The Impact of pH on Fouling and Related Physicochemical Properties of Skim Milk Concentrate during Heat Treatment Using a Laboratory-Scale Fouling Rig
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Reconstitution of Milk and pH Adjustment
2.3. Heat Coagulation Time as a Function of pH
2.4. Fouling of Concentrated Skim Milk
2.5. Viscosity
2.6. Particle Size Distribution
2.7. Dry Sediment
2.8. Composition of Skim Milk Solutions, Sediment, and Cleaning-in-Place Solutions
2.9. Turbidity of Cleaning-in-Place Solutions
2.10. Protein Profile Analysis
2.11. Statistical Analysis
3. Results and Discussion
3.1. Heat Stability of Skim Milk Solutions
3.2. Fouling Rig
3.2.1. Inline pH and Conductivity Measurements
3.2.2. Temperature Difference
3.3. Viscosity
3.4. Particle Size Distribution
3.5. Composition of the Concentrated Skim Milk Solutions Following Fouling Rig Recirculation
3.6. Cleaning-in-Place Analysis
3.6.1. Composition of the Recovered Cleaning-in-Place Solutions
3.6.2. Turbidity of the Recovered CIP Solutions
3.7. Protein Profile of Foulant Material
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelly, A.L.; O’Connell, J.E.; Fox, P.F. Manufacture and Properties of Milk Powders. In Advanced Dairy Chemistry—1 Proteins: Part A/Part B; Fox, P.F., McSweeney, P.L.H., Eds.; Springer: Boston, MA, USA, 2003; pp. 1027–1061. ISBN 978-1-4419-8602-3. [Google Scholar]
- Murphy, K.M.; Ho, Q.T.; Drapala, K.P.; Keena, G.M.; Fenelon, M.A.; O’Mahony, J.A.; McCarthy, N.A. Influence of Protein Standardisation Media and Heat Treatment on Viscosity and Related Physicochemical Properties of Skim Milk Concentrate. Int. Dairy J. 2018, 81, 143–148. [Google Scholar] [CrossRef]
- Bylund, G. The Dairy Processing Handbook. Tetra Pak Processing Systems AB S-221 86: Lund, Sweden, 2013. [Google Scholar]
- Morison, K.R. Reduction of Fouling in Falling-Film Evaporators by Design. Food Bioprod. Process. 2015, 93, 211–216. [Google Scholar] [CrossRef]
- Schnöing, L.; Augustin, W.; Scholl, S. Fouling Mitigation in Food Processes by Modification of Heat Transfer Surfaces: A Review. Food Bioprod. Process. 2020, 121, 1–19. [Google Scholar] [CrossRef]
- Van Asselt, A.J.; Van Houwelingen, G.; Te Giffel, M.C. Monitoring System for Improving Cleaning Efficiency of Cleaning-in-Place Processes in Dairy Environments. Food Bioprod. Process. Trans. Inst. Chem. Eng. Part C 2002, 80, 276–280. [Google Scholar] [CrossRef]
- Jeurnink, T.J.M. Milk Fouling in Heat Exchangers. Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands, 1996. [Google Scholar]
- Fryer, P.J.; Belmar-Beiny, M.T. Fouling of Heat Exchangers in the Food Industry: A Chemical Engineering Prespective. Trends Food Sci. Technol. 1991, 2, 33–37. [Google Scholar] [CrossRef]
- Georgiadis, M.C.; Macchietto, S. Dynamic Modelling and Simulation of Plate Heat Exchangers under Milk Fouling. Chem. Eng. Sci. 2000, 55, 1605–1619. [Google Scholar] [CrossRef]
- Magan, J.B.; Lamichhane, P.; Tobin, J.T. Heat Stability. Encycl. Dairy Sci. Third Ed. 2022, 2, 391–399. [Google Scholar] [CrossRef]
- Hagsten, C.; Altskär, A.; Gustafsson, S.; Lorén, N.; Hamberg, L.; Innings, F.; Paulsson, M.; Nylander, T. Composition and Structure of High Temperature Dairy Fouling. Food Struct. 2016, 7, 13–20. [Google Scholar] [CrossRef]
- Blanpain-Avet, P.; André, C.; Azevedo-Scudeller, L.; Croguennec, T.; Jimenez, M.; Bellayer, S.; Six, T.; Martins, G.A.S.; Delaplace, G. Effect of the Phosphate/Calcium Molar Ratio on Fouling Deposits Generated by the Processing of a Whey Protein Isolate in a Plate Heat Exchanger. Food Bioprod. Process. 2020, 121, 154–165. [Google Scholar] [CrossRef]
- Madoumier, M.; Azzaro-Pantel, C.; Gésan-Guiziou, G. Including Cleaning and Production Phases in the Eco-Design of a Milk Evaporation Process. Food Bioprod. Process. 2020, 123, 427–436. [Google Scholar] [CrossRef]
- Holsinger, V.H.; Rajkowski, K.T.; Stabel, J.R. Milk Pasteurisation and Safety: A Brief History and Update. Rev. Sci. Et Tech.-Off. Int. Des Epizoot. 1997, 16, 441–466. [Google Scholar] [CrossRef] [PubMed]
- Saget, M.; de Almeida, C.F.; Fierro, V.; Celzard, A.; Delaplace, G.; Thomy, V.; Coffinier, Y.; Jimenez, M. A Critical Review on Surface Modifications Mitigating Dairy Fouling. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4324–4366. [Google Scholar] [CrossRef] [PubMed]
- Hinton, A.R.; Trinh, K.T.; Brooks, J.D.; Manderson, G.J. Thermophile Survival in Milk Fouling and on Stainless Steel During Cleaning. Food Bioprod. Process. 2002, 80, 299–304. [Google Scholar] [CrossRef]
- Wallhäußer, E.; Hussein, W.B.; Hussein, M.A.; Hinrichs, J.; Becker, T. Detection of Dairy Fouling: Combining Ultrasonic Measurements and Classification Methods. Eng. Life Sci. 2013, 13, 292–301. [Google Scholar] [CrossRef]
- Bott, T.R. To Foul or Not to Foul: That Is the Question. Chem. Eng. Prog. 2001, 97, 30–37. [Google Scholar]
- Visser, J.; Jeurnink, T.J.M. Fouling of Heat Exchangers in the Dairy Industry. Exp. Therm. Fluid Sci. 1997, 14, 407–424. [Google Scholar] [CrossRef]
- Davies, D.T.; White, J.C.D. The Stability of Milk Protein to Heat: I. Subjective Measurement of Heat Stability of Milk. J. Dairy Res. 1966, 33, 67–81. [Google Scholar] [CrossRef]
- Hebishy, E.; Joubran, Y.; Murphy, E.; O’Mahony, J.A. Influence of Calcium-Binding Salts on Heat Stability and Fouling of Whey Protein Isolate Dispersions. Int. Dairy J. 2019, 91, 71–81. [Google Scholar] [CrossRef]
- Jimenez, M.; Delaplace, G.; Nuns, N.; Bellayer, S.; Deresmes, D.; Ronse, G.; Alogaili, G.; Collinet-Fressancourt, M.; Traisnel, M. Toward the Understanding of the Interfacial Dairy Fouling Deposition and Growth Mechanisms at a Stainless Steel Surface: A Multiscale Approach. J. Colloid Interface Sci. 2013, 404, 192–200. [Google Scholar] [CrossRef]
- Khalid, N.I.; Chan, K.W.; Ab Aziz, N.; Taip, F.S.; Anuar, M.S. Concentric Tube-Fouling Rig for Investigation of Fouling Deposit Formation from Pasteuriser of Viscous Food Liquid. J. Eng. Sci. Technol. 2013, 8, 166. [Google Scholar]
- Chen, B.Y.; Grandison, A.S.; Lewis, M.J. Comparison of Heat Stability of Goat Milk Subjected to Ultra-High Temperature and in-Container Sterilization. J. Dairy Sci. 2012, 95, 1057–1063. [Google Scholar] [CrossRef] [PubMed]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Anema, S.G. Effect of Milk Solids Concentration on the PH, Soluble Calcium and Soluble Phosphate Levels of Milk during Heating. Dairy Sci. Technol. 2009, 89, 501–510. [Google Scholar] [CrossRef]
- Tanguy, G.; Siddique, F.; Beaucher, E.; Santellani, A.C.; Schuck, P.; Gaucheron, F. Calcium Phosphate Precipitation during Concentration by Vacuum Evaporation of Milk Ultrafiltrate and Microfiltrate. LWT-Food Sci. Technol. 2016, 69, 554–562. [Google Scholar] [CrossRef]
- Huppertz, T. Heat Stability of Milk. In Advanced Dairy Chemistry: Volume 1B: Proteins: Applied Aspects; McSweeney, P.L.H., O’Mahony, J.A., Eds.; Springer: New York, NY, USA, 2016; pp. 179–196. ISBN 978-1-4939-2800-2. [Google Scholar]
- Fox, P.F.; McSweeney, P.L.H. (Eds.) Advanced Dairy Chemistry—1 Proteins. In Advanced Dairy Chemistry—1 Proteins: Part A/Part B; Springer: Boston, MA, USA, 2003; pp. 1–48. ISBN 978-1-4419-8602-3. [Google Scholar]
- Anema, S.G.; Lowe, E.K.; Li, Y. Effect of PH on the Viscosity of Heated Reconstituted Skim Milk. Int. Dairy J. 2004, 14, 541–548. [Google Scholar] [CrossRef]
- McMahon, D.J.; Oommen, B.S. Supramolecular Structure of the Casein Micelle. J. Dairy Sci. 2008, 91, 1709–1721. [Google Scholar] [CrossRef]
- Dumpler, J.; Kulozik, U. Heat Stability of Concentrated Skim Milk as a Function of Heating Time and Temperature on a Laboratory Scale—Improved Methodology and Kinetic Relationship. Int. Dairy J. 2015, 49, 111–117. [Google Scholar] [CrossRef]
- Dumpler, J.; Peraus, F.; Depping, V.; Stefánsdóttir, B.; Grunow, M.; Kulozik, U. Modelling of Heat Stability and Heat-Induced Aggregation of Casein Micelles in Concentrated Skim Milk Using a Weibullian Model. Int. J. Dairy Technol. 2018, 71, 601–612. [Google Scholar] [CrossRef]
- Markoska, T.; Huppertz, T.; Grewal, M.K.; Vasiljevic, T. FTIR Analysis of Physiochemical Changes in Raw Skim Milk upon Concentration. LWT 2019, 102, 64–70. [Google Scholar] [CrossRef]
- Wu, J.; Chen, S.; Van der Meeren, P. Heat Stability Assessment of Milk: A Review of Traditional and Innovative Methods. Foods 2024, 13, 2236. [Google Scholar] [CrossRef]
- Singh, H. Protein Interactions and Functionality of Milk Protein Products. In Dairy-Derived Ingredients. Food Nutraceutical Uses; Woodhead Publishing: Sawston, UK, 2009; pp. 644–674. [Google Scholar] [CrossRef]
- Mediwaththe, A.; Huppertz, T.; Chandrapala, J.; Vasiljevic, T. Effect of Protein Content on Heat Stability of Reconstituted Milk Protein Concentrate under Controlled Shearing. Foods 2024, 13, 263. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Fehér, B.; Hettinga, K.; Voets, I.K.; Bijl, E. Effect of Temperature, PH and Calcium Phosphate Concentration on the Properties of Reassembled Casein Micelles. Food Hydrocoll. 2024, 149, 109592. [Google Scholar] [CrossRef]
- Fox, P.F.; Uniacke-Lowe, T.; McSweeney, P.L.H.; O’Mahony, J.A. (Eds.) Salts of Milk. In Dairy Chemistry and Biochemistry; Springer International Publishing: Cham, Switzerland, 2015; pp. 241–270. ISBN 978-3-319-14892-2. [Google Scholar]
- Pyne, G.T.; McGann, T.C.A. The Colloidal Phosphate of Milk: II. Influence of Citrate. J. Dairy Res. 1960, 27, 9–17. [Google Scholar] [CrossRef]
- Nieuwenhuijse, J.A.; Sjollema, A.; van Boekel, M.A.J.S.; Van Vliet, T.; Walstra, P. The Heat Stability of Concentrated Skim Milk. Neth. Milk Dairy J. 1991, 45, 193–224. [Google Scholar]
- Bienvenue, A.; Jiménez-Flores, R.; Singh, H. Rheological Properties of Concentrated Skim Milk: Importance of Soluble Minerals in the Changes in Viscosity During Storage. J. Dairy Sci. 2003, 86, 3813–3821. [Google Scholar] [CrossRef]
- Asaduzzaman, M.; Mahomud, M.S.; Haque, M.E. Heat-Induced Interaction of Milk Proteins: Impact on Yoghurt Structure. Int. J. Food Sci. 2021, 2021, 5569917. [Google Scholar] [CrossRef]
- Mabrook, M.F.; Petty, M.C. Effect of Composition on the Electrical Conductance of Milk. J. Food Eng. 2003, 60, 321–325. [Google Scholar] [CrossRef]
- Jenness, R.; Koops, J. Preparation and Properties of a Salt Solution Which Simulated Milk Ultrafiltrate. Neth. Milk Dairy J. 1962, 16, 153–164. [Google Scholar]
- Pyne, G.T. Section C. Dairy Chemistry: Some Aspects of the Physical Chemistry of the Salts of Milk. J. Dairy Res. 1962, 29, 101–130. [Google Scholar] [CrossRef]
- Mucchetti, G.; Gatti, M.; Neviani, E. Electrical Conductivity Changes in Milk Caused by Acidification: Determining Factors. J. Dairy Sci. 1994, 77, 940–944. [Google Scholar] [CrossRef]
- Patil, P.; Srinivasan, B.; Srinivasan, R. Monitoring Fouling in Heat Exchangers under Temperature Control Based on Excess Thermal and Hydraulic Loads. Chem. Eng. Res. Des. 2022, 181, 41–54. [Google Scholar] [CrossRef]
- Wadsworth, K.D.; Bassette, R. Laboratory-Scale System to Process Ultrahigh-Temperature Milk. J Food Prot 1985, 48, 530–531. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.P.; Boland, M.J.; Smith, A.F. The Effect of Beta-Lactoglobulin Variants on Milk Powder Manufacture and Properties. In Milk Protein Polymorphism, Palmerston North (New Zealand); International Dairy Federation: Schaerbeek, Belgium, 1997. [Google Scholar]
- Burton, H. Section G. Deposits from Whole Milk in Heat Treatment Plant—A Review and Discussion. J. Dairy Res. 1968, 35, 317–330. [Google Scholar] [CrossRef]
- Jeurnink, T.J.; Walstra, P.; De Kruif, C.G. Mechanisms of Fouling in Dairy Processing. Neth. Milk Dairy J. 1996, 50, 407–426. [Google Scholar]
- Lowe, E.K.; Anema, S.G.; Bienvenue, A.; Boland, M.J.; Creamer, L.K.; Jiménez-Flores, R. Heat-Induced Redistribution of Disulfide Bonds in Milk Proteins. 2. Disulfide Bonding Patterns between Bovine β-Lactoglobulin and κ-Casein. J. Agric. Food Chem. 2004, 52, 7669–7680. [Google Scholar] [CrossRef]
- Anema, S.G.; Li, Y. Effect of PH on the Association of Denatured Whey Proteins with Casein Micelles in Heated Reconstituted Skim Milk. J. Agric. Food Chem. 2003, 51, 1640–1646. [Google Scholar] [CrossRef]
- Anema, S.G.; Lowe, E.K.; Lee, S.K.; Klostermeyer, H. Effect of the PH of Skim Milk at Heating on Milk Concentrate Viscosity. Int. Dairy J. 2014, 39, 336–343. [Google Scholar] [CrossRef]
- Nair, P.K.; Dalgleish, D.G.; Corredig, M. Colloidal Properties of Concentrated Heated Milk. Soft Matter 2013, 9, 3815–3824. [Google Scholar] [CrossRef]
- Ho, Q.T.; Murphy, K.M.; Drapala, K.P.; O’Callaghan, T.F.; Fenelon, M.A.; O’Mahony, J.A.; McCarthy, N.A. Effect of PH and Heat Treatment on Viscosity and Heat Coagulation Properties of Milk Protein Concentrate. Int. Dairy J. 2018, 85, 219–224. [Google Scholar] [CrossRef]
- Bista, A.; McCarthy, N.; O’Donnell, C.P.; O’Shea, N. Key Parameters and Strategies to Control Milk Concentrate Viscosity in Milk Powder Manufacture. Int. Dairy J. 2021, 121, 105120. [Google Scholar] [CrossRef]
- Bista, A.; Hogan, S.A.; O’Donnell, C.P.; Tobin, J.T.; O’Shea, N. Evaluation and Validation of an Inline Coriolis Flowmeter to Measure Dynamic Viscosity during Laboratory and Pilot-Scale Food Processing. Innov. Food Sci. Emerg. Technol. 2019, 54, 211–218. [Google Scholar] [CrossRef]
- Anema, S.G. Role of κ-Casein in the Association of Denatured Whey Proteins with Casein Micelles in Heated Reconstituted Skim Milk. J. Agric. Food Chem. 2007, 55, 3635–3642. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, M.; Pouliot, Y.; Pouliot, M. Thermal Aggregation of Whey Proteins in Model Solutions as Affected by Casein/Whey Protein Ratios. J. Food Sci. 1999, 64, 776–780. [Google Scholar] [CrossRef]
- Khaldi, M.; Croguennec, T.; André, C.; Ronse, G.; Jimenez, M.; Bellayer, S.; Blanpain-Avet, P.; Bouvier, L.; Six, T.; Bornaz, S.; et al. Effect of the Calcium/Protein Molar Ratio on β-Lactoglobulin Denaturation Kinetics and Fouling Phenomena. Int. Dairy J. 2018, 78, 1–10. [Google Scholar] [CrossRef]
- Koutina, G.; Knudsen, J.C.; Andersen, U.; Skibsted, L.H. Temperature Effect on Calcium and Phosphorus Equilibria in Relation to Gel Formation during Acidification of Skim Milk. Int. Dairy J. 2014, 36, 65–73. [Google Scholar] [CrossRef]
- Dumpler, J.; Kulozik, U. Heat-Induced Coagulation of Concentrated Skim Milk Heated by Direct Steam Injection. Int. Dairy J. 2016, 59, 62–71. [Google Scholar] [CrossRef]
- Kasinos, M.; Tran Le, T.; Van der Meeren, P. Improved Heat Stability of Recombined Evaporated Milk Emulsions upon Addition of Phospholipid Enriched Dairy By-Products. Food Hydrocoll. 2014, 34, 112–118. [Google Scholar] [CrossRef]
- Chen, B.; O’Mahony, J.A. Impact of Glucose Polymer Chain Length on Heat and Physical Stability of Milk Protein-Carbohydrate Nutritional Beverages. Food Chem. 2016, 211, 474–482. [Google Scholar] [CrossRef]
- On-Nom, N.; Grandison, A.S.; Lewis, M.J. Heat Stability of Milk Supplemented with Calcium Chloride. J. Dairy Sci. 2012, 95, 1623–1631. [Google Scholar] [CrossRef]
- Lewis, M.J.; Grandison, A.S.; Lin, M.-J.; Tsioulpas, A. Ionic Calcium and PH as Predictors of Stability of Milk to UHT Processing. Milchwissenschaft 2011, 66, 197–200. [Google Scholar]
- Havea, P. Protein Interactions in Milk Protein Concentrate Powders. Int. Dairy J. 2006, 16, 415–422. [Google Scholar] [CrossRef]
- Vasbinder, A.J.; De Kruif, C.G. Casein–Whey Protein Interactions in Heated Milk: The Influence of PH. Int. Dairy J. 2003, 13, 669–677. [Google Scholar] [CrossRef]
- De Wit, J.N. Thermal Stability and Functionality of Whey Proteins. J. Dairy Sci. 1990, 73, 3602–3612. [Google Scholar] [CrossRef]
- Guérin, R.; Ronse, G.; Bouvier, L.; Debreyne, P.; Delaplace, G. Structure and Rate of Growth of Whey Protein Deposit from in Situ Electrical Conductivity during Fouling in a Plate Heat Exchanger. Chem. Eng. Sci. 2007, 62, 1948–1957. [Google Scholar] [CrossRef]
- Petit, J.; Herbig, A.L.; Moreau, A.; Delaplace, G. Influence of Calcium on β-Lactoglobulin Denaturation Kinetics: Implications in Unfolding and Aggregation Mechanisms. J. Dairy Sci. 2011, 94, 5794–5810. [Google Scholar] [CrossRef]
- Guerrero-Navarro, A.E.; Ríos-Castillo, A.G.; Avila, C.R.; Hascoët, A.S.; Felipe, X.; Rodriguez Jerez, J.J. Development of a Dairy Fouling Model to Assess the Efficacy of Cleaning Procedures Using Alkaline and Enzymatic Products. LWT 2019, 106, 44–49. [Google Scholar] [CrossRef]
- Fickak, A.; Al-Raisi, A.; Chen, X.D. Effect of Whey Protein Concentration on the Fouling and Cleaning of a Heat Transfer Surface. J. Food Eng. 2011, 104, 323–331. [Google Scholar] [CrossRef]
- Tuoc, T.K. Fouling in Dairy Processes. In Mineral Scales and Deposits. Scientific and Technological Approaches; Elsevier: Amsterdam, The Netherlands, 2015; pp. 533–556. [Google Scholar] [CrossRef]
- Warncke, M.; Kieferle, I.; Nguyen, T.M.; Kulozik, U. Impact of Heat Treatment, Casein/Whey Protein Ratio and Protein Concentration on Rheological Properties of Milk Protein Concentrates Used for Cheese Production. J. Food Eng. 2022, 312, 110745. [Google Scholar] [CrossRef]
- Mahomud, M.S.; Katsuno, N.; Zhang, L.; Nishizu, T. Physical, Rheological, and Microstructural Properties of Whey Protein Enriched Yogurt Influenced by Heating the Milk at Different PH Values. J. Food Process. Preserv. 2017, 41, e13236. [Google Scholar] [CrossRef]
- Mahomud, M.S.; Haque, M.A.; Akhter, N.; Asaduzzaman, M. Effect of Milk PH at Heating on Protein Complex Formation and Ultimate Gel Properties of Free-Fat Yoghurt. J. Food Sci. Technol. 2021, 58, 1969–1978. [Google Scholar] [CrossRef]
- Matumoto-Pintro, P.T.; Rabiey, L.; Robitaille, G.; Britten, M. Use of Modified Whey Protein in Yoghurt Formulations. Int. Dairy J. 2011, 21, 21–26. [Google Scholar] [CrossRef]
- Gazi, I.; Johansen, L.B.; Huppertz, T. Heterogeneity, Fractionation, and Isolation. In Encyclopedia of Dairy Sciences; Academic Press: Cambridge, MA, USA, 2022; pp. 881–893. [Google Scholar] [CrossRef]
- Abdallah, M.; Azevedo-Scudeller, L.; Hiolle, M.; Lesur, C.; Baniel, A.; Delaplace, G. Review on Mechanisms Leading to Fouling and Stability Issues Related to Heat Treatment of Casein-Based RTD Beverages. Food Bioprod. Process. 2022, 136, 67–83. [Google Scholar] [CrossRef]
- Sadeghinezhad, E.; Kazi, S.N.; Dahari, M.; Safaei, M.R.; Sadri, R.; Badarudin, A. A Comprehensive Review of Milk Fouling on Heated Surfaces. Crit. Rev. Food Sci. Nutr. 2015, 55, 1724–1743. [Google Scholar] [CrossRef] [PubMed]
pH | Conductivity (mS/cm) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
t0 | t90 | Cooled to 25 °C after Run | ∆ during Run | ∆ 0–40 Min | ∆ 40–90 Min | t0 | t90 | Cooled to 25 °C after Run | ∆ during Run | ∆ 0–40 min | ∆ 40–90 min |
6.1 | 5.70 a ± 0.13 | 6.00 a ± 0.00 | 0.36 a ± 0.08 | 0.34 a ± 0.08 | 0.02 a ± 0.00 | 8.09 a ± 0.07 | 9.40 a ± 0.08 | 8.21 a ± 0.01 | 1.31 a ± 0.01 | 0.87 a ± 0.69 | 0.04 a ± 0.01 |
6.3 | 5.93 b ± 0.00 | 6.20 b ± 0.00 | 0.36 a ± 0.01 | 0.30 a ± 0.01 | 0.06 a ± 0.00 | 8.09 a ± 0.00 | 9.24 b ± 0.00 | 8.25 a ± 0.00 | 1.15 b ± 0.00 | 0.57 a ± 0.03 | 0.01 a ± 0.00 |
6.5 | 6.11 c ± 0.07 | 6.36 b ± 0.09 | 0.36 a ± 0.02 | 0.31 a ± 0.01 | 0.05 a ± 0.03 | 8.04 a ± 0.02 | 9.18 b ± 0.06 | 8.24 a ± 0.04 | 1.14 b ± 0.08 | 0.41 a ± 0.22 | 0.07 a ± 0.03 |
6.7 | 6.25 d ± 0.01 | 6.58 c ± 0.04 | 0.38 a ± 0.01 | 0.32 a ± 0.00 | 0.06 a ± 0.01 | 8.07 a ± 0.05 | 9.09 c ± 0.02 | 8.23 a ± 0.02 | 1.02 c ± 0.07 | 0.58 a ± 0.07 | 0.06 a ± 0.01 |
Sample | D[2,3] | D[3,4] | Dv(10) | Dv(50) | Dv(90) | Span |
---|---|---|---|---|---|---|
(µm) | ||||||
Unheated Control | 0.05 ± 0.00 a | 0.24 ± 0.09 a | 0.02 ± 0.00 a | 0.08 ± 0.00 a | 0.26 ± 0.02 a | 3.06 ± 0.18 a |
pH 6.1 | 0.46 ± 0.01 b | 17.6 ± 7.68 b | 0.19 ± 0.00 b | 0.65 ± 0.05 b | 25.2 ± 5.88 b | 38.5 ± 6.41 b |
pH 6.3 | 0.07 ± 0.01 a | 2.96 ± 0.62 c | 0.03 ± 0.00 a | 0.13 ± 0.00 a | 0.94 ± 0.13 a | 7.26 ± 0.94 c |
pH 6.5 | 0.06 ± 0.00 a | 0.19 ± 0.06 a | 0.03 ± 0.00 a | 0.09 ± 0.00 a | 0.31 ± 0.01 a | 3.19 ± 0.11 a |
pH 6.7 | 0.06 ± 0.00 a | 0.18 ± 0.03 a | 0.02 ± 0.00 a | 0.09 ± 0.00 a | 0.29 ± 0.01 a | 3.16 ± 0.07 a |
Sample | Total Solids | Protein | Ash |
---|---|---|---|
(%w/w) | |||
Unheated Control | 30.3 ± 0.17 a | 9.45 ± 0.34 a | 2.00 ± 0.02 a |
pH 6.1 AH | 23.3 ± 0.48 b | 7.87 ± 0.77 b | 1.67 ± 0.07 b |
pH 6.3 AH | 24.0 ± 0.82 bc | 8.02 ± 0.72 c | 1.74 ± 0.02 c |
pH 6.5 AH | 24.6 ± 0.82 bc | 8.20 ± 1.29 c | 1.74 ± 0.04 c |
pH 6.7 AH | 24.9 ± 0.32 c | 8.50 ± 0.46 c | 1.76 ± 0.07 c |
CIP Solution | pH of Concentrated Skim Milk Sample Recirculated before CIP Regime | |||
---|---|---|---|---|
pH 6.1 | pH 6.3 | pH 6.5 | pH 6.7 | |
Water Rinse | ||||
Caustic Wash | ||||
Acid Wash |
Turbidity (OD at 600 nm) | |||
---|---|---|---|
Circulated Milk pH | Water Rinse | Caustic Wash | Acid Wash |
pH 6.1 | 2.91 ± 0.02 a | 0.14 ± 0.01 a | 0.76 ± 0.13 a |
pH 6.3 | 2.91 ± 0.00 a | 0.10 ± 0.02 b | 0.63 ± 0.18 b |
pH 6.5 | 2.96 ± 0.01 b | 0.09 ± 0.01 b | 0.31 ± 0.02 c |
pH 6.7 | 3.27 ± 0.01 c | 0.09 ± 0.01 b | 0.18 ± 0.03 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murphy, T.R.; Finnegan, E.W.; Tarapata, J.; O’Callaghan, T.F.; O’Mahony, J.A. The Impact of pH on Fouling and Related Physicochemical Properties of Skim Milk Concentrate during Heat Treatment Using a Laboratory-Scale Fouling Rig. Foods 2024, 13, 3100. https://doi.org/10.3390/foods13193100
Murphy TR, Finnegan EW, Tarapata J, O’Callaghan TF, O’Mahony JA. The Impact of pH on Fouling and Related Physicochemical Properties of Skim Milk Concentrate during Heat Treatment Using a Laboratory-Scale Fouling Rig. Foods. 2024; 13(19):3100. https://doi.org/10.3390/foods13193100
Chicago/Turabian StyleMurphy, Tara R., Eoin W. Finnegan, Justyna Tarapata, Tom F. O’Callaghan, and James A. O’Mahony. 2024. "The Impact of pH on Fouling and Related Physicochemical Properties of Skim Milk Concentrate during Heat Treatment Using a Laboratory-Scale Fouling Rig" Foods 13, no. 19: 3100. https://doi.org/10.3390/foods13193100
APA StyleMurphy, T. R., Finnegan, E. W., Tarapata, J., O’Callaghan, T. F., & O’Mahony, J. A. (2024). The Impact of pH on Fouling and Related Physicochemical Properties of Skim Milk Concentrate during Heat Treatment Using a Laboratory-Scale Fouling Rig. Foods, 13(19), 3100. https://doi.org/10.3390/foods13193100