Depuration of Asian Green Mussels Using Chitooligosaccharide-Epigallocatechin Gallate Conjugate: Shelf-Life Extension, Microbial Diversity, and Quality Changes during Refrigerated Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Chemicals
2.2. Preparation of COS-EGCG Conjugate (CEC)
2.3. Effect of Different Depuration Times (DT) and CEC Concentrations on Total Vailabe Count (TVC) and Vibrio sp. Count (VC) of Asian Green Mussels (AGMs)
2.4. Changes in the Quality of Mussels Depurated Using Different Concentrations of CEC at the Selected DT during Refrigerated Storage
2.4.1. Microbial Analysis
2.4.2. Chemical Analysis
2.5. Fatty Acids Analysis
2.6. Next-Generation Sequencing
2.7. Effect of Cooking on the Physicochemical Properties of Depurated AGMs
2.7.1. Cooking Loss
2.7.2. Appearance and Color
2.7.3. Texture Profile Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effect of Different DTs and CEC Concentrations on the TVC and VC of AGMs
3.2. Changes in Mussel Quality during Refrigerated Storage after CEC Depuration at a Selected DT
3.2.1. Microbial Counts
3.2.2. Lipid Oxidation
3.2.3. Freshness of AGMs
3.2.4. Fatty Acid Content
3.3. Bacterial Diversity
3.4. Physicochemical and Textural Properties of Cooked AGMs
3.4.1. Color and Appearance
3.4.2. Cooking Loss
3.4.3. Texture Profile Analyses (TPAs)
3.4.4. Sensorial Properties
4. Conclusions
5. Declaration of Generative AI in Scientific Writing
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, S.; Young, T.; Archer, S.; Lee, K.; Alfaro, A.C. Gut microbiome resilience of green-lipped mussels, Perna canaliculus, to starvation. Int. Microbiol. 2024, 27, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.; Lovatelli, A.; Ababouch, L. Bivalve Depuration: Fundamental and Practical Aspects 2008; Food and Agriculture Organization of the United Nations: Rome, Italy, 2008. [Google Scholar]
- Rajagopal, S.; Venugopalan, V.P.; van der Velde, G.; Jenner, H.A. Greening of the coasts: A review of the Perna viridis success story. Aquat. Ecol. 2006, 40, 273–297. [Google Scholar] [CrossRef]
- FAO. Fishery Statistical Collections—Global Aquaculture Production; FAO Fisheries and Aquaculture Department: Rome, Italy, 2019. [Google Scholar]
- Palamae, S.; Temdee, W.; Buatong, J.; Zhang, B.; Hong, H.; Benjakul, S. Enhancement of safety and quality of ready-to-cook Asian green mussel using acidic electrolyzed water depuration in combination with sous vide cooking. Innov. Food Sci. Emerg. Technol. 2023, 87, 103391. [Google Scholar] [CrossRef]
- Palamae, S.; Temdee, W.; Buatong, J.; Suyapoh, W.; Sornying, P.; Tsai, Y.-H.; Benjakul, S. Use of high pressure processing in combination with acidic electrolyzed water depuration for the shelf-life extension of blood clam (Tegillarca granosa). Food Control 2024, 156, 110160. [Google Scholar] [CrossRef]
- Palamae, S.; Mittal, A.; Buatong, J.; Zhang, B.; Hong, H.; Benjakul, S. Chitooligosaccharide-catechin conjugate: Antimicrobial mechanisms toward Vibrio parahaemolyticus and its use in shucked Asian green mussel. Food Control 2023, 151, 109794. [Google Scholar] [CrossRef]
- Mittal, A.; Singh, A.; Zhang, B.; Visessanguan, W.; Benjakul, S. Chitooligosaccharide conjugates prepared using several phenolic compounds via ascorbic acid/H2O2 free radical grafting: Characteristics, antioxidant, antidiabetic, and antimicrobial activities. Foods 2022, 11, 920. [Google Scholar] [CrossRef]
- Singh, A.; Mittal, A.; Benjakul, S. Chitosan, chitooligosaccharides and their polyphenol conjugates: Preparation, bioactivities, functionalities and applications in food systems. Food Rev. Int. 2023, 39, 2297–2319. [Google Scholar] [CrossRef]
- Singh, A.; Benjakul, S.; Huda, N.; Xu, C.; Wu, P. Preparation and characterization of squid pen chitooligosaccharide–epigallocatechin gallate conjugates and their antioxidant and antimicrobial activities. RSC Adv. 2020, 10, 33196–33204. [Google Scholar] [CrossRef]
- Moreno-Vásquez, M.J.; Plascencia-Jatomea, M.; Sánchez-Valdes, S.; Tanori-Córdova, J.C.; Castillo-Yañez, F.J.; Quintero-Reyes, I.E.; Graciano-Verdugo, A.Z. Characterization of epigallocatechin-gallate-Grafted chitosan nanoparticles and evaluation of their antibacterial and antioxidant potential. Polymers 2021, 13, 1375. [Google Scholar] [CrossRef]
- Buatong, J.; Mittal, A.; Mittraparp-arthorn, P.; Palamae, S.; Saetang, J.; Benjakul, S. Bactericidal action of shrimp shell chitooligosaccharide conjugated with epigallocatechin gallate (COS-EGCG) against Listeria monocytogenes. Foods 2023, 12, 634. [Google Scholar] [CrossRef]
- Mittal, A.; Singh, A.; Benjakul, S. α-amylase inhibitory activity of chitooligosaccharide from shrimp shell chitosan and its epigallocatechin gallate conjugate: Kinetics, fluorescence quenching and structure–activity relationship. Food Chem. 2023, 403, 134456. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.; Singh, A.; Hong, H.; Benjakul, S. Chitooligosaccharides from shrimp shell chitosan prepared using H2O2 or ascorbic acid/H2O2 redox pair hydrolysis: Characteristics, antioxidant and antimicrobial activities. Int. J. Food Sci. Technol. 2023, 58, 2645–2660. [Google Scholar] [CrossRef]
- Maturin, L.; Peeler, J. BAM: Aerobic Plate Count; US Food and Drug Administration: Silver Spring, MD, USA, 2001. [Google Scholar]
- Olatunde, O.O.; Benjakul, S.; Vongkamjan, K. Shelf-life of refrigerated Asian sea bass slices treated with cold plasma as affected by gas composition in packaging. Int. J. Food Microbiol. 2020, 324, 108612. [Google Scholar] [CrossRef] [PubMed]
- Phetsang, H.; Panpipat, W.; Panya, A.; Phonsatta, N.; Chaijan, M. Occurrence and development of off-odor compounds in farmed hybrid catfish (Clarias macrocephalus × Clarias gariepinus) muscle during refrigerated storage: Chemical and volatilomic analysis. Foods 2021, 10, 1841. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Muhammed, M.; Domendra, D.; Muthukumar, S.; Sakhare, P.; Bhaskar, N. Effects of fermentatively recovered fish waste lipids on the growth and composition of broiler meat. Br. Poult. Sci. 2015, 56, 79–87. [Google Scholar] [CrossRef]
- Martin, A.J.; Synge, R.L. A new form of chromatogram employing two liquid phases: A theory of chromatography. 2. Application to the micro-determination of the higher monoamino-acids in proteins. Biochem. J. 1941, 35, 1358. [Google Scholar] [CrossRef]
- Patil, U.; Palamae, S.; Nazeer, R.A.; Zhang, B.; Benjakul, S. Combined hurdle effects of pulsed electric field and ultraviolet-C irradiation on microbial load reduction and composition of hemeproteins from Asian seabass gills. Food Control 2024, 164, 110591. [Google Scholar] [CrossRef]
- Seyedalangi, M.; Sari, A.H.; Nowruzi, B.; Anvar, S.A.A. The synergistic effect of dielectric barrier discharge plasma and phycocyanin on shelf life of Oncorhynchus mykiss rainbow fillets. Sci. Rep. 2024, 14, 9174. [Google Scholar] [CrossRef]
- Siriwong, S.; Thepbandit, W.; Hoang, N.H.; Papathoti, N.K.; Teeranitayatarn, K.; Saardngen, T.; Thumanu, K.; Bhavaniramya, S.; Baskaralingam, V.; Le Thanh, T.; et al. Identification of a chitooligosaccharide mechanism against bacterial leaf blight on rice by in vitro and in silico studies. Int. J. Mol. Sci. 2021, 22, 7990. [Google Scholar] [CrossRef]
- Lodhi, G.; Kim, Y.-S.; Hwang, J.-W.; Kim, S.-K.; Jeon, Y.-J.; Je, J.-Y.; Ahn, C.-B.; Moon, S.-H.; Jeon, B.-T.; Park, P.-J. Chitooligosaccharide and its derivatives: Preparation and biological applications. BioMed Res. Int. 2014, 2014, 654913. [Google Scholar] [CrossRef] [PubMed]
- Lorenzoni, G.; Tedde, G.; Mara, L.; Bazzoni, A.M.; Esposito, G.; Salza, S.; Piras, G.; Tedde, T.; Bazzardi, R.; Arras, I. Presence, seasonal distribution, and biomolecular characterization of Vibrio parahaemolyticus and Vibrio vulnificus in shellfish harvested and marketed in Sardinia (Italy) between 2017 and 2018. J. Food Prot. 2021, 84, 1549–1554. [Google Scholar] [CrossRef] [PubMed]
- Montánchez, I.; Ogayar, E.; Plágaro, A.H.; Esteve-Codina, A.; Gómez-Garrido, J.; Orruño, M.; Arana, I.; Kaberdin, V.R. Analysis of Vibrio harveyi adaptation in sea water microcosms at elevated temperature provides insights into the putative mechanisms of its persistence and spread in the time of global warming. Sci. Rep. 2019, 9, 289. [Google Scholar] [CrossRef] [PubMed]
- Quan, Y.; Choi, K.-D.; Chung, D.; Shin, I.-S. Evaluation of bactericidal activity of weakly acidic electrolyzed water (WAEW) against Vibrio vulnificus and Vibrio parahaemolyticus. Int. J. Food Microbiol. 2010, 136, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Olatunde, O.O.; Benjakul, S.; Vongkamjan, K. Comparative study on nitrogen and argon-based modified atmosphere packaging on microbiological, chemical, and sensory attributes as well as on microbial diversity of Asian sea bass. Food Packag. Shelf Life 2019, 22, 100404. [Google Scholar] [CrossRef]
- Singh, A.; Benjakul, S.; Olatunde, O.O.; Yesilsu, A.F. The combined effect of squid pen chitooligosaccharide and high voltage cold atmospheric plasma on the quality of Asian sea bass slices inoculated with Pseudomonas aeruginosa. Turk. J. Fish. Aquat. Sci. 2020, 21, 41–50. [Google Scholar] [CrossRef]
- Singh, A.; Benjakul, S. The combined effect of squid pen chitooligosaccharides and high voltage cold atmospheric plasma on the shelf-life extension of Asian sea bass slices stored at 4 C. Innov. Food Sci. Emerg. Technol. 2020, 64, 102339. [Google Scholar] [CrossRef]
- Rao, M.S.; Chander, R.; Sharma, A. Synergistic effect of chitooligosaccharides and lysozyme for meat preservation. LWT Food Sci. Technol. 2008, 41, 1995–2001. [Google Scholar] [CrossRef]
- Rawat, S. Food Spoilage: Microorganisms and their prevention. Asian J. Plant Sci. Res. 2015, 5, 47–56. [Google Scholar]
- Pal, V.K.; Bandyopadhyay, P.; Singh, A. Hydrogen sulfide in physiology and pathogenesis of bacteria and viruses. IUBMB Life 2018, 70, 393–410. [Google Scholar] [CrossRef]
- Mittal, A.; Palamae, S.; Singh, A.; Zhang, B.; Benjakul, S. Pacific white shrimp (Litopenaus vannamei) treated with chitooligosaccharide-catechin conjugate with the aid of prior pulse electric field and vacuum impregnation: Quality and microbial diversity during refrigerated storage. Food Biosci. 2024, 61, 104981. [Google Scholar] [CrossRef]
- Sharma, M.H.; Palamae, S.; Yingkajorn, M.; Benjakul, S.; Singh, A.; Buatong, J. Multidrug-resistance of Vibrio species in bivalve mollusks from Southern Thailand: Isolation, identification, pathogenicity, and their sensitivity toward chitooligosaccharide-epigallocatechin-3-gallate conjugate. Foods 2024, 13, 2375. [Google Scholar] [CrossRef] [PubMed]
- Rajasekaran, B.; Singh, A.; Nagarajan, M.; Benjakul, S. Effect of chitooligosaccharide and α-tocopherol on physical properties and oxidative stability of shrimp oil-in-water emulsion stabilized by bovine serum albumin-chitosan complex. Food Control 2022, 137, 108899. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef]
- Tatiyaborworntham, N.; Oz, F.; Richards, M.P.; Wu, H. Paradoxical effects of lipolysis on the lipid oxidation in meat and meat products. Food Chem. X 2022, 14, 100317. [Google Scholar] [CrossRef]
- Mittal, A.; Singh, A.; Benjakul, S. Use of nanoliposome loaded with chitosan-epigallocatechin gallate conjugate for shelf-life extension of refrigerated Asian sea bass (Lates calcarifer) slices. Int. J. Food Sci. Technol. 2021, 56, 3795–3806. [Google Scholar] [CrossRef]
- Khan, M.A.; Parrish, C.C.; Shahidi, F. Effects of mechanical handling, storage on ice and ascorbic acid treatment on lipid oxidation in cultured Newfoundland blue mussel (Mytilus edulis). Food Chem. 2006, 99, 605–614. [Google Scholar] [CrossRef]
- Remenant, B.; Jaffrès, E.; Dousset, X.; Pilet, M.-F.; Zagorec, M. Bacterial spoilers of food: Behavior, fitness and functional properties. Food Microbiol. 2015, 45, 45–53. [Google Scholar] [CrossRef]
- Etienne, M. Volatile amines as criteria for chemical quality assessment. Seafoodplus traceability. In Seafoodplus—Traceability—Project 6.3—Valid—Methods for Chemical Quality Assessment; Archive Institutionnelle de l’Ifremer: Quimper, France, 2005. [Google Scholar]
- Masniyom, P.; Benjama, O. Effect of lactic, acetic and citric acids on quality changes of refrigerated green mussel, Perna viridis (Linnaeus, 1758). Songklanakarin J. Sci. Technol. 2007, 29, 1123–1134. [Google Scholar]
- Wang, D.; Xiao, H.; Lyu, X.; Chen, H.; Wei, F. Lipid oxidation in food science and nutritional health: A comprehensive review. Oil Crop Sci. 2023, 8, 35–44. [Google Scholar] [CrossRef]
- Ye, Q.; Tan, J.; He, X.; Wang, C.; Liu, X.; Li, C.; Fang, Z.; Chen, H.; Liu, Y.; Chen, S. Effect of lipase and lipoxygenase on lipid metabolism and the formation of main volatile flavour compounds in fermented fish products: A review. Int. J. Food Sci. Technol. 2024, 59, 1248–1259. [Google Scholar] [CrossRef]
- Noor, N.M.; Nursyam, H.; Widodo, M.S.; Risjani, Y. Biological aspects of green mussels Perna viridis cultivated on raft culture in Pasaran coastal waters, Indonesia. Aquac. Aquar. Conserv. Legis. 2019, 12, 448–456. [Google Scholar]
- Roudaut, G.; Debeaufort, F. 6—Moisture loss, gain and migration in foods and its impact on food quality. In Chemical Deterioration and Physical Instability of Food and Beverages; Skibsted, L.H., Risbo, J., Andersen, M.L., Eds.; Woodhead Publishing: Cambridge, UK, 2010; pp. 143–185. [Google Scholar]
- Biji, K.B.; Shamseer, R.M.; Mohan, C.O.; Ravishankar, C.N.; Mathew, S.; Gopal, T.K. Effect of thermal processing on the biochemical constituents of green mussel (Perna viridis) in Tin-free-steel cans. J. Food Sci. Technol. 2015, 52, 6804–6809. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Pateiro, M.; Munekata, P.E.S.; Zhang, W.; Garcia-Oliveira, P.; Carpena, M.; Prieto, M.A.; Bohrer, B.; Lorenzo, J.M. Protein oxidation in muscle foods: A comprehensive review. Antioxidants 2021, 11, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Listrat, A.; Lebret, B.; Louveau, I.; Astruc, T.; Bonnet, M.; Lefaucheur, L.; Picard, B.; Bugeon, J. How muscle structure and composition influence meat and fesh quality. Sci. World J. 2016, 2016, 3182746. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Tu, C.; Jiang, H.; Benjakul, S.; Ni, J.; Dong, K.; Zhang, B. Effects of sous vide cooking on the physicochemical and volatile flavor properties of half-shell scallop (Chlamys farreri) during chilled storage. Foods 2022, 11, 3928. [Google Scholar] [CrossRef]
- Russo, G.L.; Langellotti, A.L.; Buonocunto, G.; Puleo, S.; Di Monaco, R.; Anastasio, A.; Vuoso, V.; Smaldone, G.; Baselice, M.; Capuano, F.; et al. The sous vide cooking of mediterranean mussel (Mytilus galloprovincialis): Safety and quality assessment. Foods 2023, 12, 2900. [Google Scholar] [CrossRef]
- Bhunia, K.; Ovissipour, M.; Rasco, B.; Tang, J.; Sablani, S.S. Oxidation–reduction potential and lipid oxidation in ready-to-eat blue mussels in red sauce: Criteria for package design. J. Sci. Food Agric. 2017, 97, 324–332. [Google Scholar] [CrossRef]
Fatty Acids (mg/g Lipids) | Day 0 | Day 4 | |
---|---|---|---|
CON | CE2 | CE2–4 | |
C14:0 (Myristic Acid) | 43.62 ± 1.01 b | 50.55 ± 0.98 a | 38.27 ± 2.69 c |
C14:1 (Myristoleic Acid) | 6.61 ± 0.66 a | 5.63 ± 0.48 a | 5.86 ± 0.66 a |
C15:0 (Pentadecanoic Acid) | 8.66 ± 0.66 a | 8.35 ± 1.35 a | 9.35 ± 1.21 a |
C15:1 (cis-10-Pentadecanoic Acid) | 27.01 ± 3.56 a | 17.63 ± 1.75 c | 19.87 ± 1.38 b |
C16:0 (Palmitic) | 371.92 ± 5.61 a | 366.51 ± 11.63 a | 346.62 ± 9.06 b |
C16:1 (Palmitoleic Acid) | 61.48 ± 3.04 b | 67.36 ± 4.10 a | 42.34 ± 3.84 c |
C17:0 (Heptadecanoic Acid) | 40.27 ± 1.96 a | 41.84 ± 3.02 a | 23.41 ± 0.91 b |
C17:1 (cis-10-Heptadecanoic Acid) | 14.03 ± 0.75 a | 14.74 ± 1.38 a | 13.02 ± 1.39 a |
C18:0 (Stearic Acid) | 101.67 ± 1.86 a | 103.64 ± 3.26 a | 83.93 ± 4.41 b |
C18:1 (Oleic Acid) | 56.72 ± 3.71 a | 59.69 ± 3.35 a | 46.00 ± 4.13 b |
C18:2 (Linoleic Acid) | 6.69 ± 0.52 a | 6.99 ± 0.65 a | 6.45 ± 0.48 a |
C18:3 (gamma-Linolenic Acid) | 52.29 ± 2.71 b | 57.51 ± 3.83 a | 42.79 ± 0.50 c |
C20:1 (cis-11-Eicosenoic Acid) | 13.86 ± 0.69 a | 14.30 ± 1.27 a | 11.41 ± 0.92 b |
C20:0 (Docosanoic Acid) | 9.79 ± 0.83 b | 10.70 ± 0.29 a | 8.99 ± 0.07 c |
C20:3 (cis-11,14,17-Eicosatrienoic Acid) | 5.25 ± 0.40 a | 5.30 ± 0.08 a | 5.09 ± 0.29 a |
C20:4 (cis-5,8,11,14-Eicosatetraenoic Acid) | 87.46 ± 2.37 b | 94.05 ± 4.96 a | 67.80 ± 5.11 c |
C23:0 (Tricosanoic Acid) | 8.22 ± 0.47 b | 9.36 ± 0.72 a | 6.48 ± 0.50 c |
C20:5 (cis-5,8,11,14,17-Eicosapentaenoic Acid) | 19.79 ± 0.46 a | 18.27 ± 1.95 a | 11.96 ± 0.74 b |
C22:6 (cis-4,7,10,13,16,19-Docosahexaenoic Acid) | 10.48 ± 0.46 a | 9.79 ± 0.79 a | 7.99 ± 0.61 b |
C24:0 (Lignoceric Acid) | 9.63 ± 0.67 a | 9.06 ± 0.10 a | 8.99 ± 0.05 b |
Saturated fatty acids | 584.18 ± 12.43 a | 600.49 ± 21.39 a | 526.08 ± 18.94 b |
Monounsaturated fatty acids | 179.74 ± 12.42 a | 179.38 ± 19.36 a | 138.52 ± 17.34 b |
Polyunsaturated fatty acids | 181.99 ± 6.94 a | 191.94 ± 11.14 b | 142.10 ± 7.66 c |
Day 0 | Day 4 | |||
---|---|---|---|---|
CON | CE2 | CE2-4 | ||
Textural properties | Cooking Loss (%) | 42.73 ± 1.57 a | 43.71 ± 2.06 a | 39.76 ± 1.77 b |
Shear force (g/mm) | 71.38 ± 1.23 a | 72.32 ± 2.36 a | 68.32 ± 2.02 b | |
Firmness (g) | 80.32 ± 2.00 a | 79.36 ± 1.98 a | 76.02 ± 1.02 b | |
Toughness (g) | 3801.34 ± 12.02 a | 3796.00 ± 11.78 a | 3502.32 ± 20.32 b | |
Sensory analysis | Appearance | 7.27 ± 0.46 a | 7.07 ± 0.96 a | 6.80 ± 0.77 b |
Color | 7.27 ± 0.88 a | 7.27 ± 1.10 a | 6.87 ± 1.06 b | |
Smell | 6.6 ± 0.91 a | 6.07 ± 0.59 a | 6.47 ± 0.74 a | |
Texture | 7.07 ± 0.96 a | 7.27 ± 0.88 a | 7.47 ± 0.83 a | |
Taste | 6.93 ± 0.80 a | 7.13 ± 0.83 a | 7.07 ± 0.88 a | |
Overall | 7.13 ± 0.99 a | 7.2 ± 0.94 a | 7.27 ± 0.88 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buatong, J.; Bahem, N.; Benjakul, S.; Patil, U.; Singh, A. Depuration of Asian Green Mussels Using Chitooligosaccharide-Epigallocatechin Gallate Conjugate: Shelf-Life Extension, Microbial Diversity, and Quality Changes during Refrigerated Storage. Foods 2024, 13, 3104. https://doi.org/10.3390/foods13193104
Buatong J, Bahem N, Benjakul S, Patil U, Singh A. Depuration of Asian Green Mussels Using Chitooligosaccharide-Epigallocatechin Gallate Conjugate: Shelf-Life Extension, Microbial Diversity, and Quality Changes during Refrigerated Storage. Foods. 2024; 13(19):3104. https://doi.org/10.3390/foods13193104
Chicago/Turabian StyleBuatong, Jirayu, Nooreeta Bahem, Soottawat Benjakul, Umesh Patil, and Avtar Singh. 2024. "Depuration of Asian Green Mussels Using Chitooligosaccharide-Epigallocatechin Gallate Conjugate: Shelf-Life Extension, Microbial Diversity, and Quality Changes during Refrigerated Storage" Foods 13, no. 19: 3104. https://doi.org/10.3390/foods13193104
APA StyleBuatong, J., Bahem, N., Benjakul, S., Patil, U., & Singh, A. (2024). Depuration of Asian Green Mussels Using Chitooligosaccharide-Epigallocatechin Gallate Conjugate: Shelf-Life Extension, Microbial Diversity, and Quality Changes during Refrigerated Storage. Foods, 13(19), 3104. https://doi.org/10.3390/foods13193104