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Abstract: Chrysanthemum morifolium cv. Fubaiju (CMF) is regarded as one of the three most renowned
varieties of white Chrysanthemum in China, and different extraction methods have significant effects
on its composition and activities. Therefore, six extractions were used in this study to assess the effects
on extracts. The basic chemical composition showed that hot water extract (Hw) had the highest
total phenolic content, alkali water immersion-assisted hot water extract (Al) had the highest content
of protein, and enzyme-assisted hot water extract (Enz) had the highest content of carbohydrate.
The UPLC-Q-Exactive-MS results evinced the presence of 19 small-molecule compounds, including
chlorogenic acid, caffeic acid, tuberonic acid glucoside, luteolin-7-O-rutinoside, and other substances.
In addition, the antioxidant test found that the Hw exhibited the best 1,1-diphenyl-2-picrylhydrazyl
(DPPH) (82.05 ± 1.59 mM TE/mg) and 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)
(61.91 ± 0.27 mM TE/mg) scavenging ability. The anti-glycation test demonstrated that Enz possessed
the most pronounced inhibitory effect on glycation products, including fructosamine and advanced
glycation end products (AGEs). Additionally, the Enz also exhibited the most significant inhibitory
effect on the protein oxidation product N’-formylkynurenine. The correlation analysis revealed that
there was a close relationship between antioxidant properties and glycation resistance of extracts,
and tuberonic acid glucoside, 1,3-di-O-caffeoylquinic acid, 1,4-Dicaffeoylquinic acid, quercetin-7-O-β-
D-glucopyranoside, and isochlorogenic acid B were key small molecule components that affected
activities. In summary, the extracts of CMF can be regarded as an excellent antioxidant and anti-
glycosylation agent.

Keywords: Chrysanthemum morifolium cv. Fubaiju; extraction; antioxidant; anti-glycation

1. Introduction

Chrysanthemum morifolium cv. Fubaiju (CMF), indigenous to Macheng City, Hubei
Province, China, has been awarded the status of National Geographic Indication, a des-
ignation that recognizes its unique regional characteristics. CMF is celebrated as one of
the three most prestigious varieties of white chrysanthemum in China, attributed to its
reputed medicinal qualities and the rich phenolic content [1]. The compounds present in
CMF are believed to bestow a spectrum of health benefits, encompassing anti-inflammatory,
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antioxidant, and anti-glycation activities, as well as the potential to inhibit tumor cell
proliferation and exert cardiovascular protective effects [2–6]. A study has elucidated the
antifungal mechanism of essential oil extracted from CMF. This oil is a complex mixture
of volatile constituents, such as camphor and 1,8-cineole, which have been demonstrated
to exert significant inhibitory effects on the growth of various fungal strains in controlled
laboratory settings [7]. The study suggested that the antifungal activity of this oil may
be attributed to the destruction of the fungal cell plasma membrane and damage to mito-
chondria and DNA. This indicated that the oil may have potential as a natural antifungal
agent. A further study represented the inaugural examination of the chemical composi-
tion and biological activity of the CMF [2]. The hot water extract demonstrated notable
1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging efficacy and oxygen free
radical absorption capacity (ORAC), and effectively suppressed the expression of IL-6,
IL-1β, and COX-2 mRNA induced by LPS in RAW264.7 macrophages. Furthermore, it
had been demonstrated to exert an inhibitory effect on H2O2-induced oxidative stress.
These findings suggested that the hot water extract may offer enhanced protection against
oxidative damage to cells. Furthermore, extracts derived from CMF have been observed
to exert anti-glycation effects, in addition to their known antioxidant capabilities. In a
study conducted by Kentaro Tsuji-Naito and colleagues [3], two extracts of chrysanthemum
were found to significantly inhibit the fluorescence of advanced glycation end products
(AGEs). This provided a scientific basis for the anti-glycation properties of chrysanthemum
plants. Moreover, the findings offered a prospective naturally-derived compound for the
development of novel therapeutic strategies.

The chemical composition and biological activity of plant extracts were significantly af-
fected by different extraction methods. Compared with the traditional hot water extraction
method, there are a variety of auxiliary extraction methods, including ultrasonic assisted
extraction, enzymatic assisted extraction, acid-base assisted extraction, high-pressure as-
sisted extraction, and microwave assisted extraction [8–10]. Wu et al. [11] meticulously
evaluated the extraction of polyphenol protein-polysaccharide complexes from Hovenia
dulcis using a diverse array of seven extraction techniques. The comparative analysis
emphasized the advantages of pressurized water extraction in extracting compounds with
strong antioxidant capacity, anti-glycosyl effect, and obvious inhibition on the activities
of key enzymes such as glucosidase and α-amylase. The results highlight the key role of
extraction methods in regulating biological activity. One study used a variety of modern
green extraction methods, including solvent extraction, ultrasonic assisted extraction, mi-
crowave assisted extraction, pulsed electric field extraction, supercritical fluid extraction,
pressure assisted extraction, etc., to extract anthocyanins [12]. According to the extraction
efficiency of anthocyanins, the efficiency of pressure-assisted extraction was the highest
(81.84%), and the efficiency of microwave-assisted extraction was the lowest. In addition,
the study on the extraction of Psidium guajava L. leaf by three methods: soxhlet, maceration,
and ultrasound-assisted extraction, comprehensive analysis [13]. The extracts obtained by
the Soxhlet method have the best antioxidant capacity. The above research results indicated
that it is necessary to explore different methods to extract plant extracts and which methods
can obtain extracts with high activity and high yield. At present, there is no research on the
composition and activity of extracts by different extraction methods of CMF.

In this work, the effects of different extraction methods on the chemical character-
istics and biological functions of CMF extracts were studied. To be specific, six extracts
through hot water extraction, acid water immersion-assisted hot water extraction, alkali
water immersion-assisted hot water extraction, ultrasonic-assisted hot water extraction,
high-pressure homogeneity-assisted hot water extraction, and enzyme-assisted hot water
extraction were obtained and compared for their chemical compositions and antioxidant
and anti-glycosylation effects. Subsequently, correlation analysis was used to identify the
key functional active ingredients. The results of this study provide a theoretical basis for
the development of natural antioxidants and anti-glycation substances.
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2. Method and Materials
2.1. Material and Reagent

Chrysanthemum morifolium cv. Fubaiju (CMF) bought from Macheng (Huanggang,
China). LC-MS-grade acetonitrile and methanol were purchased from Fisher Scientific
(Loughborough, UK). 1,1-diphenyl-2-picrylhydrazyl(DPPH),2,2’-azino-bis-(3-ethyl-benzo-
thiazoline-6-sulfonic acid) (ABTS) and and water-soluble vitamin E (Trolox) were purchased
from Sigma Chemical Co., Ltd. (St. Louis, MO, USA). And all the other reagents are
analytical grade.

2.2. Preparation of CMF Extracts

The sample was subjected to a preliminary treatment prior to analysis. The CMF
was procured from Macheng, Hubei Province. Once the drying process was complete, the
material was crushed, passed through a 50-mesh sieve, sealed, and stored in a refrigerated
environment with minimal exposure to light and moisture.

In order to investigate the impact of diverse extraction techniques on the extraction ef-
ficacy, physicochemical attributes, and biological activities of extracts, six distinct extraction
methods were proposed (Figure 1).
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2.2.1. Hot Water Extraction

The CMF powder was weighed with precision and added with distilled water at a
solid-liquid ratio of 1:20 (g/mL). The temperature of the extraction was set at 90 ◦C, and
the extraction time was 2 h. The extraction solution was subjected to centrifugation at
5000 rpm for a period of 10 min. The supernatant was collected and concentrated at 60 ◦C
and freeze-dried to constant weight to obtain the hot water extract (Hw).

2.2.2. Acid Water Immersion-Assisted Hot Water Extraction

The CMF powder was soaked in a solution of 0.1 M HCl (1:20 g/mL) for a period of
four hours, after which the pH was adjusted to 7.0. The acid water immersion-assisted
hot water extract (Ac) was obtained through a series of operations, employing the same
methodology as that used for the hot water extraction method described in Section 2.2.1.
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2.2.3. Alkali Water Immersion-Assisted Hot Water Extraction

The CMF powder was soaked in a 0.1 M NaOH solution (1:20 g/mL) for 4 h, resulting
in a pH of 7.0. Subsequent operations were conducted using the same process as that
employed for the Section 2.2.1 hot water extraction method, with the aim of obtaining the
alkali water immersion-assisted hot water extract (Al).

2.2.4. Ultrasonic-Assisted Hot Water Extraction

Etraction was conducted with the aid of ultrasound, with an ultrasonic time of 30 min,
an ultrasound power of 100 W, at room temperature, and a solid-liquid ratio of 1:20 (g/mL)
for the treatment stage. Following the ultrasound treatment, subsequent experiments were
conducted in accordance with the methodology outlined in Section 2.2.1, namely hot water
extraction. This was undertaken to obtain the ultrasonic-assisted hot water extract (Ultra).

2.2.5. High-Pressure Homogeneity-Assisted Hot Water Extraction

The CMF powder was dissolved at a solid-liquid ratio of 1:20 (g/mL), homogenized
twice in a high-pressure homogenizer at 60 MPa, and then extracted with traditional hot
water. Subsequently, the procedure outlined in Section 2.2.1 was followed in order to obtain
the high-pressure homogeneity-assisted hot water extract (HPH).

2.2.6. Enzyme-Assisted Hot Water Extraction

The CMF powder was dissolved at a solid-liquid ratio of 1:20 (g/mL). The extraction
solution was subjected to enzymolysis under conditions of complex enzyme (2.5%, com-
prising cellulase 2.0% and acidic protease 0.5%), hydrolysis temperature 55 ◦C, pH 5, for
1 h. The resulting enzyme-assisted hot water extract (Enz) was then obtained by subsequent
extraction in accordance with the method described in Section 2.2.1.

The extraction efficiency of the extracts was compared using the aforementioned
6 methods, and the physicochemical properties and biological activities were subsequently
compared.

2.3. Analysis of Extracts and Components of CMF

The carbohydrate, total phenolic, and protein content in the extracts were determined
in accordance with previously published methods [14–16]. The moisture content of the
samples was dried at a constant temperature of 105 ◦C in an oven until the sample reached
constant weight.

The composition of small molecules was analyzed by UPLC-Q-Exactive-MS analysis.
The UPLC system is Vanquish UPLC (Thermo Fisher Scientific, Waltham, MA, USA). The
chromatographic column used in the test was a Hypersil GOLD C18 column (100 × 2.1 mm,
3 µm). The mobile phases were (A) aqueous solution containing 0.1% formic acid and (B)
acetonitrile solution, respectively. The flow rate of the mobile phase was 0.2 mL/min, the
column temperature was 40 ◦C, and the sample volume was 2 µL. The gradient elution
program was 0–5 min, 12–30% B; 5–6 min, 30–35% B; 6–10 min, 35% B; 10–14 min, 35–100%
B; 14–16 min, 100% B; 16–18 min, 100–12% B; 18–20 min, 12% B.

Mass spectrometry used an electrospray ion source (electrospray ionization, ESI) in
full scan mode. The capillary voltage was set at 2.5 kV, the cone hole voltage at 30 V, the ion
source temperature at 250 ◦C, and the solvent removal temperature at The primary mass
spectrum collision energy was 6 eV, the secondary mass spectrum collision energy was
30 eV, and the collection range of mass-charge ratio (m/z) was 50–750 Da. The temperature
was 500 ◦C. The test was conducted in triplicate for each sample, and a blank methanol
solution was introduced to minimize the potential for cross-contamination of the sample.
The raw LC-MS data was converted into visual results using the Compound Discoverer 3.2
software and Thermo Scientific Xcalibur 4.1 software, which were then converted to a data
format for exporting in order to obtain sample data.



Foods 2024, 13, 3057 5 of 13

2.4. Antioxidant Activity Assay of CMF Extracts

The antioxidant tests were developed and modified based on the findings of previous
studies in the field [17,18]. The freeze-dried sample should be dissolved in water and
diluted to a suitable concentration. The DPPH free radical scavenging test was conducted
as follows: 2 mL of sample supernatant (0.1 mg/mL) was mixed with 2 mL of DPPH
solution (0.2 mmol/L) and reacted in the dark for 30 min. Subsequently, the absorbance
value was determined at a wavelength of 517 nm. The ABTS free radical scavenging test
was conducted as follows: A solution of 0.04 mL of sample supernatant (0.1 mg/mL) was
prepared and mixed with 3.96 mL of ABTS•+ solution (7 mmol/L). The mixture was then
reacted in the dark for a period of 6 minutes. Subsequently, the absorbance value was
determined at 734 nm. A standard curve was constructed using water-soluble vitamin E
(Trolox) as the standard, and the regression equations for DPPH and ABTS were obtained as
follows: y = 0.2869x + 0.0349, R² = 0.9931; y = 0.3156x + 0.0252, R² = 0.9991. The antioxidant
capacity was expressed as a result of mM TE/mg.

2.5. Anti-Glycation Activity Assay of CMF Extracts

In accordance with the preceding methodology, a bovine serum protein (BSA) fructose
model was developed for the purpose of evaluating the effects of each extract on the
non-enzymatic glycation of BSA [19].

The inhibitory efficacy of the extract on the formation of fructosamine in glycosy-
lated products was evaluated through the tetrazolium nitroblue (NBT) assay [20]. The
inhibition rate of dicarbonyl formation was determined by employing the Girard-T reagent
method [21]. The inhibitory effect of the extract on AGE production was evaluated using
the same methodology as that employed by Spinola et al. [22]. Specifically, λex/λem at
330/415 and 325/434 nm, which were also utilized by fluorescent enzyme-labelled instru-
ments. To quantify the levels of dityrosine and N’-formylkynurenine, the fluorescence
intensity of the solution was measured. The width of the slit was 10 nm [23].

2.6. Statistical Analysis

Statistical analysis of the data was done using SPSS (version 27.0) software. The dif-
ferences were calculated using a one-way analysis of variance (ANOVA) test followed by
Duncan’s test. Results were expressed as mean ± SD (p < 0.05) was considered statisti-
cally significant. The Advanced Cor link was performed using the OmicStudio tools at
https://www.omicstudio.cn/ tool. URL (accessed on 26 August 2024).

3. Results and Discussion
3.1. Composition Analysis of Extracts from CMF

CMF is a traditional Chinese medicinal plant with a rich history of medicinal use and
a plethora of documented health benefits. The efficiency of extraction and the diversity
of chemical constituents within CMF are significantly influenced by the application of
different extraction techniques. As depicted in Table 1, the chemical composition and
the yield of extraction are differences among the various extraction methods employed.
All extracts were finally obtained by water extraction and lyophilization, and there was
no difference in the moisture content of the samples. Notably, the Enz had the highest
extraction rate and carbohydrate content, the Hw displayed the highest total phenolic
content, quantified at 145.70 ± 2.03 mg gallic acid equivalents (GAE) per gram of extract,
and the protein content of Al was the highest. A comparative analysis was conducted to
examine the technological conditions, physical and chemical properties, structural com-
position, and activity of polysaccharides derived from litchi peel through three distinct
extraction methods: enzyme extraction, alkaline solution extraction, and a combination of
both. The findings revealed that the carbohydrate content of the ultrasound-assisted enzy-
matic extraction was 75.65%, a figure that was markedly higher than that observed in the
lye extract [24]. Hui et al. [25] demonstrated the alkaline hot water method is an effective
means of extracting protein from waste activated sludge. The combination of result analysis

https://www.omicstudio.cn/
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with the aforementioned data allows the conclusion to be reached that the utilization of
different techniques has a specific influence on the chemical composition of plant extracts.
Consequently, the selection of an appropriate extraction process is dependent upon the
desired characteristics of the final product. As illustrated in Table 2, a total of 19 compounds
were identified in the extracts of CMF. From the detected material peak area, it can be
seen that different extraction methods had significant effects on the material composition.
Only 12 small molecules, including chlorogenic acid, tuberonic acid glucoside, luteolin-
7-O-glucoside, caffeic acid, luteolin-7-O-rutinoside, quercetin-7-O-β-D-glucopyranoside,
1,4-dicaffeoylquinic acid, apigenin-7-O-β-D-glucoside, isochlorogenic acid B, diosmetin,
acetin and apigenin were detected in all six extracts. In addition, Neochlorogenic acid,
Cryptochlorogenic acid, Diosmetin-7-O-rutinoside, Luteolin-7-O-6”-acetylglucoside, and
Apigenin-7-O-6-acetylglucoside were not detected in Al, 1, 3-di-o-caffeoylquinic acid was
not detected in Ac, and Neochlorogenic acid and Luteolin-7-O-glucuronide were not de-
tected at HPH. This may be attributed to the influence of the acid-base and high-pressure
environment on the structural integrity of the compounds in question, which were not
identified under mass spectrometry conditions. A study focused on the characterization of
several extracts from the ground part of Glaucosciadium cordifolium. theextracts were pre-
pared by various methods, including accelerated solvent extraction; homogenizer-assisted
extraction, microwave-assisted extraction, maceration, supercritical CO2 extraction, Soxhlet
extraction, and ultrasound-assisted extraction. Liquid chromatography-mass spectrometry
was used for analysis. Of the 15 identified polyphenol components, four are predominant:
5-O-caffeoylquinic acid, p-coumaric acid, quercetin-3-O-glucoside, and quercetin-3-O-
rhamnoside. The contents of total phenolics and flavonoids in different extracts were
different, which was affected by preparation methods [26]. These results displayed that
different extraction methods have significant effects on the chemical composition of plants.

Table 1. Extraction rate and composition of different extracts.

Sample Carbohydrates (%) Total Phenolic Content
(mg GAE/g) Protein (%) Moisture Content (%) Yield (%)

Hw 59.13 ± 0.28 e 145.70 ± 2.03 a 5.10 ± 0.03 c 10.43 ± 0.53 a 7.88 ± 0.21 b

Ac 59.3 ± 0.44 e 65.09 ± 0.60 e 5.45 ± 0.06 b 10.83 ± 0.69 a 7.23 ± 0.17 d

Al 63.19 ± 0.03 c 84.43 ± 0.62 d 7.31 ± 0.03 a 10.51 ± 0.46 a 7.56 ± 0.15 c

Ultra 64.42 ± 0.73 b 124.31 ± 4.99 b 3.64 ± 0.02 d 10.91 ± 0.18 a 8.18 ± 0.09 ab

HPH 60.82 ± 0.56 d 112.34 ± 1.02 c 3.25 ± 0.02 e 10.64 ± 0.42 a 7.72 ± 0.11 b

Enz 72.12 ± 0.98 a 62.02 ± 0.46 e 2.60 ± 0.02 f 10.92 ± 0.52 a 8.35 ± 0.31 a

Data are expressed as mean ± SD (n = 3). Significant differences (p < 0.05) are indicated with different letters. Hw
(hot water extract); Ac (acid water immersion-assisted hot water extract); Al (alkali water immersion-assisted hot
water extract); Ultra (ultrasonic-assisted hot water extract); HPH (high-pressure homogeneity-assisted hot water
extract); Enz (enzyme-assisted hot water extract).

Table 2. Composition of phenolic compounds in CMF.

Compounds Formula Rt
min

Found at
m/z

Error
ppm MS/MS

Peak Area (×105)

Hw Ac Al Ultra HPH Enz

Neochlorogenic acid C16H18O9 2.19 352.7841 −0.3026 191.0552 0.16 ±
0.06

0.66 ±
0.05 ND 1250 ±

190 ND 0.31 ±
0.01

Chlorogenic acid C16H18O9 2.45 353.0869 0.0002

191.0551
1.75 ±

0.60
0.61 ±

0.02
1.45 ±

0.29
419 ± 58 1.73 ±

0.23
0.69 ±

0.17
179.0341
173.0444
135.0438

Tuberonic acid
glucoside C18H28O9 3.05 387.1641 −0.0009

207.1028 10.2 ±
0.20

3.72 ±
0.62

2.65 ±
0.39

8.44 ±
0.35

1.34 ±
0.63

0.20 ±
0.02163.1119

Caffeic acid C9H8O4 3.13 179.0341 0.0002 135.0438 3.18 ±
0.60

4.65 ±
0.32 278 ± 29 5.22 ±

0.43
4.41 ±

0.63
3.35 ±

0.23

1,3-di-O-caffeoyl-
quinic acid C25H24O12 3.31 515.1160 −0.0024

353.0864

1.52 ±
0.56 ND 0.94 ±

0.05
1.80 ±

0.20
0.52 ±

0.04
0.23 ±

0.02

335.0754
191.0552
179.0339
135.0438
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Table 2. Cont.

Compounds Formula Rt
min

Found at
m/z

Error
ppm MS/MS

Peak Area (×105)

Hw Ac Al Ultra HPH Enz

Luteolin-7-O-rut-
inoside C27H30O15 4.36 593.1501 0 285.0407 129 ± 30 50.8 ±

2.30
65.2 ±

3.90
15.1 ±

1.30 130 ± 18 53.6 ±
1.80

Quercetin-7-O-β-D-
glucopyranosi-de C21H20O12 4.54 463.0877 0.0006 300.0259 80.4 ±

3.90 27.2 ± 2 56.3 ±
3.80

67.5 ±
2.40 128 ± 15 115 ± 1

Luteolin-7-O-glu-
coside

C21H20O11 4.61 447.0915 −0.0007
285.0406

674 ± 42 878 ± 10 477 ± 26 346 ± 19 613 ± 22 591 ± 15151.0024
133.0281

Luteolin-7-O-glu-
curonide

C21H18O12 4.69 461.0730 0.0015
285.0406 4.81 ±

1.17
1.07 ±

0.07
54.8 ±

3.80
2.69 ±

0.24 ND 11.5 ± 1151.0025

1,4-Dicaffeoylqu-inic
acid

C25H24O12 4.83 515.1174 −0.001

353.0865

40.9 ±
9.60

5.86 ±
1.29

7.10 ±
0.11

54.5 ±
1.70

41.2 ±
1.2

1.36 ±
0.23

335.0765
191.0552
179.0340
173.0444
135.0438

Cryptochloroge-nic
acid

C16H18O9 5.11 353.0864 −0.0003

191.0551
3.17 ±

0.32
1.99 ±

0.22 ND 18.2 ±
6.60

2.27 ±
0.28

2.65 ±
0.41

179.0341
173.0444
135.0438

Diosmetin-7-O-r-
utinoside

C28H32O15 5.20 607.1669 0.0012
299.0562

2.42 ±
0.07

1.69 ±
0.37 ND 4.71 ±

0.26
0.73 ±

0.04
2.31 ±

0.15
284.0327
256.0374

Apigenin-7-O-β-D-
glucoside C21H20O10 5.31 431.0960 −0.0013 268.0377 618 ±

155 101 ± 8 355 ± 31 32.5 ±
1.90 858 ± 21 746 ±

121

Isochlorogenic acid B C25H24O12 5.34 515.1183 −0.0001

353.0874

2.56 ±
0.88

2.11 ±
0.46

1.13 ±
0.22

7.54 ±
0.26

10.5 ±
1.60

1.50 ±
0.13

335.5183
191.0553
179.0339
173.0445
135.0438

Luteolin-7-O-6”-
acetylglucoside C23H22O12 6.13 489.1029 0.0001 285.0405 51.7 ±

1.60
29.2 ±

3.50 ND 108 ± 7 58.7 ±
2.20

28.9 ±
4.80

Diosmetin C16H12O6 6.24 299.0561 0.0011
284.0327 29.3 ±

7.20
18 ± 2.90 33.4 ±

5.30
1.45 ±

0.12
2.10 ±

0.13
19.8 ±

0.90256.0372
Apigenin-7-O-6-
acetylglucoside C23H22O11 6.93 473.1075 −0.0003 269.0458 134 ± 5 25.5 ±

2.90 ND 85 ± 2.10 6.12 ±
0.15

71.1 ±
1.80

Acacetin C16H12O5 7.86 283.0613 0.0012
268.0377

207 ± 33 132 ± 35 57.2 ±
3.40

63.5 ±
0.50

90.1 ±
2.90

139 ± 6240.0423

Apigenin C15H10O5 8.23 269.0455 0.0011
151.0023 8.48 ±

0.25
131 ± 2 34.9 ±

4.10
2.32 ±

0.19
5.19 ±

0.26
536 ± 25117.0031

Results were expressed as means ± SD, n = 3. Means with different letters were significantly different at p < 0.05.
ND means not detected. Hw (hot water extract); Ac (acid water immersion-assisted hot water extract); Al (alkali
water immersion-assisted hot water extract); Ultra (Ultrasonic-assisted hot water extract); HPH (high-pressure
homogeneity-assisted hot water extract); Enz (enzyme-assisted hot water extract).

3.2. Antioxidant Activity of Extracts from CMF

Antioxidants are naturally occurring chemical compounds found in food that act as
defense mechanisms against free radicals [27]. Antioxidants are capable of safely reacting
with free radicals in order to intervene at the cellular level, thereby preventing damage from
occurring. The CMF is a rich source of antioxidant components. As presented in Figure 2A,
the Hw exhibited the greatest DPPH free radical scavenging capacity, with a mean value of
82.05 ± 1.59 (mM TE/mg). It was observed that the antioxidant activity of the Ultra was
inferior to that of the Hw, and the antioxidant activity of the extracts obtained following
chemical and enzyme treatment exhibited a marked decline. As illustrated in Figure 2B, the
ABTS free radical scavenging capacity of each extract was found to be consistent with the
DPPH free radical scavenging capacity. The Hw demonstrated the most pronounced ABTS
free radical scavenging ability, 61.91 ± 0.27 (mM TE/mg). The data (Table 1) displayed
that the total phenolic content in the Hw is markedly higher than that observed in the
other groups. Consequently, its antioxidant activity was also significantly elevated in
comparison to the other groups. The antioxidant results demonstrate a clear correlation
between total phenolic content and antioxidant activity. As the total phenolic content
of each extract increases, so does the antioxidant activity. A previous study indicated a
significant correlation between total phenolic content and antioxidant activity [28]. In this
study, different extraction methods had significant effects on the total phenolic content of
the extracts, which in turn affected their antioxidant activities.
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Figure 2. The activities of the various extracts of CMF, including ABTS (A) and DPPH (B) free radical
scavenging capacity. Data are expressed as mean ± SD (n = 3). Significant differences (p < 0.05) are
indicated with different letters.

3.3. Anti-Glycation Activity of Extracts from CMF

Glycation refers to the non-enzymatic condensation of reducing sugars, exemplified
by glucose, with the free amino groups of proteins, notably lysine residues, and lipids.
This process culminates in the formation of AGEs [29]. AGEs are irreversible in vivo; they
accumulate and can adversely affect cellular function. This glycation process is a natural
occurrence in living organisms, and the generation of various intermediates is an inherent
aspect of this metabolic pathway [30]. Research has established that intermediates in the
glycation process contribute to the formation of AGEs. Furthermore, evidence suggests that
these intermediates may exacerbate the progression of diabetes and accelerate the aging
process [31,32]. Consequently, mitigating the formation of AGEs and their precursors could
be instrumental in preventing age-related functional decline and in averting the onset of
chronic degenerative diseases.

AGEs can be mitigated through the utilization of specific inhibitors, which encompass a
range of natural compounds and synthetic molecules [33–37]. As displayed in Figure 3A–C,
six distinct extracts demonstrated notable inhibitory effects on glycation products. The
Enz demonstrated the most pronounced inhibitory effect on the formation of fructosamine
and AGEs, which may be attributed to its elevated carbohydrate content. During the
intermediate phase of glycation, α-dicarbonyl compounds facilitate the formation of stable
AGEs through the rapid cross-linking of proteins. The HPH, extracted by high-pressure
homogenization, exhibited the lowest inhibitory effect on α-dicarbonyl compounds. The
ability of the 6 extracts to inhibit the formation of AGEs was in the following order:
Enz > Hw > Al ≈ Ultra > HPH > Ac.

Foods 2024, 13, x FOR PEER REVIEW 9 of 13 
 

 
Figure 3. Inhibition rate of fructosamine (A), α-dicarbonyl compound (B), and AGEs (C) of 6 
extracts. Data are expressed as mean ± SD (n = 3). Significant differences (p < 0.05) are indicated with 
different letters. 

Glycoxidation, a process where non-enzymatic glycation and oxidation occur 
together, often targets amino acids like tryptophan and tyrosine in proteins. This leads to 
the production of various fluorescent byproducts. The oxidative breakdown of sugars can 
also yield glycosylated oxidation products, such as dityrosine and N’-formylkynuridine. 
These compounds exhibit unique ultraviolet (UV) fluorescence spectra, indicating their 
potential as biomarkers for protein oxidative damage assessment [38]. As exposed in 
Figure 4A,B, the 6 extracts demonstrated considerable inhibitory effects on the formation 
of dityrosine and N’-formylkynurenine. Enz demonstrated robust inhibitory activity 
against the formation of dityrosine and N’-formylkynurenine. However, the HPH 
exhibited the least pronounced inhibitory effect on protein oxidation products. The 
findings suggested that several chrysanthemum extracts may possess potential as 
inhibitors of glycation and glycosylated protein oxidation, offering a promising avenue 
for the management and prevention of disorders associated with aberrant glycation. 

 
Figure 4. The inhibition rate of 6 extracts on BSA protein oxidation products: (A) dityrosine; (B) N’-
formylkynurenine. Data are expressed as mean ± SD (n = 3). Significant differences (p < 0.05) are 
indicated with different letters. 

3.4. Correlation between the Glycation Products and Antioxidant Indices 
The interplay between glycation and oxidative stress is wellestablished. Oxidative 

stress is characterized by a disruption in the equilibrium between the generation and 
neutralization of reactive oxygen species (ROS) within biological systems. This 
perturbation can lead to an overabundance of ROS, which are capable of inducing damage 
to a variety of biomolecules, such as proteins, lipids, and DNA [39,40]. During AGEs 
formation, oxidative stress can catalyze the oxidation process, thereby hastening the 
production of advanced glycation end products [41]. As evinced in Figure 5A, the 
spearman correlation between glycation-related products exhibited a positive correlation. 
“Rho” is used to represent Spearman’s rank correlation coefficient, also referred to as 
Spearman’s correlation coefficient. The positive correlation was observed between AGEs 

Figure 3. Inhibition rate of fructosamine (A), α-dicarbonyl compound (B), and AGEs (C) of 6 extracts.
Data are expressed as mean ± SD (n = 3). Significant differences (p < 0.05) are indicated with
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Glycoxidation, a process where non-enzymatic glycation and oxidation occur together,
often targets amino acids like tryptophan and tyrosine in proteins. This leads to the
production of various fluorescent byproducts. The oxidative breakdown of sugars can
also yield glycosylated oxidation products, such as dityrosine and N’-formylkynuridine.
These compounds exhibit unique ultraviolet (UV) fluorescence spectra, indicating their
potential as biomarkers for protein oxidative damage assessment [38]. As exposed in
Figure 4A,B, the 6 extracts demonstrated considerable inhibitory effects on the formation of
dityrosine and N’-formylkynurenine. Enz demonstrated robust inhibitory activity against
the formation of dityrosine and N’-formylkynurenine. However, the HPH exhibited the
least pronounced inhibitory effect on protein oxidation products. The findings suggested
that several chrysanthemum extracts may possess potential as inhibitors of glycation and
glycosylated protein oxidation, offering a promising avenue for the management and
prevention of disorders associated with aberrant glycation.
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Figure 4. The inhibition rate of 6 extracts on BSA protein oxidation products: (A) dityrosine;
(B) N’-formylkynurenine. Data are expressed as mean ± SD (n = 3). Significant differences (p < 0.05)
are indicated with different letters.

3.4. Correlation between the Glycation Products and Antioxidant Indices

The interplay between glycation and oxidative stress is wellestablished. Oxidative
stress is characterized by a disruption in the equilibrium between the generation and
neutralization of reactive oxygen species (ROS) within biological systems. This perturbation
can lead to an overabundance of ROS, which are capable of inducing damage to a variety
of biomolecules, such as proteins, lipids, and DNA [39,40]. During AGEs formation,
oxidative stress can catalyze the oxidation process, thereby hastening the production of
advanced glycation end products [41]. As evinced in Figure 5A, the spearman correlation
between glycation-related products exhibited a positive correlation. “Rho” is used to
represent Spearman’s rank correlation coefficient, also referred to as Spearman’s correlation
coefficient. The positive correlation was observed between AGEs and both fructosamine
(rho = 0.59) and dicarbonyl compounds (rho = 0.56). The correlation coefficients with
dityrosine and N’-formylkynurenine were 0.75 and 0.79, respectively. The antioxidant index
ABTS demonstrated a negative correlation with rho values of −0.11, whereas the correlation
coefficient for N’-formylkynurenine was −0.17. DPPH also exhibited a negative correlation
with dityrosine inhibition, which represented a protein oxidation product, as well as with
N’-formylkynurenine [42,43]. The results of the correlation analysis manifested that there
is a strong relationship between oxidative stress and glycation, and these two factors
interacted and contributed to the development of numerous chronic diseases.
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3.5. Correlation between Compounds and Activity of CMF Extracts

It had been reported that phenols, carbohydrates (polysaccharides), proteins, and
peptides can act as inhibitors of anti-glycosylation and antioxidants [44–47]. Spearman
correlation analysis was employed to further investigate the impact of compounds present
in CMF extracts on antioxidant and glycation-related indices. As illustrated in Figure 5B,
ABTS demonstrated a positive correlation with tuberonic acid glucoside, apigenin, and
carbohydrate (p < 0.05). DPPH was found to be positively correlated with tuberonic acid
glucoside, 1,3-di-O-caffeoylquinic acid, 1,4-dicaffeoylquinic acid, apigenin, carbohydrate,
and protein (p < 0.05). Similarly, glycation-related products were found to be positively
correlated with a variety of compounds by correlation analysis. Fructosamine was found to
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be associated with quercetin-7-O-β-D-glucopyranoside, luteolin-7-O-glucoside, apigenin-
7-O-β-d-glucoside, apigenin and total phenols, with a positive correlation observed (p < 0.05).
Additionally, AGEs demonstrated a positive correlation with apigenin (p < 0.05). However,
dicarbonyl compounds, dityrosine, and N’-formylkynurenine were positively correlated
with isochlorogenic acid B and protein (p < 0.05). Correlation analysis indicated that the
compounds present in the CMF extracts, including tuberonic acid glucoside, apigenin,
luteolin-7-O-glucoside, carbohydrates, and protein, were closely associated with antioxi-
dant and anti-glycation properties. These results indicated that CMF extract can be used as
a natural antioxidant and anti-glycation agent.

4. Conclusions

The results showed that Enz had the highest extraction rateand carbohydrate content,
and Hw possessed the highest total phenolic content. A total of 19 compounds were
identified from 6 extracts by means of UPLC-Q-Exactive-MS analysis, including chlorogenic
acid, caffeic acid, tuberonic acid glucoside, luteolin-7-O-rutinoside, quercetin-7-O-β-D-
glucopyranoside, diosmetin, acacetin, and apigenin. The Hw demonstrated the strongest
scavenging ability for DPPH (82.05 ± 1.59 mM TE/mg) and ABTS (61.91 ± 0.27 mM TE/mg)
free radicals. The Enz dispayed the most pronounced inhibitory effect on glycosylation
products, including fructosamine and AGEs. Additionally, the Enz exhibited the most
significant inhibitory effect on the protein oxidation product N’-formylkynurenine. The
correlation analysis revealed that tuberonic acid glucoside, 1,3-di-O-caffeoylquinic acid, 1,4-
Dicaffeoylquinic acid, quercetin-7-O-β-D-glucopyranoside, and isochlorogenic acid B were
key small-molecule components that affected activities. In conclusion, the findings of this
study demonstrate that CMF extract possesses a multitude of active compounds, offering a
promising avenue for diverse applications in the food and pharmaceutical industries.
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