Postharvest Quality of Arugula (Eruca sativa) Microgreens Determined by Microbiological, Physico-Chemical, and Sensory Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growing Conditions
2.2. Microbiological Analysis
2.2.1. Salmonella spp. and Listeria monocytogenes Analysis
2.2.2. Total Enterobacteriaceae and Escherichia coli Count
2.2.3. Mesophilic, Psychrophilic, and Molds and Yeasts Count
2.3. Physicochemical Analysis
2.3.1. Color
2.3.2. pH, Soluble Solid Content and Titratable Acidity
2.3.3. Weight Loss
2.3.4. Chlorophylls
2.4. Sensory Evaluation
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alruwaih, N.A.; Yaylayan, V.A. Comparative evaluation of bioactive compounds in lyophilized and tray-dried rocket (Eruca sativa). J. Food Process. Preserv. 2017, 41, e13205. [Google Scholar] [CrossRef]
- Xiao, Z.; Rausch, S.; Luo, Y.; Sun, J.; Yu, L.; Wang, Q.; Chein, P.; Stommel, J. Microgreens of Brassicaceae: Genetic diversity of phytochemical concentrations and antioxidant capacity. LWT 2019, 101, 731–737. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, Z.; Ager, E.; Kong, L.; Tan, L. Nutritional quality and health benefits of microgreens, a crop of modern agriculture. J. Future Foods 2021, 1, 58–66. [Google Scholar] [CrossRef]
- Turner, E.R.; Luo, Y.; Buchanan, R.L. Microgreen nutrition, food safety, and shelf life: A review. J. Food Sci. 2020, 85, 870–882. [Google Scholar] [CrossRef] [PubMed]
- Paradiso, V.M.; Castellino, M.; Renna, M.; Gattullo, C.E.; Calasso, M.; Terzano, R.; Santamaria, P. Nutritional characterization and shelf-life of packaged microgreens. Food Funct. 2018, 9, 5629–5641. [Google Scholar] [CrossRef]
- Butkutė, B.; Taujenis, L.; Norkevičienė, E. Small-seeded legumes as a novel food source. Variation of nutritional, mineral and phytochemical profiles in the chain: Raw seeds-sprouted seeds-microgreens. Molecules 2018, 24, 133. [Google Scholar] [CrossRef]
- Di Gioia, F.; Renna, M.; Santamaria, P. Sprouts, microgreens and “Baby Leaf” vegetables. In Minimally Processed Refrigerated Fruits and Vegetables; Yildiz, F., Wiley, R.C., Eds.; Springer: Boston, MA, USA, 2017; pp. 403–432. [Google Scholar]
- Johnson, S.; Prenni, J.; Heuberger, A.; Isweiri, H.; Chaparro, J.; Newman, S.; Uchanski, M.; Omerigic, H.; Michell, K.; Bunning, M.; et al. Comprehensive evaluation of metabolites and minerals in 6 microgreen species and the influence of maturity. Curr. Dev. Nutr. 2021, 5, nzaa180. [Google Scholar] [CrossRef]
- Kopsell, D.; Pantanizopoulos, N.; Sams, C.; Kopsell, D. Shoot tissue pigment levels increase in “Florida Broadleaf” mustard (Brassica juncea L.) microgreens following high light treatment. Sci. Hortic. 2012, 140, 96–99. [Google Scholar] [CrossRef]
- Di Gioia, F.; Mininni, C.; Santamaria, P. Come coltivare i micro-ortaggi—How to grow microgreens—Cómo cultivar micro-hortalizas. In Microgreens: Novel Fresh and Functional Food to Explore All the Value of Biodiversity; Di Gioia, F., Santamaria, P., Eds.; Eco-logica: Bari, Italy, 2015; pp. 51–79. [Google Scholar]
- Kyriacou, M.; Rouphael, Y.; Di Gioia, F.; Kyratzis, A.; Serio, F.; Renna, M.; de Pascale, S. Micro-scale vegetable production and the rise of microgreens. Trends Food Sci. Technol. 2016, 57, 103–115. [Google Scholar] [CrossRef]
- Renna, M.; Castellino, M.; Leoni, B.; Paradiso, V.M.; Santamaria, P. Microgreens production with low potassium content for patients with impaired kidney function. Nutrients 2018, 10, 675. [Google Scholar] [CrossRef]
- Ebert, A.; Wu, T.; Yang, R.Y. Amaranth sprouts and microgreens—A homestead vegetable production option to enhance food and nutrition security in the rural–urban continuum. In Proceedings of the Regional Symposium on Sustaining Small-Scale Vegetable Production and Marketing Systems for Food and Nutrition Security; AVRDC Publication: Taiwan, China, 2014; pp. 233–244. [Google Scholar]
- Komeroski, M.R.; Portal, K.A.; Comiotto, J.; Klug, T.V.; Flores, S.H.; Rios, A.D.O. Nutritional quality and bioactive compounds of arugula (Eruca sativa L.) sprouts and microgreens. Int. J. Food Sci. Technol. 2023, 58, 5089–5096. [Google Scholar] [CrossRef]
- Riggio, G.; Wang, Q.; Kniel, K.; Gibson, K. Microgreens—A review of food safety considerations along the farm to fork continuum. Int. J. Food Microbiol. 2019, 290, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Wright, K.M.; Holden, N.J. Quantification and colonisation dynamics of Escherichia coli O157: H7 inoculation of microgreens species and plant growth substrates. Int. J. Food Microbiol. 2018, 273, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Di Gioia, F.; De Bellis, P.; Mininni, C.; Santamaria, P.; Serio, F. Physicochemical, agronomical and microbiological evaluation of alternative growing media for the production of rapini (Brassica rapa L.) microgreens. J. Sci. Food Agric. 2016, 97, 1212–1219. [Google Scholar] [CrossRef]
- Mir, S.A.; Shah, M.A.; Mir, M.M. Microgreens: Production, shelf life, and bioactive components. Crit. Rev. Food Sci. Nutr. 2016, 57, 2730–2736. [Google Scholar] [CrossRef]
- Sharma, A.; Hazarika, M.; Heisnam, P.; Pandey, H.; Devadas, V.S.; Singh, D.; Kartha, B.D. Influence of storage conditions, packaging, post-harvest technology, nanotechnology and molecular approaches on shelf life of microgreens. J. Agric. Food Res. 2023, 14, 100835. [Google Scholar] [CrossRef]
- Kou, L.; Luo, Y.; Yang, T.; Xiao, Z.; Turner, E.R.; Lester, G.E.; Camp, M.J. Postharvest biology, quality and shelf life of buckwheat microgreens. LWT-Food Sci. Technol. 2013, 51, 73–78. [Google Scholar] [CrossRef]
- Patil, M.; Sharma, S.; Sridhar, K.; Anurag, R.K.; Grover, K.; Dharni, K.; Sharma, M. Effect of postharvest treatments and storage temperature on the physiological, nutritional, and shelf-life of broccoli (Brassica oleracea) microgreens. Sci. Hortic. 2024, 327, 112805. [Google Scholar] [CrossRef]
- Chitarra, M.I.F.; Chitararra, A.B. Pós-colheita de frutas e hortaliças: Fisiologia e manuseio, 2nd ed.; rev. amp.; Universidade Federal de Lavras: Lavras, Brazil, 2005; 783p. [Google Scholar]
- ISO 6579-1:2017/Amd 1:2020; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. Amendment 1: Broader Range of Incubation Temperatures, Amendment to the Status of Annex D, and Correction of the Composition of MSRV and SC. International Organisation for Standardization: Geneva, Switzerland, 2020.
- ISO 11290-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp. Part 1: Detection Method. International Organisation for Standardization: Geneva, Switzerland, 2017.
- Silva, N.; Junqueira, V.; Silveira, N.; Taniwaki, M.; Gomes, R.; Okazaki, M.; Iamanaka, B. Manual de Métodos de Análise Microbiológica de Alimentos e Água, 6th ed.; Blucher: São Paulo, Brazil, 2021. [Google Scholar]
- Barbosa, A.D.; Alexandre, B.; Tondo, E.C.; Malheiros, P.S. Microbial survival in gourmet hamburger thermally processed by different degrees of doneness. Int. J. Gastron. Food Sci. 2022, 28, 100501. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 16th ed.; AOAC International: Rockville, MD, USA, 1995; Volume 1. [Google Scholar]
- Xiao, Z.; Lester, G.E.; Park, E.; Saftner, R.A.; Luo, Y.; Wang, Q. Evaluation and correlation of sensory attributes and chemical compositions of emerging fresh produce: Microgreens. Postharvest Biol. Technol. 2015, 110, 140–148. [Google Scholar] [CrossRef]
- Yan, H.; Li, W.; Chen, H.; Liao, Q.; Xia, M.; Wu, D.; Zhao, J. Effects of Storage Temperature, Packaging Material and Wash Treatment on Quality and Shelf Life of Tartary Buckwheat Microgreens. Foods 2022, 11, 3630. [Google Scholar] [CrossRef] [PubMed]
- Wellburn, A.R.; Lichtenthaler, H. Formulae and program to determine total carotenoids and chlorophylls a and b of leaf extracts in different solvents. In Advances in Photosynthesis Research: Proceedings of the VIth International Congress on Photosynthesis, Brussels, Belgium, August 1–6, 1983 Volume 2; Springer: Dordrecht, The Netherlands, 1984; pp. 9–12. [Google Scholar]
- Viana, L.T. Sensory analysis in the food industry. Rev. Inst. Laticínios Cândido Tostes 2009, 64, 12–21. [Google Scholar]
- Priti; Sangwan, S.; Kukreja, B.; Mishra, G.P.; Dikshit, H.K.; Singh, A.; Aski, M.; Kumar, A.; Taak, V.; Stobdan, T.; et al. Yield optimization, microbial load analysis, and sensory evaluation of mungbean (Vigna radiata L.), lentil (Lens culinaris subsp. culinaris), and Indian mustard (Brassica juncea L.) microgreens grown under greenhouse conditions. PLoS ONE 2011, 17, e0268085. [Google Scholar] [CrossRef] [PubMed]
- International Commission on Microbiological Specifications for Foods—ICMSF. Microorganisms in Foods 8: Microbiological Testing in Food Safety Management; Kluwer Academic: New York, NY, USA, 2011. [Google Scholar]
- BRASIL. RESOLUÇÃO—RDC N° 724 2011, DE 01 DE JULHO DE. 2022. Available online: https://antigo.anvisa.gov.br/documents/10181/2718376/RDC_724_2022_.pdf/33c61081-4f32-43c2-9105-c318fa6069ce (accessed on 22 July 2024).
- BRASIL. INSTRUÇÃO NORMATIVA N° 161, DE 01 DE JULHO DE. 2022. Available online: https://antigo.anvisa.gov.br/documents/10181/2718376/IN_161_2022_.pdf/b08d70cb-add6-47e3-a5d3-fa317c2d54b2 (accessed on 22 July 2024).
- Jablasone, J.; Warriner, K.; Griffiths, M. Interactions of Escherichia coli O157: H7, Salmonella typhimurium and Listeria monocytogenes plants cultivated in a gnotobiotic system. Int. J. Food Microbiol. 2005, 99, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Chandra, D.; Kim, J.G.; Kim, Y.P. Changes in microbial population and quality of microgreens treated with different sanitizers and packaging films. Hortic. Environ. Biotechnol. 2012, 53, 32–40. [Google Scholar] [CrossRef]
- Xiao, Z.; Luo, Y.; Lester, G.E.; Kou, L.; Yang, T.; Wang, Q. Postharvest quality and shelf life of radish microgreens as impacted by storage temperature, packaging film, and chlorine wash treatment. LWT—Food Sci. Technol. 2014, 55, 551–558. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; El-Nakhel, C.; Pannico, A.; Graziani, G.; Soteriou, G.A.; Giordano, M.; Rouphael, Y. Phenolic constitution, phytochemical and macronutrient content in three species of microgreens as modulated by natural fiber and synthetic substrates. Antioxidants 2020, 9, 252. [Google Scholar] [CrossRef]
- Huang, J.; Luo, Y.; Nou, X. Growth of Salmonella enterica and Listeria monocytogenes on fresh-cut cantaloupe under different temperature abuse scenarios. J. Food Prot. 2015, 78, 1125–1131. [Google Scholar] [CrossRef]
- Rusu, T.; Moraru, P.I.; Mintas, O.S. Influence of environmental and nutritional factors on the development of lettuce (Lactuca sativa L.) microgreens grown in a hydroponic system: A review. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12427. [Google Scholar] [CrossRef]
- FDA. Recommendations for the Temperature Control of Cut Leafy Greens during Storage and Display in Retail Food Establishments. 2009. Available online: https://www.fda.gov/media/78982/download (accessed on 14 August 2024).
- Hamilton, A.N.; Fraser, A.M.; Gibson, K.E. Barriers to implementing risk management practices in microgreens growing operations in the United States: Thematic analysis of interviews and survey data. Food Control 2023, 152, 109836. [Google Scholar] [CrossRef]
- Dalal, N.; Siddiqui, S. Effect of chemical treatment, storage and packaging on physico-chemical properties of sunflower microgreens. Int. J. Chem. Stud. 2019, 7, 1046–1050. [Google Scholar]
- Gómez, P.A.; Egea-Gilabert, C.; Giménez, A.; Benaissa, R.R.; Amoruso, F.; Signore, A.; Gallegos-Cedillo, V.M.; Ochoa, J.; Fernández, J.A. Biodegradable Food Packaging of Wild Rocket (Diplotaxis tenuifolia L. [DC.]) and Sea Fennel (Crithmum maritimum L.) Grown in a Cascade Cropping System for Short Food Supply Chain. Horticulturae 2023, 9, 621. [Google Scholar] [CrossRef]
- Khan, M.A.M.; Mittal, A. Modified atmosphere packaging technique: An overview. In Proceedings of the International Conference on Recent Advances in Engineering and Science (ICRAES-2020), Aligarh, India, 11–12 January 2020. [Google Scholar]
- De La Fuente, B.; López-García, G.; Máñez, V.; Alegría, A.; Barberá, R.; Cilla, A. Evaluation of the bioaccessibility of antioxidant bioactive compounds and minerals of four genotypes of Brassicaceae microgreens. Foods 2019, 8, 250. [Google Scholar] [CrossRef] [PubMed]
- Kowitcharoen, L.; Phornvillay, S.; Lekkham, P.; Pongprasert, N.; Srilaong, V. Bioactive composition and nutritional profile of microgreens cultivated in Thailand. Appl. Sci. 2021, 11, 7981. [Google Scholar] [CrossRef]
- Ghoora, M.D.; Haldipur, A.C.; Srividya, N. Comparative evaluation of phytochemical content, antioxidant capacities and overall antioxidant potential of select culinary microgreens. J. Agric. Food Res. 2020, 2, 100046. [Google Scholar] [CrossRef]
- Katsenios, N.; Christopoulos, M.V.; Kakabouki, I.; Vlachakis, D.; Kavvadias, V.; Efthimiadou, A. Effect of pulsed electromagnetic field on growth, physiology and postharvest quality of kale (Brassica oleracea), wheat (Triticum durum) and spinach (Spinacia oleracea) microgreens. Agronomy 2021, 11, 1364. [Google Scholar] [CrossRef]
- Ciriello, M.; Formisano, L.; El-Nakhel, C.; Zarrelli, A.; Giordano, M.; De Pascale, S.; Rouphael, Y. Iodine biofortification of four microgreens species and its implications for mineral composition and potential contribution to the recommended dietary intake of iodine. Sci. Hortic. 2023, 320, 112229. [Google Scholar] [CrossRef]
- El-Nakhel, C.; Pannico, A.; Graziani, G.; Kyriacou, M.C.; Gaspari, A.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Nutrient supplementation configures the bioactive profile and production characteristics of three Brassica L. microgreens species grown in peat-based media. Agronomy 2021, 11, 346. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; El-Nakhel, C.; Graziani, G.; Kyriacou, M.C.; Rouphael, Y. The effects of nutrient solution feeding regime on yield, mineral profile, and phytochemical composition of spinach microgreens. Horticulturae 2021, 7, 162. [Google Scholar] [CrossRef]
- Dhaka, A.S.; Dikshit, H.K.; Mishra, G.P.; Tontang, M.T.; Meena, N.L.; Kumar, R.R.; Praveen, S. Evaluation of growth conditions, antioxidant potential, and sensory attributes of six diverse microgreens species. Agriculture 2023, 13, 676. [Google Scholar] [CrossRef]
- Bafumo, R.F.; Alloggia, F.P.; Ramirez, D.A.; Maza, M.A.; Fontana, A.; Moreno, D.A.; Camargo, A.B. Optimal brassicacea family microgreens from a phytochemical and sensory perspective. Food Res. Int. 2024, 193, 114812. [Google Scholar] [CrossRef] [PubMed]
- Caracciolo, F.; El-Nakhel, C.; Raimondo, M.; Kyriacou, M.C.; Cembalo, L.; De Pascale, S.; Rouphael, Y. Sensory attributes and consumer acceptability of 12 microgreens species. Agronomy 2020, 10, 1043. [Google Scholar] [CrossRef]
Samples/Time | 0 Days | 5 Days | 10 Days |
---|---|---|---|
Salmonella spp. | |||
Open | Absent | Absent | Absent |
Sealed | Absent | Absent | Absent |
MAP | Absent | Absent | Absent |
Listeria monocytogenes | |||
Open | Absent | Absent | Absent |
Sealed | Absent | Absent | Absent |
MAP | Absent | Absent | Absent |
Samples (S) | Time (T) | p Value | |||
---|---|---|---|---|---|
0 Days | 10 Days | S | T | S × T | |
Total Enterobacteriaceae | |||||
Open | 7.61 ± 0.60 aA | 6.95 ± 0.44 bA | 0.862 | 0.039 | 0.862 |
Sealed | 7.61 ± 0.60 aA | 7.22 ± 0.54 bA | |||
MAP | 7.61 ± 0.60 aA | 6.91 ± 0.38 bA | |||
Escherichia coli | |||||
Open | Absent | Absent | - | - | - |
Sealed | Absent | Absent | - | - | - |
MAP | Absent | Absent | - | - | - |
Samples (S) | Time (T) | p Value | ||||
---|---|---|---|---|---|---|
0 Days | 5 Days | 10 Days | S | T | S × T | |
Mesophilics | ||||||
Open | 7.30 ± 0.22 aA | 7.40 ± 0.40 aA | 7.90 ± 0.26 aB | 0.008 | <0.000 | 0.013 |
Sealed | 7.30 ± 0.22 bA | 7.90 ± 0.23 bA | 8.80 ± 0.42 aA | |||
MAP | 7.30 ± 0.22 aA | 7.90 ± 0.37 aA | 7.70 ± 0.15 aB | |||
Psychrotrophs | ||||||
Open | 5.70 ± 0.10 bA | 7.30 ± 0.16 aB | 7.90 ± 0.58 aA | 0.087 | <0.000 | 0.003 |
Sealed | 5.70 ± 0.10 cA | 7.60 ± 0.05 bAB | 8.60 ± 0.48 aA | |||
MAP | 5.70 ± 0.10 bA | 8.30 ± 0.50 aA | 7.70 ± 0.15 aA | |||
Yeasts and Molds | ||||||
Open | 5.70 ± 0.06 aA | 6.50 ± 0.28 aB | 7.00 ± 1.09 aB | 0.002 | <0.000 | 0.001 |
Sealed | 5.70 ± 0.06 cA | 7.60 ± 0.09 bAB | 8.90 ± 0.53 aA | |||
MAP | 5.70 ± 0.06 cA | 8.30 ± 0.83 aA | 7.00 ± 0.01 bB |
Samples (S) | Time (T) | p Value | ||||||
---|---|---|---|---|---|---|---|---|
0 Days | 3 Days | 5 Days | 7 Days | 10 Days | S | T | S × T | |
pH | ||||||||
Open | 5.34 ± 0.10 bA | 6.39 ± 0.04 aA | 6.05 ± 0.53 aA | 4.54 ± 0.16 cA | 5.93 ± 0.10 aA | 0.432 | <0.000 | 0.908 |
Sealed | 5.34 ± 0.10 bA | 6.35 ± 0.11 aA | 6.24 ± 0.82 aA | 4.85 ± 0.11 cA | 6.29 ± 0.06 aA | |||
MAP | 5.34 ± 0.10 bA | 6.20 ± 0.07 aA | 6.12 ± 0.87 aA | 4.95 ± 0.12 cA | 6.26 ± 0.23 aA | |||
Soluble solids | ||||||||
Open | 9.43 ± 0.05 bA | 9.26 ± 0.05 cB | 9.70 ± 0.00 aA | 9.66 ± 0.05 aA | 9.50 ± 0.00 bA | 0.114 | <0.000 | 0.017 |
Sealed | 9.43 ± 0.05 bA | 9.43 ± 0.05 bA | 9.70 ± 0.00 aA | 9.66 ± 0.05 aA | 9.46 ± 0.05 bA | |||
MAP | 9.43 ± 0.05 bA | 9.43 ± 0.05 bA | 9.66 ± 0.05 aA | 9.66 ± 0.05 aA | 9.56 ± 0.05 abA | |||
Titratable acidity | ||||||||
Open | 2.46 ± 0.92 aA | 0.90 ± 0.17 bcA | 1.43 ± 0.66 bA | 0.63 ± 0.15 cA | 0.53 ± 0.32 cA | |||
Sealed | 2.46 ± 0.92 aA | 0.86 ± 0.30 bcA | 1.46 ± 0.89 bA | 0.66 ± 0.05 cA | 0.40 ± 0.10 cA | 0.988 | <0.000 | 0.999 |
MAP | 2.46 ± 0.92 aA | 1.03 ± 0.25 bcA | 1.50 ± 0.70 bA | 0.76 ± 0.15 cA | 0.23 ± 0.05 cA | |||
Weight loss | ||||||||
Open | - | 8.93 ± 2.02 bA | 9.05 ± 2.09 bC | 15.03 ± 1.36 aB | 16.85 ± 3.63 aB | <0.000 | <0.000 | <0.000 |
Sealed | - | 7.15 ± 2.43 cA | 13.10 ± 1.00 bB | 15.02 ± 2.38 abB | 17.79 ± 1.35 aB | |||
MAP | - | 9.86 ± 0.34 dA | 16.44 ± 1.76 cA | 20.32 ± 1.90 bA | 24.14 ± 1.27 aA |
Samples (S) | Time (T) | p Value | ||||||
---|---|---|---|---|---|---|---|---|
0 Days | 3 Days | 5 Days | 7 Days | 10 Days | S | T | S × T | |
Chlorophyll a | ||||||||
Open | 19.67 ± 0.64 aA | 18.69 ± 0.84 aA | 17.47 ± 1.22 aA | 14.80 ± 1.26 bA | 12.38 ± 0.73 bA | <0.000 | <0.000 | <0.000 |
Sealed | 19.67 ± 0.64 aA | 13.96 ± 0.30 cB | 16.04 ± 1.22 bA | 14.08 ± 0.03 cA | 11.42 ± 0.68 dA | |||
MAP | 19.67 ± 0.64 aA | 17.62 ± 0.39 bA | 17.16 ± 0.24 bA | 10.88 ± 0.22 cB | 8.70 ± 0.18 dB | |||
Chlorophyll b | ||||||||
Open | 11.35 ± 2.02 aA | 9.37 ± 1.60 bA | 8.59 ± 1.32 bA | 11.31 ± 2.24 bA | 10.00 ± 0.83 bA | <0.000 | <0.000 | 0.720 |
Sealed | 11.35 ± 2.02 aA | 6.77 ± 1.07 bA | 6.33 ± 1.37 bA | 5.91 ± 0.07 bA | 6.88 ± 1.94 bA | |||
MAP | 11.35 ± 2.02 aA | 8.71 ± 0.42 bA | 6.17 ± 1.51 bA | 5.51 ± 0.37 bA | 6.34 ± 2.32 bA | |||
Total chlorophyll | ||||||||
Open | 31.03 ± 1.38 aA | 28.07 ± 0.93 abA | 26.07 ± 0.15 bcA | 26.11 ± 3.50 bcA | 22.39 ± 0.52 cA | <0.000 | <0.000 | <0.000 |
Sealed | 31.03 ± 1.38 aA | 20.73 ± 1.21 bcB | 22.38 ± 0.91 bB | 19.99 ± 0.10 bcB | 18.31 ± 1.26 cB | |||
MAP | 31.03 ± 1.38 aA | 26.33 ± 0.32 bA | 25.79 ± 1.72 bA | 16.39 ± 0.37 cB | 15.04 ± 2.43 cB | |||
Color L | ||||||||
Open | 53.41 ± 6.56 aA | 51.64 ± 1.17 bA | 44.30 ± 1.96 bcA | 44.62 ± 0.03 cA | 39.08 ± 0.02 cA | |||
Sealed | 53.41 ± 6.56 aA | 44.58 ± 5.67 bA | 41.50 ± 1.14 bcA | 41.90 ± 0.03 cA | 41.39 ± 0.03 cA | 0.222 | <0.000 | 0.377 |
MAP | 53.41 ± 6.56 aA | 45.35 ± 3.17 bA | 44.94 ± 0.09 bcA | 40.53 ± 0.01 cA | 39.83 ± 0.29 cA | |||
Color a* | ||||||||
Open | −14.82 ± 1.50 aA | −11.23 ± 3.82 aA | −12.39 ± 0.01 aA | −11.12 ± 0.03 aB | −9.93 ± 0.02 aC | 0.596 | <0.000 | 0.029 |
Sealed | −14.82 ± 1.50 bA | −11.82 ± 2.99 bA | −13.86 ± 1.69 bA | −11.08 ± 0.01 bB | −6.43 ± 0.01 aA | |||
MAP | −14.82 ± 1.50 cA | −13.01 ± 2.10 cA | −11.79 ± 0.05 bcA | −7.75 ± 0.01 aA | −9.15 ± 0.03 abB | |||
Color b* | ||||||||
Open | 25.15 ± 1.20 aA | 22.35 ± 3.84 abA | 26.81 ± 0.45 aA | 18.66 ± 0.25 bcA | 15.52 ± 0.02 cA | 0.002 | <0.000 | <0.000 |
Sealed | 25.15 ± 1.20 aA | 20.60 ± 2.84 abA | 22.49 ± 3.25 abA | 17.88 ± 0.03 bcB | 14.57 ± 0.02 cB | |||
MAP | 25.15 ± 1.20 aA | 24.18 ± 1.54 aA | 17.19 ± 0.05 bB | 15.56 ± 0.02 bcC | 14.71 ± 0.21 cB |
Samples (S) | Time (T) | p Value | ||||
---|---|---|---|---|---|---|
3 Days | 5 Days | 7 Days | S | T | S × T | |
Appearance | ||||||
Fresh | 7.55 ± 1.63 abA | 7.43 ± 1.50 bA | 8.20 ± 0.96 aA | <0.00 | <0.00 | <0.00 |
Open | 7.66 ± 1.54 aA | 7.46 ± 1.37 aA | 7.37 ± 1.39 aA | |||
Sealed | 7.63 ± 1.57 aA | 3.07 ± 1.72 bB | 3.27 ± 1.89 bB | |||
MAP | 7.60 ± 1.28 aA | 7.35 ± 1.42 aA | 7.42 ± 1.52 aA | |||
Odor | ||||||
Fresh | 6.63 ± 1.63 aAB | 5.89 ± 1.55 aA | 6.57 ± 1.66 aA | <0.000 | <0.000 | 0.009 |
Open | 6.50 ± 1.90 aAB | 5.84 ± 1.49 aA | 6.00 ± 1.63 aA | |||
Sealed | 6.33 ± 1.86 aB | 4.33 ± 1.82 bB | 4.57 ± 2.12 bB | |||
MAP | 7.25 ± 1.31 aA | 5.74 ± 1.75 bA | 6.40 ± 1.56 bA | |||
Color | ||||||
Fresh | 7.80 ± 1.41 abA | 7.38 ± 1.42 bA | 8.22 ± 0.97 aA | |||
Open | 7.88 ± 1.48 aA | 7.43 ± 1.41 aA | 7.62 ± 1.35 aA | <0.000 | <0.000 | <0.000 |
Sealed | 7.80 ± 1.45 aA | 4.07 ± 1.97 bB | 4.50 ± 2.18 bB | |||
MAP | 7.62 ± 1.06 aA | 7.41 ± 1.39 aA | 7.32 ± 1.54 aA | |||
Texture | ||||||
Fresh | 7.50 ± 1.39 aA | 7.74 ± 1.31 aA | 7.82 ± 1.15 aA | |||
Open | 7.45 ± 1.56 aA | 7.61 ± 1.33 aA | 7.62 ± 1.35 aA | <0.000 | <0.000 | <0.000 |
Sealed | 7.26 ± 1.84 aA | 4.33 ± 2.46 bB | 3.80 ± 2.15 bB | |||
MAP | 7.58 ± 1.27 aA | 7.41 ± 1.44 aA | 7.60 ± 1.48 aA | |||
Taste | ||||||
Fresh | 6.32 ± 2.35 aB | 6.64 ± 2.06 aA | 7.07 ± 1.99 aA | |||
Open | 6.03 ± 2.29 aB | 6.64 ± 1.85 aA | 6.82 ± 2.06 aA | <0.000 | 0.156 | <0.000 |
Sealed | 6.25 ± 2.48 aB | 4.74 ± 2.33 bB | 3.77 ± 2.42 bB | |||
MAP | 7.37 ± 1.46 aA | 6.66 ± 1.72 aA | 6.80 ± 1.84 aA | |||
Global acceptance | ||||||
Fresh | 6.76 ± 1.88 bAB | 6.79 ± 1.55 bA | 7.67 ± 1.26 aA | |||
Open | 6.55 ± 2.00 aB | 6.84 ± 1.64 aA | 7.20 ± 1.34 aA | <0.000 | 0.002 | <0.000 |
Sealed | 6.56 ± 1.98 aB | 4.53 ± 2.24 bB | 3.80 ± 2.17 bB | |||
MAP | 7.60 ± 1.21 aA | 6.82 ± 1.47 bA | 7.25 ± 1.37 abA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komeroski, M.R.; Beninca, T.; Portal, K.A.; Malheiros, P.S.; Klug, T.V.; Flores, S.H.; Rios, A.O. Postharvest Quality of Arugula (Eruca sativa) Microgreens Determined by Microbiological, Physico-Chemical, and Sensory Parameters. Foods 2024, 13, 3020. https://doi.org/10.3390/foods13193020
Komeroski MR, Beninca T, Portal KA, Malheiros PS, Klug TV, Flores SH, Rios AO. Postharvest Quality of Arugula (Eruca sativa) Microgreens Determined by Microbiological, Physico-Chemical, and Sensory Parameters. Foods. 2024; 13(19):3020. https://doi.org/10.3390/foods13193020
Chicago/Turabian StyleKomeroski, Marina R., Thais Beninca, Keyla A. Portal, Patrícia S. Malheiros, Tâmmila V. Klug, Simone H. Flores, and Alessandro O. Rios. 2024. "Postharvest Quality of Arugula (Eruca sativa) Microgreens Determined by Microbiological, Physico-Chemical, and Sensory Parameters" Foods 13, no. 19: 3020. https://doi.org/10.3390/foods13193020
APA StyleKomeroski, M. R., Beninca, T., Portal, K. A., Malheiros, P. S., Klug, T. V., Flores, S. H., & Rios, A. O. (2024). Postharvest Quality of Arugula (Eruca sativa) Microgreens Determined by Microbiological, Physico-Chemical, and Sensory Parameters. Foods, 13(19), 3020. https://doi.org/10.3390/foods13193020