ies of each group of labelled complexes ranged from 93.19% to 106.54% (Tables S1–S3).
The recoveries of the labelled polyphenol–polysaccharide complex were all above 90%,
demonstrating that this method is suitable for analysing biological samples. The accuracy,
intra-day precision, and inter-day precision of FITC in different samples ranged from 1.38%
to 7.38%, 1.09% to 6.33%, and 1.37% to 6.83%, respectively (Table S4), all of which were less
than 15%. Thus, the method precision of this experimental design meets the requirements
for determining biological samples.

The stability of the biological samples was verified by testing them after 48 h of
standing at room temperature, 15 days of storage at −20 ◦C, and three cycles of freeze-
thawing. Under these conditions, the RSD values of the sample concentrations in plasma,
heart, liver, spleen, kidney, stomach, small intestine, large intestine, urine, faeces, and other
tissues of mice were less than 15% (Tables S5–S7). These values were within the acceptable
range, indicating that the samples were stable and met the stability requirements.

In summary, the results of these experiments demonstrate the stability, precision, and
accuracy of the methods used, fulfilling the basic criteria for conducting
pharmacokinetic studies.

3.4. In Vivo Pharmacokinetic and Tissue Distribution Studies of Labelled
Polyphenol–Polysaccharide Complex
3.4.1. Pharmacokinetic Parameters of HPC-FITC, PC1-FITC, PC4-FITC in Mice by Gavage

Pharmacokinetics and tissue distribution are key to understanding biological activity.
The results of these experiments demonstrated that HPC-FITC, PC1-FITC, and PC4-FITC
exhibit good stability. To further understand their absorption and metabolic properties
in vivo, we monitored the blood concentration levels and tissue distribution in mice for
48 h after administration. Pharmacokinetic parameters were calculated for the plasma
concentrations of HPC-FITC, PC1-FITC, and PC4-FITC after gavage. Figure 4A shows the
average blood concentrations of the three groups of samples, and the corresponding phar-
macokinetic parameters are presented in Table 3. The results showed that the absorption
rates of PC1-FITC and PC4-FITC were significantly higher than that of HPC-FITC, with
maximum peak concentrations (Cmax) of 3.71, 3.48, and 2.79 µg/mL, respectively. Through
Table 3 we find that the distribution and elimination of FITC in mice were found to be
slower compared to PC1-FITC and PC4-FITC, with a longer half-life. The mean retention
times (MRT0–∞) in vivo for the three groups of samples were HPC-FITC: 36.48 h; PC1-FITC:
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18.06 h; and PC4-FITC: 16.88 h. The time required for elimination of the drug from the body
was shorter for PC1-FITC and PC4-FITC compared to HPC-FITC. Polysaccharides with
higher molecular weights usually have longer mean retention times (MRT) [38]. In a study
by Bi et al., it was found that FITC-labelled Polygonatum sibiricum polysaccharides (PRP-
TYR-FITC) reached a maximum peak concentration (Cmax) within 2 h of oral administration,
followed by a slow clearance from plasma, and had a long half-life (T1/2) of 31.39 h [39].
Zhang et al. observed that low-molecular-weight fucoidan (7.1 kDa) disappeared from the
bloodstream very quickly after intravenous injection in rabbits (T1/2 = 11.24 ± 2.93 min,
MRT = 109 min), whereas high-molecular-weight fucoidan administered by gavage pro-
longed the mean retention time, with an MRT value of 6.79 ± 1.63 h [40]. Wang et al.
further demonstrated that the T1/2 and MRT0–∞ values of PHZ decreased with enzymatic
degradation. By comparing the pharmacokinetics of Phlorizin with and without enzymatic
treatment, they showed that small molecule drugs are more readily absorbed and utilised
by the organism [41]. Combined with the results of these experiments, it is clear that
HPC-FITC has poorer gavage absorption and a longer retention time, which may be related
to its larger molecular weight.
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Table 3. Pharmacokinetic parameters of HPC-FITC, PC1-FITC, and PC4-FITC after oral
administration.

Pharmacokinetic
Parameters

Result ± SD

HPC-FITC PC1-FITC PC4-FITC

Cmax (mg/mL) 3.71 ± 0.16 3.48 ± 0.18 2.79 ± 0.06
Tmax (h) 4.00 ± 0.31 2.00 ± 0.01 1.00 ± 0.03
T1/2 (h) 26.92 ± 0.76 25.04 ± 1.25 24.12 ± 0.61

AUC0–t (mg/L h) 47.63 ± 1.13 64.28 ± 3.38 147.82 ± 15.62
AUC0–∞ (mg/L h) 56.02 ± 3.92 66.37 ± 2.03 169.38 ± 13.38

MRT0–∞ (h) 36.48 ± 0.10 18.06 ± 0.21 16.88 ± 0.17
CL/F (L/h/kg) 1.27 ± 0.02 0.76 ± 0.10 0.31 ± 0.04

Notes: Tmax, time to peak concentration; Cmax, peak concentration; T1/2, half-life; AUC0–t, area under the curve
from zero to t; AUC0–∞, area under the curve from zero to infinity; MRT0–∞, mean residence time; CL/F: ratio of
plasma clearance to absolute bioavailability.
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KANEO et al. conducted a systematic assay of blood concentrations of dextrans at
different molecular weights (Mws) in mice and found that dextrans with molecular weights
below 20 kDa were rapidly eliminated from the blood and exhibited poor hepatic aggrega-
tion (2.1–3.7%). In contrast, when the molecular weight exceeded 40 kDa, dextrans were
significantly distributed in the liver (18.9–24.0%) and remained for a longer period. The
pharmacokinetic differences between dextrans with Mws ≤ 20 kDa and Mws ≥ 40 kDa
were significant, which may be related to the pore size of the renal vascular bed. Addition-
ally, changes in the renal clearance of dextrans with different Mws were more pronounced
than those in hepatic clearance, possibly due to differences in the structure of renal and
hepatic capillary walls [42]. Woting et al. determined the relationship between small
intestinal permeability, intestinal transit time, and the molecular weight of FITC dextrans
in C3H mice, using low-molecular-weight (4 kDa) and high-molecular-weight (70 kDa)
FITC dextrans. Their findings revealed a clear relationship between molecular weight,
intestinal transit time, and the uptake of dextrans in these mice. The results showed that
4 kDa FITC dextran was preferentially absorbed in the duodenum and jejunum. As the
plasma concentration of 4 kDa FITC dextran began to decrease, 70 kDa FITC dextran
reached the ileum in all mice [43]. Zheng et al. found that the effect of molecular weight
on the pharmacokinetics of polysaccharides is determined by two factors. Firstly, small-
molecular-weight polysaccharides are rapidly excreted through the kidneys. In contrast,
large-molecular-weight polysaccharides reduce renal clearance, causing them to remain in
the circulatory system for a longer period and facilitating their aggregation in the liver. Sec-
ondly, a further increase in molecular weight decreases the permeability of polysaccharides
into hepatocytes, thereby reducing hepatic accumulation [44].

In summary, we find that natural polysaccharides possess a complex structure, a large
molecular weight, and a longer metabolic process in contrast to small-molecule drugs.
Meanwhile, small-molecule substances have a higher absorption rate within the body
and are more readily absorbed and utilised by it, whereas large-molecule substances are
digested and absorbed at a slower pace within the body, mainly through the intestinal–
brain microbial axis, which can improve gut microbiota and potentially slow down disease
progression [45–48], which is consistent with our findings. These results indicate that the
FITC method is stable, rapid, and sensitive, and is suitable for the pharmacokinetic study
of the polyphenol–polysaccharide complex of Hizikia fusiforme.

3.4.2. Excretion Ratios of Gavage HPC-FITC, PC1-FITC, and PC4-FITC in Mice

The results of metabolic experiments were used to calculate the cumulative excretion
and the cumulative excretion as a percentage of the administered dose at 48 h. As shown in
Figure 4B–D, after gavage of HPC-FITC, PC1-FITC, and PC4-FITC, the primary time period
for urinary excretion was 0–6 h. Urinary excretion peaked at 4 h (HPC-FITC: 35.18 ± 0.41%,
PC1-FITC: 23.44 ± 1.68%, PC4-FITC: 16.49 ± 0.81%), and then the excretion rate gradually
decreased with time. The excretion rate in faeces did not change significantly from 0 to
6 h. After 6 h, the faecal excretion rate gradually increased and reached a peak at 12 h
(HPC-FITC: 58.71 ± 1.15%, PC1-FITC: 39.50 ± 0.35%, PC4-FITC: 28.01 ± 0.51%). The
cumulative excretion rates of HPC-FITC, PC1-FITC, and PC4-FITC in urine as a percentage
of the total dose were 9.18%, 2.37%, and 13.72%, respectively, and the cumulative excretion
rates in faeces as a percentage of the total dose were 5.15%, 21.23%, and 9.84%, after 48 h of
administration by gavage in mice. These results suggest that the retention of polyphenol–
polysaccharide complex in the intestine may contribute to their potential effects on the
gut [13,45]. The main metabolic pathway of the three samples was excretion via urine
and faeces through the kidneys and intestines. Chao et al. found that the concentration
of labelled Lycium barbarum polysaccharide (LBP) was significantly reduced in all tissues
after 24 h of drug administration, but the concentration of LBP-FITC in the large intestine,
liver, and kidneys was slightly higher. This suggests that LBP-FITC is mainly excreted in
faeces in addition to urine via the kidneys, which is similar to our findings [49]. These
metabolic kinetic parameters indicate that the molecular weights of HPC-FITC, PC1-FITC,
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and PC4-FITC directly influence the rate of drug absorption and elimination time after
gavage in mice. The faster absorption of smaller polyphenol–polysaccharide complex aligns
with previous pharmacokinetic studies. Similar results were observed in pharmacokinetic
studies of labelled Glycyrrhiza uralensis polysaccharides (GUPS) in rats by Abudukahaer
et al., and natural polyphenols like quercetin by Gaber et al., which also concluded that
smaller molecules have a faster rate of absorption [50,51].

3.4.3. Tissue Distribution Pattern of HPC-FITC, PC1-FITC, and PC4-FITC in Mice
by Gavage

The organisational distribution of HPC-FITC, PC1-FITC, and PC4-FITC is depicted in
Figure 5, and the corresponding parameters are presented in Table 4. The results indicated
that HPC-FITC, PC1-FITC, and PC4-FITC were least distributed in the heart and spleen,
with the highest distribution observed in the stomach and intestines, followed by the
kidneys and liver. After 0.5 h of gavage administration, HPC-FITC (23.64 ± 0.06 µg/mL),
PC1-FITC (22.53 ± 0.02 µg/mL), and PC4-FITC (9.98 ± 0.05 µg/mL) were detected in the
stomach at the highest concentrations, which then declined rapidly. In the small intestine,
the concentrations of these complexes peaked at 2–4 h and subsequently decreased. In the
large intestine, concentrations gradually increased from 2 h, peaking at 6 h before declining.
Fewer concentrations of HPC-FITC, PC1-FITC, and PC4-FITC were found in the liver
and kidneys; however, the concentrations in the kidneys increased significantly after 2 h,
reaching 13.35 ± 0.03 µg/mL, 8.37 ± 0.12 µg/mL, and 4.36 ± 0.08 µg/mL, respectively, by
4 h. This suggests that the kidneys have a strong capacity for polyphenol–polysaccharide
complex uptake. These results indicate that HPC-FITC, PC1-FITC, and PC4-FITC are
absorbed into the blood and subsequently excreted in urine through the kidneys after 2 h of
gavage, which aligns with findings by Wang et al. and Zhang et al. [52,53]. Additionally, Xu
et al. found a similar strong uptake capacity for FITC-labelled fucoidan in the kidneys [21].
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PC1-FITC 22.53 ± 0.02 7.30 ± 0.06 5.46 ± 0.05 4.54 ± 0.04 3.95 ± 0.08 3.93 ± 0.02 3.84 ± 0.05 2.97 ± 0.01 2.72 ± 0.04 
PC4-FITC 9.98 ± 0.05 8.22 ± 0.04 5.85 ± 0.03 2.50 ± 0.02 2.51 ± 0.16 1.73 ± 0.09 1.72 ± 0.08 1.42 ± 0.06 1.34 ± 0.12 

Kidney 
HPC-FITC 2.63 ± 0.14 4.02 ± 0.06 5.88 ± 0.15 13.35 ± 0.03 4.30 ± 0.03 4.25 ± 0.15 4.09 ± 0.05 2.49 ± 0.03 1.68 ± 0.14 
PC1-FITC 6.15 ± 0.08 6.97 ± 0.04 7.63 ± 0.17 8.37 ± 0.12 6.28 ± 0.09 6.01 ± 0.08 5.70 ± 0.07 2.89 ± 0.02 2.49 ± 0.10 
PC4-FITC 3.96 ± 0.04 4.38 ± 0.22 4.36 ± 0.04 4.36 ± 0.08 4.35 ± 0.12 4.00 ± 0.05 3.74 ± 0.07 2.58 ± 0.16 1.77 ± 0.07 

Large 
intestine 

HPC-FITC 1.83 ± 0.18 4.12 ± 0.06 5.13 ± 0.05 8.61 ± 0.05 10.78 ± 0.1 7.31 ± 0.17 4.42 ± 0.10 1.36 ± 0.14 1.07 ± 0.03 
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Among the samples, PC1 and PC4 showed lower response values and shorter retention
times compared to HPC. The significant differences in tissue distribution may be related to
the speed of uptake by the organism, molecular weight, or the size of vascular apertures
in the kidneys and liver [54–56]. Dou et al. studied the absorption and distribution of
Millettia speciosa polysaccharide (MSP) labelled with a Rhodamine B fluorescent marker in
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mice. Their results showed that MSP-Rh B was mainly distributed in the gastrointestinal
tract, liver, and kidneys. Following intragastric administration, it first entered the systemic
circulation and then distributed to the liver and kidneys, with fluorescent signals grad-
ually weakening over time, which is consistent with our findings [57]. Several studies
have confirmed that hepatic accumulation and renal excretion of active substances are
influenced by molecular weight. Bi et al. observed fluorescence in rat glomerular filtration
membranes and suggested that macromolecule polysaccharides may be sequestered by
these membranes [39]. Song et al. found that FITC-labelled mannuronic acid (FITC-PM;
16.83 kDa) was predominantly distributed in the kidneys (maximum concentration at 0.5 h),
followed by the liver, and high concentrations of PM were present in the kidneys even when
undetectable in the blood [58]. Of course, our study only analysed the distribution pattern
of ICR mice, which has some limitations. Future studies should investigate the metabolic
pattern of the Hizikia fusiforme polyphenol–polysaccharide complex in different animal
models. In summary, PC1 and PC4 are absorbed into the bloodstream and distributed more
rapidly compared to the HPC purified group.

Table 4. Tissue distribution of HPC-FITC, PC1-FITC, and PC4-FITC in mice orally (n = 5).

Tiusse Group
Time (h)

0.5 1 2 4 6 8 12 24 48

Heart
HPC-FITC 2.27 ± 0.03 2.59 ± 0.07 2.85 ± 0.02 2.86 ± 0.04 2.83 ± 0.02 2.68 ± 0.05 2.59 ± 0.01 1.52 ± 0.03 1.24 ± 0.03
PC1-FITC 3.01 ± 0.04 3.60 ± 0.08 3.53 ± 0.06 3.30 ± 0.05 3.05 ± 0.08 2.88 ± 0.02 2.58 ± 0.09 2.71 ± 0.02 1.66 ± 0.05
PC4-FITC 2.14 ± 0.11 2.17 ± 0.14 2.67 ± 0.16 2.73 ± 0.12 2.63 ± 0.15 2.41 ± 0.09 2.52 ± 0.07 2.21 ± 0.04 1.45 ± 0.03

Liver
HPC-FITC 3.21 ± 0.22 3.18 ± 0.11 3.71 ± 0.05 3.75 ± 0.04 3.35 ± 0.06 2.91 ± 0.05 2.64 ± 0.13 2.30 ± 0.02 1.14 ± 0.04
PC1-FITC 1.93 ± 0.17 3.36 ± 0.06 4.25 ± 0.12 4.61 ± 0.14 4.39 ± 0.08 3.71 ± 0.13 3.65 ± 0.09 3.54 ± 0.05 1.37 ± 0.12
PC4-FITC 2.12 ± 0.22 2.54 ± 0.21 2.64 ± 0.12 2.60 ± 0.18 2.48 ± 0.17 2.22 ± 0.04 2.16 ± 0.13 1.41 ± 0.17 0.97 ± 0.12

Splenic
HPC-FITC 0.79 ± 0.02 0.63 ± 0.04 0.77 ± 0.03 0.74 ± 0.11 1.24 ± 0.03 1.11 ± 0.05 0.99 ± 0.04 0.83 ± 0.07 0.61 ± 0.02
PC1-FITC 0.96 ± 0.06 0.99 ± 0.12 1.15 ± 0.13 1.16 ± 0.11 1.61 ± 0.22 1.57 ± 0.18 1.35 ± 0.12 0.93 ± 0.10 0.74 ± 0.16
PC4-FITC 0.72 ± 0.06 0.69 ± 0.04 0.82 ± 0.03 0.97 ± 0.11 1.17 ± 0.09 1.13 ± 0.17 0.83 ± 0.08 0.72 ± 0.06 0.59 ± 0.05

Stomach
HPC-FITC 23.64 ± 0.06 23.34 ± 0.05 10.28 ± 0.11 7.55 ± 0.02 6.61 ± 0.04 5.66 ± 0.07 3.40 ± 0.04 2.24 ± 0.13 2.09 ± 0.06
PC1-FITC 22.53 ± 0.02 7.30 ± 0.06 5.46 ± 0.05 4.54 ± 0.04 3.95 ± 0.08 3.93 ± 0.02 3.84 ± 0.05 2.97 ± 0.01 2.72 ± 0.04
PC4-FITC 9.98 ± 0.05 8.22 ± 0.04 5.85 ± 0.03 2.50 ± 0.02 2.51 ± 0.16 1.73 ± 0.09 1.72 ± 0.08 1.42 ± 0.06 1.34 ± 0.12

Kidney
HPC-FITC 2.63 ± 0.14 4.02 ± 0.06 5.88 ± 0.15 13.35 ± 0.03 4.30 ± 0.03 4.25 ± 0.15 4.09 ± 0.05 2.49 ± 0.03 1.68 ± 0.14
PC1-FITC 6.15 ± 0.08 6.97 ± 0.04 7.63 ± 0.17 8.37 ± 0.12 6.28 ± 0.09 6.01 ± 0.08 5.70 ± 0.07 2.89 ± 0.02 2.49 ± 0.10
PC4-FITC 3.96 ± 0.04 4.38 ± 0.22 4.36 ± 0.04 4.36 ± 0.08 4.35 ± 0.12 4.00 ± 0.05 3.74 ± 0.07 2.58 ± 0.16 1.77 ± 0.07

Large
intestine

HPC-FITC 1.83 ± 0.18 4.12 ± 0.06 5.13 ± 0.05 8.61 ± 0.05 10.78 ± 0.1 7.31 ± 0.17 4.42 ± 0.10 1.36 ± 0.14 1.07 ± 0.03
PC1-FITC 3.45 ± 0.10 4.47 ± 0.02 6.65 ± 0.06 7.8 ± 0.10 9.77 ± 0.05 7.12 ± 0.03 6.24 ± 0.06 3.31 ± 0.13 1.61 ± 0.13
PC4-FITC 0.79 ± 0.08 1.49 ± 0.13 2.21 ± 0.10 3.61 ± 0.12 4.67 ± 0.06 2.85 ± 0.09 1.67 ± 0.03 1.34 ± 0.04 1.21 ± 0.11

Small
intestine

HPC-FITC 2.25 ± 0.09 3.26 ± 0.03 8.78 ± 0.04 14.76 ± 0.13 9.27 ± 0.05 3.73 ± 0.05 2.02 ± 0.11 1.56 ± 0.07 1.28 ± 0.11
PC1-FITC 2.74 ± 0.07 4.08 ± 0.013 8.91 ± 0.21 5.56 ± 0.03 2.46 ± 0.13 2.37 ± 0.08 2.15 ± 0.19 1.83 ± 0.17 1.87 ± 0.14
PC4-FITC 2.64 ± 0.05 6.95 ± 0.14 1.59 ± 0.06 1.26 ± 0.03 1.21 ± 0.12 1.19 ± 0.10 1.19 ± 0.06 1.03 ± 0.08 0.99 ± 0.04

4. Conclusions

In this study, we used FITC to label HPC and its purified fractions, creating isoth-
iocyanine fluorescein-labelled polyphenol–polysaccharide complex. Chemical composi-
tion analysis confirmed that this labelling approach did not affect the structure of the
polyphenol–polysaccharide complex. The quantitative analysis of HPC-FITC, PC1-FITC,
and PC4-FITC in vivo was successfully established, demonstrating the feasibility of using
FITC for labelling polyphenol–polysaccharide complex. This method was also applied to
investigate the pharmacokinetics and tissue distribution of the three sample groups in mice.
And the animals in this experiment were treated humanely to minimise animal injuries,
respect animal rights, and protect animal safety. The pharmacokinetic results from a single
oral administration revealed that HPC-FITC had a longer half-life and slower elimination
compared to the purified fractions, indicating that polyphenol–polysaccharide complexes
with smaller molecular weights are absorbed more rapidly. Additionally, we found that
the three sample groups were primarily distributed in the stomach, small intestine, large
intestine, kidneys, and liver. The notable distribution in the kidneys and liver suggests that
these organs have a significant uptake capacity for the drug. Excretion studies showed
that most of the samples from all three groups were excreted through the urine and faeces.
Moreover, after 48 h of administration by gavage, the cumulative excretion of HPC-FITC
accounted for 5.15% of the total administration dose, which proved that the macromolecular
polyphenol–polysaccharide complex could play its potential role in the intestine due to
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its difficult absorption. In summary, this study provides insights into the mechanism of
energy expansion and potentiation of polyphenol–polysaccharide complex, elucidating
their digestion and absorption patterns in vivo. This research offers a theoretical foundation
for developing algal-based natural functional foods.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/foods13183019/s1, Table S1: Recovery of HPC-FITC in mouse
plasma (n = 5); Table S2. Recovery of PC1-FITC in mouse plasma (n = 5); Table S3. Recovery of PC4-
FITC in mouse plasma (n = 5); Table S4. Intra-day and inter-day precision of HPC-FITC, PC1-FITC,
and PC4-FITC in mouse plasma (n = 5); Table S5. Stability of HPC-FITC in mouse plasma (n = 5);
Table S6. Stability of PC1-FITC in mouse plasma (n = 5); Table S7. Stability of PC4-FITC in mouse
plasma (n = 5).
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