Novel Peptides LFLLP and DFFL from Jack Bean Protein Hydrolysates Suppress the Inflammatory Response in Lipopolysaccharide-Stimulated RAW 264.7 Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Jack Bean Protein Extraction
2.3. Preparation of Jack Bean Protein Hydrolysates
2.4. Peptide Fractionation of Jack Bean Protein Hydrolysates
2.4.1. Ultrafiltration of Jack Bean Protein Hydrolysates
2.4.2. Reversed-Phase High-Performance Liquid Chromatography
2.5. Peptide Identification by Mass Spectrometry and in Silico Analysis
2.6. Cell Culture
2.7. Cell Viability Assay
2.8. Evaluation of the Anti-Inflammatory Activity of Jack Bean Protein Hydrolysates in RAW 264.7 Cells
2.9. Quantitative Reverse Transcription Polymerase Chain Reaction Analysis
2.10. Immunoblot Analysis
2.11. Immunofluorescence Microscopy
2.12. Visualization of LFLLP and DFFL Peptides in RAW 264.7 Cells
2.13. Statistical Analysis
3. Results
3.1. Effect of Jack Bean Protein Hydrolysates on the Viability of RAW 264.7 Cells
3.2. Anti-Inflammatory Effect of Jack Bean Protein Hydrolysates
3.3. Cellular Mechanism of the Anti-Inflammatory Effect of Jack Bean Protein Hydrolysates
3.4. Anti-Inflammatory Effect of Peptides Fractionated from Jack Bean Protein Hydrolysates
3.5. Identification of Potential Anti-Inflammatory Peptides
3.6. Anti-Inflammatory Effect of Novel Peptides LFLLP and DFFL from Jack Bean Protein Hydrolysates
3.7. Cellular Mechanism of the Anti-Inflammatory Effect of Novel Peptides LFLLP and DFFL from Jack Bean Protein Hydrolysates
3.8. Cellular Visualization of Novel Peptides LFLLP and DFFL in RAW 264.7 Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaplan, G.G.; Windsor, J.W. The four epidemiological stages in the global evolution of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Yeshi, K.; Ruscher, R.; Hunter, L.; Daly, N.L.; Loukas, A.; Wangchuk, P. Revisiting inflammatory bowel disease: Pathology, treatments, challenges and emerging therapeutics including drug leads from natural products. J. Clin. Med. 2020, 9, 1273. [Google Scholar] [CrossRef]
- Kałużna, A.; Olczyk, P.; Komosińska-Vassev, K. The Role of Innate and Adaptive Immune Cells in the Pathogenesis and Development of the Inflammatory Response in Ulcerative Colitis. J. Clin. Med. 2022, 11, 400. [Google Scholar] [CrossRef]
- Ciesielska, A.; Matyjek, M.; Kwiatkowska, K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell. Mol. Life Sci. 2021, 78, 1233–1261. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.S.; Wang, J.; Yannie, P.J. Intestinal barrier dysfunction, LPS translocation, and disease development. J. Endocr. Soc. 2020, 4, bvz039. [Google Scholar] [CrossRef]
- Bhandari, D.; Rafiq, S.; Gat, Y.; Gat, P.; Waghmare, R.; Kumar, V. A Review on Bioactive Peptides: Physiological Functions, Bioavailability and Safety. Int. J. Pept. Res. Ther. 2020, 26, 139–150. [Google Scholar] [CrossRef]
- Rivera-Jiménez, J.; Berraquero-García, C.; Pérez-Gálvez, R.; García-Moreno, P.J.; Espejo-Carpio, F.J.; Guadix, A.; Guadix, E.M. Peptides and protein hydrolysates exhibiting anti-inflammatory activity: Sources, structural features and modulation mechanisms. Food Funct. 2022, 13, 12510–12540. [Google Scholar] [CrossRef] [PubMed]
- Diao, J.; Miao, X.; Chen, H. Anti-inflammatory effects of mung bean protein hydrolysate on the lipopolysaccharide- induced RAW264.7 macrophages. Food Sci. Biotechnol. 2022, 31, 849–856. [Google Scholar] [CrossRef]
- Ling, Y.; Feng, Y.; Li, Z.; Cheng, L.; Zhang, X.; Ren, D. Anti-Inflammatory Mechanism of Walnut Meal Peptide/Ellagic Acid Nanoparticles on LPS-Stimulated RAW264.7 Cells by Inhibition of NF-κB and MAPK Activation. Int. J. Pept. Res. Ther. 2023, 29, 99. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, X.; Zhang, R.; Koci, M.; Si, D.; Ahmad, B.; Guo, H.; Hou, Y. C-Terminal Amination of a Cationic Anti-Inflammatory Peptide Improves Bioavailability and Inhibitory Activity Against LPS-Induced Inflammation. Front. Immunol. 2021, 11, 618312. [Google Scholar] [CrossRef]
- Sridhar, K.; Seena, S. Nutritional and antinutritional significance of four unconventional legumes of the genus Canavalia—A comparative study. Food Chem. 2006, 99, 267–288. [Google Scholar] [CrossRef]
- Kanetro, B.; Riyanto, M.; Pujimulyani, D.; Huda, N. Improvement of Functional Properties of Jack Bean (Canavalia ensiformis) Flour by Germination and Its Relation to Amino Acids Profile. Curr. Res. Nutr. 2021, 9, 812–822. [Google Scholar] [CrossRef]
- Ramli, N.A.M.; Chen, Y.H.; Zin, Z.M.; Abdullah, M.A.A.; Rusli, N.D.; Zainol, M.K. Effect of soaking time and fermentation on the nutrient and antinutrients composition of Canavalia ensiformis (Kacang Koro). IOP Conf. Ser. Earth Environ. Sci. 2021, 756, 012033. [Google Scholar] [CrossRef]
- Wijatniko, B.D.; Yamamoto, Y.; Hirayama, M.; Suzuki, T. Identification and Molecular Mechanism of Anti-inflammatory Peptides Isolated from Jack Bean Protein Hydrolysates: In vitro Studies with Human Intestinal Caco-2BBe Cells. Plant Foods Hum. Nutr. 2024, 79, 624–631. [Google Scholar] [CrossRef]
- Wijatniko, B.D.; Murdiati, A. Antioxidant activity of bioactive peptides derived from the hydrolysates of jack bean (Canavalia ensiformis (L.) DC.) protein isolate. AIP Conf. Proc. 2019, 2099, 020028. [Google Scholar] [CrossRef]
- Oyama, M.; Van Hung, T.; Yoda, K.; He, F.; Suzuki, T. A novel whey tetrapeptide IPAV reduces interleukin-8 production induced by TNF-α in human intestinal Caco-2 cells. J. Funct. Foods 2017, 35, 376–383. [Google Scholar] [CrossRef]
- Gilda, J.E.; Gomes, A.V. Stain-Free total protein staining is a superior loading control to b-actin for Western blots. Anal. Biochem. 2013, 440, 186–188. [Google Scholar] [CrossRef]
- Cheng, M.-L.; Wang, H.-C.; Hsu, K.-C.; Hwang, J.-S. Anti-inflammatory peptides from enzymatic hydrolysates of tuna cooking juice. Food Agric. Immunol. 2015, 26, 770–781. [Google Scholar] [CrossRef]
- Navarro-Leyva, A.; López-Angulo, G.; Delgado-Vargas, F.; López-Valenzuela, J.Á. Antioxidant, anti-inflammatory, hypoglycemic, and anti-hyperglycemic activity of chickpea protein hydrolysates evaluated in BALB-c mice. J. Food Sci. 2023, 88, 4262–4274. [Google Scholar] [CrossRef]
- Guo, Y.; Guo, Y.; Yan, K.; Yan, K.; Lv, H.; Lv, H.; Liu, B.; Liu, B. PreTP-EL: Prediction of therapeutic peptides based on ensemble learning. Brief. Bioinform. 2021, 22, bbab358. [Google Scholar] [CrossRef]
- Page, M.J.; Kell, D.B.; Pretorius, E. The Role of Lipopolysaccharide-Induced Cell Signalling in Chronic Inflammation. Chronic Stress 2022, 6, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Wang, X.; Xiong, H.; Qiu, T.; Zhang, H.; Guo, F.; Jiang, L.; Sun, Y. Anti-inflammatory effects of three selenium-enriched brown rice protein hydrolysates in LPS-induced RAW264.7 macrophages via NF-κB/MAPKs signaling pathways. J. Funct. Foods 2021, 76, 104320. [Google Scholar] [CrossRef]
- Lu, Q.; Yang, M.-F.; Liang, Y.-J.; Xu, J.; Xu, H.-M.; Nie, Y.-Q.; Wang, L.-S.; Yao, J.; Li, D.-F. Immunology of Inflammatory Bowel Disease: Molecular Mechanisms and Therapeutics. J. Inflamm. Res. 2022, 15, 1825–1844. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.S.R.; de Lima, V.C.O.; Piuvezam, G.; de Azevedo, K.P.M.; Maciel, B.L.L.; de Araújo Morais, A.H. Mechanisms of action of anti-inflammatory proteins and peptides with anti-TNF-alpha activity and their effects on the intestinal barrier: A systematic review. PLoS ONE 2022, 17, e0270749. [Google Scholar] [CrossRef]
- Ruder, B.; Atreya, R.; Becker, C. Tumour necrosis factor alpha in intestinal homeostasis and gut related diseases. Int. J. Mol. Sci. 2019, 20, 1887. [Google Scholar] [CrossRef]
- Qu, T.; He, S.; Ni, C.; Wu, Y.; Xu, Z.; Chen, M.-L.; Li, H.; Cheng, Y.; Wen, L. In Vitro Anti-Inflammatory Activity of Three Peptides Derived from the Byproduct of Rice Processing. Plant Foods Hum. Nutr. 2022, 77, 172–180. [Google Scholar] [CrossRef]
- Krishnan, M.; Choi, J.; Jang, A.; Choi, S.; Yeon, J.; Jang, M.; Lee, Y.; Son, K.; Shin, S.Y.; Jeong, M.S.; et al. Molecular mechanism underlying the TLR4 antagonistic and antiseptic activities of papiliocin, an insect innate immune response molecule. Proc. Natl. Acad. Sci. USA 2022, 119, e2115669119. [Google Scholar] [CrossRef]
- Lee, J.Y.; Suh, J.S.; Kim, J.M.; Kim, J.H.; Park, H.J.; Park, Y.J.; Chung, C.P. Identification of a cell-penetrating peptide domain from human beta-defensin 3 and characterization of its anti-inflammatory activity. Int. J. Nanomed. 2015, 10, 5423–5434. [Google Scholar] [CrossRef]
- Peng, L.; Kong, X.; Wang, Z.; Ai-Lati, A.; Ji, Z.; Mao, J. Baijiu vinasse as a new source of bioactive peptides with antioxidant and anti-inflammatory activity. Food Chem. 2021, 339, 128159. [Google Scholar] [CrossRef]
- Dharmisthaben, P.; Basaiawmoit, B.; Sakure, A.; Das, S.; Maurya, R.; Bishnoi, M.; Kondepudi, K.K.; Hati, S. Exploring potentials of antioxidative, anti-inflammatory activities and production of bioactive peptides in lactic fermented camel milk. Food Biosci. 2021, 44, 101404. [Google Scholar] [CrossRef]
- Okagu, I.U.; Ndefo, J.C.; Aham, E.C.; Obeme-Nmom, J.I.; Agboinghale, P.E.; Aguchem, R.N.; Nechi, R.N.; Lammi, C. Lupin-derived bioactive peptides: Intestinal transport, bioavailability and health benefits. Nutrients 2021, 13, 3266. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Chen, X.; Li, H.; Zhang, J.; An, J.; Liu, X. Anti-Inflammatory Function of Plant-Derived Bioactive Peptides: A Review. Foods 2022, 11, 2361. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Chamorro, I.; Santos-Sánchez, G.; Bollati, C.; Bartolomei, M.; Li, J.; Arnoldi, A.; Lammi, C. Hempseed (Cannabis sativa) peptides WVSPLAGRT and IGFLIIWV exert anti-inflammatory activity in the LPS-stimulated human hepatic cell line. J. Agric. Food Chem. 2022, 70, 577–583. [Google Scholar] [CrossRef] [PubMed]
Fraction | Parent Protein | Peptide | m/z | RT | Area | ALC (%) | Error (ppm) | PeptideRanker Score a | PreTP-EL Prediction b |
---|---|---|---|---|---|---|---|---|---|
F6 | Not found | DFFL | 541.2656 | 21.19 | 6.93 × 106 | 99 | 0 | 0.9809 | Not predicted |
Not found | LFVF | 525.3074 | 20.9 | 2.36 × 106 | 99 | 0.6 | 0.9315 | Not predicted | |
Not found | LFLLP | 602.3915 | 21.56 | 6.49 × 105 | 94 | 0.5 | 0.8529 | Anti-inflammatory peptide | |
Not found | VFPLL | 588.3756 | 20.7 | 5.48 × 105 | 96 | 0.2 | 0.8413 | Not predicted | |
Not found | TFLL | 493.3021 | 20.13 | 2.38 × 105 | 92 | 0 | 0.7195 | Not predicted | |
Not found | VLLF | 491.323 | 20.32 | 5.44 × 105 | 97 | 0.5 | 0.6932 | Not predicted | |
Not found | FVPH | 250.1369 | 13.88 | 9.48 × 104 | 89 | 0.6 | 0.6694 | Not predicted | |
Not found | LALVL | 528.3756 | 19.95 | 1.53 × 106 | 87 | 0.1 | 0.2317 | Not predicted | |
F8 | Not found | NYGKLY | 379.1975 | 15.88 | 1.21 × 104 | 99 | −0.1 | 0.4612 | Not predicted |
Canavalin (SRDPIYSN) | RSDPLYSN | 476.2299 | 14.54 | 6.34 × 103 | 91 | −0.5 | 0.3364 | Not predicted |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijatniko, B.D.; Ishii, Y.; Hirayama, M.; Suzuki, T. Novel Peptides LFLLP and DFFL from Jack Bean Protein Hydrolysates Suppress the Inflammatory Response in Lipopolysaccharide-Stimulated RAW 264.7 Cells. Foods 2024, 13, 3198. https://doi.org/10.3390/foods13193198
Wijatniko BD, Ishii Y, Hirayama M, Suzuki T. Novel Peptides LFLLP and DFFL from Jack Bean Protein Hydrolysates Suppress the Inflammatory Response in Lipopolysaccharide-Stimulated RAW 264.7 Cells. Foods. 2024; 13(19):3198. https://doi.org/10.3390/foods13193198
Chicago/Turabian StyleWijatniko, Bambang Dwi, Yoshiki Ishii, Makoto Hirayama, and Takuya Suzuki. 2024. "Novel Peptides LFLLP and DFFL from Jack Bean Protein Hydrolysates Suppress the Inflammatory Response in Lipopolysaccharide-Stimulated RAW 264.7 Cells" Foods 13, no. 19: 3198. https://doi.org/10.3390/foods13193198
APA StyleWijatniko, B. D., Ishii, Y., Hirayama, M., & Suzuki, T. (2024). Novel Peptides LFLLP and DFFL from Jack Bean Protein Hydrolysates Suppress the Inflammatory Response in Lipopolysaccharide-Stimulated RAW 264.7 Cells. Foods, 13(19), 3198. https://doi.org/10.3390/foods13193198