Cascade Amplifying Electrochemical Bioanalysis for Zearalenone Detection in Agricultural Products: Utilizing a Glucose–Fenton–HQ System on Bimetallic–ZIF@CNP Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Apparatus
2.2. Synthesis of B-ZIF@CNP Nanocomposites
2.3. Modification of Electrodes
2.4. Procedure of TCAE-Bioanalysis
- (1)
- Enzyme Immunoreaction Step: The ZEN standard (or sample solution, 5.0 μL, in PBS buffer) and ZEN-McAb (5.0 μL, 2.5 μg/mL, in PBS buffer) were pre-mixed and incubated at 40 °C for 30 min. The Anti-IgG-Bio (10 μL, 2.5 μg/mL, in PBS buffer) and A-GOx (10 μL, 10 μg/mL, in PBS buffer) were also pre-incubated. The pretreated solutions were sequentially applied, and both were incubated at 40 °C for 30 min. After each incubation step, the AuE was washed with ultrapure water. Finally, the B-ZIF@CNP/Ag/Ab/Anti-IgG-Bio/A-GOx-modified AuE was used to introduce the key enzyme GOx into the detection system.
- (2)
- Glucose–Fenton–HQ Reaction Step: The principle of the glucose–Fenton–HQ reaction is that the introduced GOx can catalyze and reduce O2 into H2O2 in the presence of glucose, followed by the FeSO4/H2O2-based Fenton reaction producing hydroxyl radicals (∙OH). The oxidation (OX) and reduction (RED) reactions between HQ and benzoquinone (BQ) are then activated by ∙OH, generating an abundant electron signal. Specifically, the Pt electrode, calomel electrode, and B-ZIF@CNP/Ag/Ab/Anti-IgG-Bio/A-GOx-modified AuE were placed in the glucose–Fenton–HQ reaction solution (3.0 mL) at 25 °C for 5 min, and the electron signal was detected using the DPV method.
- (3)
- Signal Detection Step: The electron signal was reflected by the peak current intensity (I, μA) in the DPV curve, which was negatively correlated with the ZEN level. For the DPV curve, the response time was 120 s, and the amplitude was approximately 0.05 V, with a voltage (E, V) ranging from −0.1 V to +0.5 V.
2.5. Electrochemical Experiment
2.6. Establishment of TCAE-Bioanalysis
2.7. Application of TCAE-Bioanalysis
3. Results and Discussion
3.1. Characterization of B-ZIF@CNP Nanocomposites
3.2. Feasibility of TCAE-Bioanalysis
3.3. Optimization
3.4. Sensitivity
3.5. Specificity
3.6. Detection of ZEN-Contaminated Samples
3.7. Comparison with Other Bioanalysis Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Ding, Y.; Li, J.; Huang, L.R.; Gonzalez-Sapienza, G.; Hammock, B.D.; Wang, M.H.; Hua, X.D. New approach to generate ratiometric signals on immunochromatographic strips for small molecules. Anal. Chem. 2022, 94, 7358–7367. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, T.B.; Silva, B.N.; Tome, E.; Teixeira, P. Preventing fungal spoilage from raw materials to final product: Innovative preservation techniques for fruit fillings. Foods 2024, 13, 2669. [Google Scholar] [CrossRef] [PubMed]
- Ravariu, C. From enzymatic dopamine biosensors to OECT biosensors of dopamine. Biosensors 2023, 13, 806. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.Z.; Wei, Y.L.; Gao, X.; Nie, C.; Wang, J.L.; Wu, Y.N. Engineering an enzymatic cascade catalytic smartphone-based sensor for onsite visual ratiometric fluorescence-colorimetric dual-mode detection of methyl mercaptan. Environ. Sci. Technol. 2023, 57, 1680–1691. [Google Scholar] [CrossRef]
- Wang, Y.D.; Xianyu, Y.L. Tuning the plasmonic and catalytic signals of Au@Pt nanoparticles for dual-mode biosensing. Biosens. Bioelectron. 2023, 237, 115553. [Google Scholar] [CrossRef]
- Wu, S.X.; Zhang, X.P.; Chen, W.; Zhang, G.H.; Zhang, Q.; Yang, H.L.; Zhou, Y. Alkaline phosphatase triggered ratiometric fluorescence immunoassay for detection of zearalenone. Food Control 2023, 146, 109541. [Google Scholar] [CrossRef]
- Wang, W.H.; Zhang, C.; Guo, J.X.; Li, G.P.; Ye, B.X.; Zou, L.N. Sensitive electrochemical detection of oxytetracycline based on target triggered CHA and poly adenine assisted probe immobilization. Anal. Chim. Acta 2021, 1181, 338895. [Google Scholar] [CrossRef]
- Wu, Y.H.; Zhou, Y.F.; Huang, H.; Chen, X.R.; Leng, Y.K.; Lai, W.H.; Huang, X.L.; Xiong, Y.H. Engineered gold nanoparticles as multicolor labels for simultaneous multi-mycotoxin detection on the immunochromatographic test strip nanosensor. Sens. Actuat. B Chem. 2020, 316, 128107. [Google Scholar] [CrossRef]
- Wijayanti, S.D.; Tsvik, L.; Haltrich, D. Recent advances in electrochemical enzyme-based biosensors for food and beverage analysis. Foods 2023, 12, 3355. [Google Scholar] [CrossRef]
- Azri, F.A.; Eissa, S.; Zourob, M.; Chinnappan, R.; Sukor, R.; Yusof, N.A.; Raston, N.H.A.; Alhoshani, A.; Jinap, S. Electrochemical determination of zearalenone using a label-free competitive aptasensor. Microchim. Acta 2020, 187, 266. [Google Scholar] [CrossRef]
- Goud, K.Y.; Kumar, V.S.; Hayat, A.; Gobi, K.V.; Song, H.; Kim, K.H.; Marty, J.L. A highly sensitive electrochemical immunosensor for zearalenone using screen-printed disposable electrodes. J. Electroanal. Chem. 2019, 832, 336–342. [Google Scholar] [CrossRef]
- Mohebi, A.; Samadi, M.; Tavakoli, H.R.; Parastouei, K. Homogenous liquid-liquid extraction followed by dispersive liquid-liquid microextraction for the extraction of some antibiotics from milk samples before their determination by HPLC. Microchem. J. 2020, 157, 104988. [Google Scholar] [CrossRef]
- Sohrabi, H.; Majidi, M.R.; Arbabzadeh, O.; Khaaki, P.; Pourmohammad, S.; Khataee, A.; Orooji, Y. Recent advances in the highly sensitive determination of zearalenone residues in water and environmental resources with electrochemical biosensors. Environ. Res. 2022, 204, 112082. [Google Scholar] [CrossRef]
- Qi, H.J.; Li, H.Y.; Li, F. Aptamer recognition-driven homogeneous electrochemical strategy for simultaneous analysis of multiple pesticides without interference of color and fluorescence. Anal. Chem. 2021, 93, 7739–7745. [Google Scholar] [CrossRef]
- Afsharara, H.; Asadian, E.; Mostafiz, B.; Banan, K.; Bigdeli, S.A.; Hatamabadi, D.; Keshavarz, A.; Hussain, C.M.; Kecili, R.; Ghorbani-Bidkorpeh, F. Molecularly imprinted polymer-modified carbon paste electrodes (MIP-CPE): A review on sensitive electrochemical sensors for pharmaceutical determinations. TrAC Trend Anal. Chem. 2023, 160, 116949. [Google Scholar] [CrossRef]
- Zhu, C.X.; Liu, D.; Li, Y.Y.; Chen, T.; You, T.Y. Label-free ratiometric homogeneous electrochemical aptasensor based on hybridization chain reaction for facile and rapid detection of aflatoxin B1 in cereal crops. Food Chem. 2022, 373, 131443. [Google Scholar] [CrossRef]
- Guo, Z.M.; Gao, L.B.; Yin, L.M.; Arslan, M.; El-Seedi, H.R.; Zou, X.B. Novel mesoporous silica surface loaded gold nanocomposites SERS aptasensor for sensitive detection of zearalenone. Food Chem. 2023, 403, 134384. [Google Scholar] [CrossRef] [PubMed]
- Shang, C.L.; Li, Y.S.; Zhang, Q.; Tang, S.; Tang, X.Q.; Ren, H.L.; Hu, P.; Lu, S.Y.; Li, P.W.; Zhou, Y. Alkaline phosphatase-triggered dual-signal immunoassay for colorimetric and electrochemical detection of zearalenone in cornmeal. Sensor. Actuat. B Chem. 2022, 358, 131525. [Google Scholar] [CrossRef]
- Li, Z.D.; Gou, M.; Yue, X.J.; Tian, Q.; Yang, D.Y.; Qiu, F.X.; Zhang, T. Facile fabrication of bifunctional ZIF-L/cellulose composite membrane for efficient removal of tellurium and antibacterial effects. J. Hazard. Mater. 2021, 416, 125888. [Google Scholar] [CrossRef]
- Lu, S.; Hummel, M.; Chen, K.; Zhou, Y.; Kang, S.; Gu, Z.R. Synthesis of Au@ZIF-8 nanocomposites for enhanced electrochemical detection of dopamine. Electrochem. Commun. 2020, 114, 106715. [Google Scholar] [CrossRef]
- Zhou, C.X.; Cui, K.; Liu, Y.; Hao, S.J.; Zhang, L.N.; Ge, S.G.; Yu, J.H. Ultrasensitive microfluidic paper-based electrochemical/visual analytical device via signal amplification of Pd@hollow Zn/Co core-shell ZIF67/ZIF8 nanoparticles for prostate-specific antigen detection. Anal. Chem. 2021, 93, 5459–5467. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.Q.; Liu, Z.P.; Yan, Y.; Chen, J.M.; Yang, R.Z.; Huang, Q.J.; Jin, M.L.; Shui, L.L. Triple signal-enhancing electrochemical aptasensor based on rhomboid dodecahedra carbonized-ZIF67 for ultrasensitive CRP detection. Biosens. Bioelectron. 2022, 207, 114129. [Google Scholar] [CrossRef] [PubMed]
- Mohanta, D.; Mahanta, A.; Mishra, S.R.; Jasimuddin, S.; Ahmaruzzaman, M. Novel SnO2@ZIF-8/gC3N4 nanohybrids for excellent electrochemical performance towards sensing of p-nitrophenol. Environ. Res. 2021, 197, 111077. [Google Scholar] [CrossRef] [PubMed]
- Li, D.D.; Qiu, X.H.; Guo, H.Q.; Duan, D.W.; Zhang, W.Q.; Wang, J.C.; Ma, J.J.; Ding, Y.; Zhang, Z.Y. A simple strategy for the detection of Pb (II) and Cu (II) by an electrochemical sensor based on Zn/Ni-ZIF-8/XC-72/Nafion hybrid materials. Environ. Res. 2021, 202, 111605. [Google Scholar] [CrossRef]
- Hassan, M.M.; Zareef, M.; Xu, Y.; Li, H.H.; Chen, Q.S. SERS based sensor for mycotoxins detection: Challenges and improvements. Food Chem. 2021, 344, 128652. [Google Scholar] [CrossRef]
- Zhou, B.B.; Xie, H.; Zhou, S.S.; Sheng, X.X.; Chen, L.; Zhong, M. Construction of AuNPs/reduced graphene nanoribbons co-modified molecularly imprinted electrochemical sensor for the detection of zearalenone. Food Chem. 2023, 423, 136294. [Google Scholar] [CrossRef]
- Kutsanedzie, F.Y.H.; Agyekum, A.A.; Annavaram, V.; Chen, Q.S. Signal-enhanced SERS-sensors of CAR-PLS and GA-PLS coupled AgNPs for ochratoxin A and aflatoxin B1 detection. Food Chem. 2020, 315, 126231. [Google Scholar] [CrossRef]
- Cao, H.R.; Mao, K.; Yang, J.J.; Wu, Q.Q.; Hu, J.M.; Zhang, H. High-throughput μPAD with cascade signal amplification through dual enzymes for arsM in paddy soil. Anal. Chem. 2024, 96, 6337–6346. [Google Scholar] [CrossRef]
- Han, C.F.; Xiao, Y.; Liu, Z.J.; Du, D.L.; Li, M. Cascade amplifying aptasensor for positively correlated detecting OTA: Based on DNase I-assisted cyclic enzyme digestion and AgNPs@gel-enhanced fluorescence. Food Control 2023, 153, 109970. [Google Scholar] [CrossRef]
- Li, M.; Hong, X.; Qiu, X.C.; Yang, C.Q.; Mao, Y.H.; Li, Y.; Liu, Z.J.; Du, D.L. Ultrasensitive monitoring strategy of PCR-like levels for zearalenone contamination based DNA barcode. J. Agric. Food Sci. 2021, 101, 4490–4497. [Google Scholar] [CrossRef]
- Hu, M.; Hu, X.F.; Zhang, Y.P.; Teng, M.; Deng, R.G.; Xing, G.X.; Tao, J.Z.; Xu, G.R.; Chen, J.; Zhang, Y.J.; et al. Label-free electrochemical immunosensor based on AuNPs/Zn/Ni-ZIF-8-800@graphene composites for sensitive detection of monensin in milk. Sensor. Actuat. B Chem. 2019, 288, 571–578. [Google Scholar] [CrossRef]
- Koventhan, C.; Babulal, S.M.; Chen, S.M.; Lo, A.Y.; Selvan, C.S. Unveiling the capability of novel cobalt/barium stannate nanoparticles embedded functionalized MWCNTs nanocomposite for electrochemical investigation of antibiotic drug nifuroxazide. Mater. Today Chem. 2024, 35, 101896. [Google Scholar] [CrossRef]
- Veerakumar, P.; Koventhan, C.; Chen, S.M. Copper-palladium alloy nanoparticles immobilized over porous carbon for voltammetric determination of dimetridazole. J. Alloys Compd. 2023, 931, 167474. [Google Scholar] [CrossRef]
- Lu, W.Y.; Tian, Y.; Teng, W.P.; Qiu, X.C.; Li, M. Plasmonic colorimetric immunosensor based on poly-HRP and AuNS etching for tri-modal readout of small molecule. Talanta 2023, 265, 124883. [Google Scholar] [CrossRef] [PubMed]
- GB 5009-209; Ministry of Health of China, P. R. China. Determination of Zearalenone in Food. National Standard: Geneva, Switzerland, 2016.
- Lijalem, Y.G.; Gab-Allah, M.A.; Yu, H.; Choi, K.; Kim, B. Development of a corn flour certified reference material for the accurate determination of zearalenone. Anal. Bioanal. Chem. 2024, 416, 3173–3183. [Google Scholar] [CrossRef]
- Hong, X.; Mao, Y.H.; Yang, C.Q.; Liu, Z.J.; Li, M.; Du, D.L. Contamination of zearalenone from China in 2019 by a visual and digitized immunochromatographic assay. Toxins 2020, 12, 521. [Google Scholar] [CrossRef]
- GB2761; Ministry of Health of China, P. R. China. Maximum Residue Level of Mycotoxin in Food. National Standard: Geneva, Switzerland, 2017.
- Caglayan, M.O.; Sahin, S.; Ustundag, Z. Detection strategies of zearalenone for food safety: A review. Crit. Rev. Anal. Chem. 2022, 52, 294–313. [Google Scholar] [CrossRef]
Sample | TCAE-Bioanalysis a (Mean ± SD, pg/g) | LC-MS/MS (Mean ± SD, pg/g) | Sample | TCAE-Bioanalysis (Mean ± SD, pg/g) | LC-MS/MS (Mean ± SD, pg/g) |
---|---|---|---|---|---|
Corn-1 | (17.4 ± 1.23) × 103 | (18.2 ± 0.96) × 103 | Feed-1 | ND b | ND c |
Corn-2 | (14.7 ± 0.61) × 103 | (13.2 ± 0.57) × 103 | Feed-2 | (36.7 ± 2.41) × 103 | (37.4 ± 1.85) × 103 |
Corn-3 | (13.5 ±0.86) × 103 | (12.3 ± 0.85) × 103 | Feed-3 | (3.15± 0.33) × 103 | ND c |
Corn-4 | (27.8 ± 1.74) × 103 | (29.4 ± 2.40) × 103 | Feed-4 | (21.9 ± 2.25) × 103 | (20.8 ± 2.70) × 103 |
Corn-5 | (105.1 ± 5.12) × 103 | (99.2 ± 4.30) × 103 | Feed-5 | (7.50 ± 0.89) × 103 | (7.93 ± 0.53) × 103 |
Corn-6 | (97.5 ± 4.01) × 103 | (95.2 ± 7.33) × 103 | Feed-6 | (27.5 ± 2.14) × 103 | (26.9 ± 1.99) × 103 |
Peanut-1 | (11.4 ± 0.55) × 103 | (12.2 ± 0.63) × 103 | Wheat-1 | (1.76± 0.17) × 103 | ND c |
Peanut-2 | 528.1 ± 30.1 | ND c | Wheat-2 | (24.6 ± 2.10) × 103 | (25.6 ± 1.10) × 103 |
Peanut-3 | (21.4 ± 1.81) × 103 | (22.5 ± 1.50) × 103 | Wheat-3 | ND b | ND c |
Peanut-4 | (32.5 ± 2.52) × 103 | (36.7 ± 2.44) × 103 | Wheat-4 | (37.7 ± 2.58) × 103 | (36.2 ± 3.52) × 103 |
Peanut-5 | (1.76 ± 0.12) × 103 | ND c | Wheat-5 | (2.08± 0.19) × 103 | ND c |
Peanut-6 | (11.7 ± 0.42) × 103 | (12.9± 0.77) × 103 | Wheat-6 | (12.1 ± 0.96) × 103 | (12.9 ± 0.88) × 103 |
Peanut-7 | 56.3 ± 4.38 | ND c | Wheat-7 | (72.1 ± 3.50) × 103 | (73.9 ± 4.77) × 103 |
Method | Signal | Recognition Group | Label | Detection Range (pg/mL) | LOD (pg/mL) | Reference |
---|---|---|---|---|---|---|
ELISA | Colorimetry | McAb | HRP | 200–5400 | 200 | [30] |
ELASA | Colorimetry | Aptamer | HRP | 380–28 × 103 | 377 | [4] |
ICA | Red color | McAb | AuNP | 800−40 × 103 | 690 | [8] |
ICA | Red color | McAb | AuNP | 500–3000 | 500 | [37] |
FIA | Fluorescence | McAb | ALP@PPI/Cu2+ | (3.5–17.8) × 103 | 14 | [6] |
SERS | Raman | McAb | MSN@AuNP | 300–200 × 103 | 6.4 | [17] |
EC | Electricity | Aptamer | Label-free | 10−1000 × 103 | 17 | [10] |
EC | Electricity | McAb | ALP | 250−250 × 103 | 250 | [11] |
EC | Electricity | MIP | Nanoribbon @AuNP | (1.0−500) × 105 | 340 | [26] |
Dual-signal IA | Colorimetry/Electricity | McAb | ALP | 200−800/125−500 | 40/80 | [18] |
TCAE-bioanalysis | Electricity | McAb | B-ZIF@CNP/glucose–Fenton–HQ | 0.87−1058.5 | 0.87 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Liu, Z.; Sun, Y.; Sun, M.; Duan, J.; Tian, Y.; Du, D.; Li, M. Cascade Amplifying Electrochemical Bioanalysis for Zearalenone Detection in Agricultural Products: Utilizing a Glucose–Fenton–HQ System on Bimetallic–ZIF@CNP Nanocomposites. Foods 2024, 13, 3192. https://doi.org/10.3390/foods13193192
Liu G, Liu Z, Sun Y, Sun M, Duan J, Tian Y, Du D, Li M. Cascade Amplifying Electrochemical Bioanalysis for Zearalenone Detection in Agricultural Products: Utilizing a Glucose–Fenton–HQ System on Bimetallic–ZIF@CNP Nanocomposites. Foods. 2024; 13(19):3192. https://doi.org/10.3390/foods13193192
Chicago/Turabian StyleLiu, Guoxing, Zhaoying Liu, Yumeng Sun, Mingna Sun, Jinsheng Duan, Ye Tian, Daolin Du, and Ming Li. 2024. "Cascade Amplifying Electrochemical Bioanalysis for Zearalenone Detection in Agricultural Products: Utilizing a Glucose–Fenton–HQ System on Bimetallic–ZIF@CNP Nanocomposites" Foods 13, no. 19: 3192. https://doi.org/10.3390/foods13193192
APA StyleLiu, G., Liu, Z., Sun, Y., Sun, M., Duan, J., Tian, Y., Du, D., & Li, M. (2024). Cascade Amplifying Electrochemical Bioanalysis for Zearalenone Detection in Agricultural Products: Utilizing a Glucose–Fenton–HQ System on Bimetallic–ZIF@CNP Nanocomposites. Foods, 13(19), 3192. https://doi.org/10.3390/foods13193192