Production of Bioactive Peptides from Tartary Buckwheat by Solid-State Fermentation with Lactiplantibacillus plantarum ATCC 14917
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Materials
2.2. Buckwheat Crude Protein Sample Preparation
2.3. Fermentation Preparation
2.4. Peptide Fermentation Process
2.5. Determination of Peptide Content in Fermentation Supernatant
2.6. Fermentation Preparation of Buckwheat Peptides Single-Factor Experiments
2.7. Buckwheat Peptide Response Surface Optimization Test
2.8. Statistical Analysis
3. Results
3.1. Strain Selection
3.2. Results of the Univariate Experiment
3.2.1. Glucose Addition’s Effect on Peptide Concentration in Fermentation Mash
3.2.2. Moisture Content’s Effect on Peptide Content in Fermentation Mash
3.2.3. Inoculum Ratio’s Effect on Peptide Content in Fermentation Mash
3.2.4. Fermentation Temperature’s Effect on the Peptide Content in Fermentation Mash
3.2.5. Fermentation Time’s Effect on the Peptide Content in Fermentation Mash
3.2.6. The Addition of Potassium Dihydrogen Phosphate’s Effect on the Peptide Content in Fermentation Mash
3.3. Response Surface Optimization Results of Buckwheat Peptide Fermentation Conditions
3.3.1. Response Surface Experimental Design and Results
3.3.2. Regression Equation and Parameter Analysis
3.3.3. Response Surface Optimization and Analysis
3.3.4. Determination of Optimal Values and Validation Experiments of the Regression Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krkošková, B.; Mrazova, Z. Prophylactic components of buckwheat. Food Res. Int. 2005, 38, 561–568. [Google Scholar] [CrossRef]
- Bhinder, S.; Kaur, A.; Singh, B.; Yadav, M.P.; Singh, N. Proximate composition, amino acid profile, pasting and process characteristics of flour from different Tartary buckwheat varieties. Food Res. Int. 2020, 130, 108946. [Google Scholar] [CrossRef] [PubMed]
- Sytar, O.; Brestic, M.; Zivcak, M.; Tran, L.-S.P. The Contribution of Buckwheat Genetic Resources to Health and Dietary Diversity. Curr. Genom. 2016, 17, 193–206. [Google Scholar] [CrossRef]
- Yang, J.; Gu, Z.; Zhu, L.; Cheng, L.; Li, Z.; Li, C.; Hong, Y. Buckwheat Digestibility Affected by the Chemical and Structural Features of Its Main Components. Food Hydrocoll. 2019, 96, 596–603. [Google Scholar] [CrossRef]
- Hidalgo-Fuentes, B.; de Jesús-José, E.; Cabrera-Hidalgo, A.D.J.; Sandoval-Castilla, O.; Espinosa-Solares, T.; González-Reza, R.M.; Zambrano-Zaragoza, M.L.; Liceaga, A.M.; Aguilar-Toalá, J.E. Plant-Based Fermented Beverages: Nutritional Composition, Sensory Properties, and Health Benefits. Foods 2024, 13, 844. [Google Scholar] [CrossRef]
- Udenigwe, C.C.; Li, H.; Aluko, R.E. Quantitative Structure-Activity Relationship Modeling of Renin-Inhibiting Dipeptides. Amino Acids 2012, 42, 1379–1386. [Google Scholar] [CrossRef]
- Hu, F.; Ci, A.-T.; Wang, H.; Zhang, Y.-Y.; Zhang, J.-G.; Thakur, K.; Wei, Z.-J. Identification and Hydrolysis Kinetic of a Novel Antioxidant Peptide from Pecan Meal Using Alcalase. Food Chem. 2018, 261, 301–310. [Google Scholar] [CrossRef]
- Bao, Y.; Wang, J.; Li, C.; Li, P.; Wang, S.; Lin, Z. A Preliminary Study on the Antibacterial Mechanism of Tegillarca Granosa Hemoglobin by Derived Peptides and Peroxidase Activity. Fish Shellfish Immunol. 2016, 51, 9–16. [Google Scholar] [CrossRef]
- Liao, P.; Lan, X.; Liao, D.; Sun, L.; Zhou, L.; Sun, J.; Tong, Z. Isolation and Characterization of Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptides from the Enzymatic Hydrolysate of Carapax Trionycis (the Shell of the Turtle Pelodiscus Sinensis). J. Agric. Food Chem. 2018, 66, 7015–7022. [Google Scholar] [CrossRef]
- Lozano-Ojalvo, D.; Molina, E.; López-Fandiño, R. Hydrolysates of egg white proteins modulate T- and B-cell responses in mitogen-stimulated murine cells. Food Funct. 2016, 7, 1048–1056. [Google Scholar] [CrossRef]
- Sowmya, K.; Mala, D.; Bhat, M.I.; Kumar, N.; Bajaj, R.K.; Kapila, S.; Kapila, R. Bio-Accessible Milk Casein Derived Tripeptide (LLY) Mediates Overlapping Anti- Inflammatory and Anti-Oxidative Effects under Cellular (Caco-2) and in Vivo Milieu. J. Nutr. Biochem. 2018, 62, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Son, M.; Wu, J. Egg White Hydrolysate and Peptide Reverse Insulin Resistance Associated with Tumor Necrosis Factor-α (TNF-α) Stimulated Mitogen-Activated Protein Kinase (MAPK) Pathway in Skeletal Muscle Cells. Eur. J. Nutr. 2019, 58, 1961–1969. [Google Scholar] [CrossRef]
- Feng, L.; Xie, Y.; Peng, C.; Liu, Y.; Wang, H. A Novel Antidiabetic Food Produced via Solid-State Fermentation of Tartary Buckwheat by L. plantarum TK9 and L. paracasei TK1501. Food Technol. Biotechnol. 2018, 56, 373–380. [Google Scholar] [CrossRef]
- Ulug, S.K.; Jahandideh, F.; Wu, J. Novel Technologies for the Production of Bioactive Peptides. Trends Food Sci. Technol. 2021, 108, 27–39. [Google Scholar] [CrossRef]
- Ninomiya, K.; Yamaguchi, Y.; Kumagai, H.; Kumagai, H. Physicochemical and Functional Properties of Buckwheat (Fagpopyrum esculentum Moench) Albumin. Future Foods 2022, 6, 100178. [Google Scholar] [CrossRef]
- Gao, L.; Van Bockstaele, F.; Lewille, B.; Haesaert, G.; Eeckhout, M. Characterization and Comparative Study on Structural and Physicochemical Properties of Buckwheat Starch from 12 Varieties. Food Hydrocoll. 2023, 137, 108320. [Google Scholar] [CrossRef]
- Rivero-Pino, F.; Leon, M.J.; Millan-Linares, M.C.; Montserrat-de la Paz, S. Antimicrobial Plant-Derived Peptides Obtained by Enzymatic Hydrolysis and Fermentation as Components to Improve Current Food Systems. Trends Food Sci. Technol. 2023, 135, 32–42. [Google Scholar] [CrossRef]
- Martínez-Medina, G.A.; Barragán, A.P.; Ruiz, H.A.; Ilyina, A.; Martínez Hernández, J.L.; Rodríguez-Jasso, R.M.; Hoyos-Concha, J.L.; Aguilar-González, C.N. Chapter 14—Fungal Proteases and Production of Bioactive Peptides for the Food Industry. In Enzymes in Food Biotechnology; Kuddus, M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 221–246. ISBN 978-0-12-813280-7. [Google Scholar] [CrossRef]
- Mohamad Nasir, N.N.; Mohamad Ibrahim, R.; Abu Bakar, M.Z.; Mahmud, R.; Ab Razak, N.A. Characterization and Extraction Influence Protein Profiling of Edible Bird’s Nest. Foods 2021, 10, 2248. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Guo, X.; Wei, L.; Cui, H.; Wei, Q.; Cai, J.; Zhao, Z.; Dong, J.; Wang, J.; et al. Rapid Screening of the Novel Bioactive Peptides with Notable α-Glucosidase Inhibitory Activity by UF-LC-MS/MS Combined with Three-AI-Tool from Black Beans. Int. J. Biol. Macromol. 2024, 266, 130982. [Google Scholar] [CrossRef]
- Matejčeková, Z.; Soltészová, F.; Ačai, P.; Liptáková, D.; Valík, Ľ. Application of Lactobacillus Plantarum in Functional Products Based on Fermented Buckwheat. J. Food Sci. 2018, 83, 1053–1062. [Google Scholar] [CrossRef]
- Zhang, R.; Cen, Q.; Hu, W.; Chen, H.; Hui, F.; Li, J.; Zeng, X.; Qin, L. Metabolite Profiling, Antioxidant and Anti-Glycemic Activities of Tartary Buckwheat Processed by Solid-State Fermentation (SSF)with Ganoderma Lucidum. Food Chem. X 2024, 22, 101376. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Tan, B.; Zhang, Y.; Ye, Y.; Gao, K. Improved Nutritional and Antioxidant Properties of Hulless Barley Following Solid-State Fermentation with Saccharomyces cerevisiae and Lactobacillus plantarum. J. Food Process. Preserv. 2022, 46, e16245. [Google Scholar] [CrossRef]
- Rui, X.; Wang, M.; Zhang, Y.; Chen, X.; Li, L.; Liu, Y.; Dong, M. Optimization of Soy Solid-State Fermentation with Selected Lactic Acid Bacteria and the Effect on the Anti-Nutritional Components. J. Food Process. Preserv. 2017, 41, e13290. [Google Scholar] [CrossRef]
- Xiao, Y.; Wu, X.; Yao, X.; Chen, Y.; Ho, C.-T.; He, C.; Li, Z.; Wang, Y. Metabolite Profiling, Antioxidant and α-Glucosidase Inhibitory Activities of Buckwheat Processed by Solid-State Fermentation with Eurotium cristatum YL-1. Food Res. Int. 2021, 143, 110262. [Google Scholar] [CrossRef] [PubMed]
- Starzyńska-Janiszewska, A.; Stodolak, B.; Duliński, R.; Bączkowicz, M.; Mickowska, B.; Wikiera, A.; Byczyński, Ł. Effect of Solid-State Fermentation Tempe Type on Antioxidant and Nutritional Parameters of Buckwheat Groats as Compared with Hydrothermal Processing. J. Food Process. Preserv. 2016, 40, 298–305. [Google Scholar] [CrossRef]
- Koyama, M.; Naramoto, K.; Nakajima, T.; Aoyama, T.; Watanabe, M.; Nakamura, K. Purification and Identification of Antihypertensive Peptides from Fermented Buckwheat Sprouts. J. Agric. Food Chem. 2013, 61, 3013–3021. [Google Scholar] [CrossRef]
- Yu, L.N.; Xu, T.T.; Zhang, C.S.; Sun, J.; Bi, J. Technology Optimization on Preparation of Peanut Antioxidant Peptides by Bacillus subtilis Solid State Fermentation Method. Appl. Mech. Mater. 2016, 835, 103–108. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, S.; Chen, C.; Ge, F.; Liu, D.; He, X. Optimization of Production Conditions for Antioxidant Peptides from Walnut Protein Meal Using Solid-State Fermentation. Food Sci. Biotechnol. 2014, 23, 1941–1949. [Google Scholar] [CrossRef]
- Ryan, J.T.; Ross, R.P.; Bolton, D.; Fitzgerald, G.F.; Stanton, C. Bioactive Peptides from Muscle Sources: Meat and Fish. Nutrients 2011, 3, 765–791. [Google Scholar] [CrossRef]
- Ouyang, B.; Duan, M.; Zhu, S.; Zhou, X.; Zhou, Y. Effect of Tartary Buckwheat Sourdough Fermented by Different Exogenous Lactic Acid Bacteria on Antifreeze Property of Frozen Dough. Food Chem. Adv. 2023, 2, 100182. [Google Scholar] [CrossRef]
- Singhania, R.R.; Sukumaran, R.K.; Pandey, A. Improved Cellulase Production by Trichoderma Reesei RUT C30 under SSF through Process Optimization. Appl. Biochem. Biotechnol. 2007, 142, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Wu, D.; Ren, G.; Hu, Y.; Peng, L.; Zhao, J.; Garcia-Perez, P.; Carpena, M.; Prieto, M.A.; Cao, H.; et al. Bioactive Compounds, Health Benefits, and Industrial Applications of Tartary Buckwheat (Fagopyrum tataricum). Crit. Rev. Food Sci. Nutr. 2023, 63, 657–673. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wen, L.; Li, Z.; Zhou, Y.; Chen, Y.; Lu, Y. Advance on the Benefits of Bioactive Peptides from Buckwheat. Phytochem Rev 2015, 14, 381–388. [Google Scholar] [CrossRef]
Factor | Level | ||
---|---|---|---|
−1 | 0 | 1 | |
A moisture content (%) | 50 | 60 | 70 |
B glucose addition (%) | 1.5 | 2 | 2.5 |
C inoculum ratio (%) | 11 | 13 | 15 |
D fermentation temperature (°C) | 28 | 30 | 32 |
Run | Factors | Response | |||
---|---|---|---|---|---|
A Moisture Content (%) | B Glucose Addition (%) | C Fermentation Temperature (°C) | D Inoculum Ratio (%) | Y Peptide Concentration (mg/mL) | |
1 | 0 | 0 | 0 | 0 | 18.43 |
2 | 1 | 0 | 1 | 0 | 11.23 |
3 | −1 | −1 | 0 | 0 | 10.49 |
4 | 0 | 0 | −1 | −1 | 15.99 |
5 | 0 | 0 | 1 | 1 | 17.22 |
6 | 0 | 1 | −1 | 0 | 14.95 |
7 | 1 | 0 | 0 | 1 | 11.03 |
8 | 0 | 0 | 0 | 0 | 17.68 |
9 | 0 | 1 | 0 | 1 | 15.92 |
10 | 1 | −1 | 0 | 0 | 11.43 |
11 | 0 | −1 | 0 | −1 | 14.67 |
12 | 0 | −1 | 0 | 1 | 15.99 |
13 | −1 | 1 | 0 | 0 | 10.53 |
14 | 0 | 0 | 0 | 0 | 18.15 |
15 | −1 | 0 | 1 | 0 | 10.33 |
16 | 0 | 0 | 0 | 0 | 18.33 |
17 | −1 | 0 | 0 | −1 | 9.09 |
18 | 0 | 0 | 0 | 0 | 18.43 |
19 | −1 | 0 | 0 | 1 | 9.17 |
20 | 0 | 1 | 0 | −1 | 16.30 |
21 | 0 | −1 | −1 | 0 | 15.73 |
22 | 0 | 1 | 1 | 0 | 17.04 |
23 | 0 | 0 | 1 | −1 | 14.53 |
24 | −1 | 0 | −1 | 0 | 10.29 |
25 | 1 | 1 | 0 | 0 | 12.12 |
26 | 1 | 0 | 0 | −1 | 13.05 |
27 | 1 | 0 | −1 | 0 | 12.79 |
28 | 0 | −1 | 1 | 0 | 14.50 |
29 | 0 | 0 | −1 | 1 | 14.15 |
Source | Sum of Squares | df | Mean Square | F Value | p-Value Prob > F | Significance |
---|---|---|---|---|---|---|
Model | 252.53 | 14 | 18.04 | 48.23 | <0.0001 | ** |
A moisture content (%) | 5.71 | 1 | 5.71 | 15.26 | 0.0016 | ** |
B Glucose addition (%) | 0.73 | 1 | 0.73 | 1.95 | 0.1848 | |
C fermentation temperature (°C) | 9.96 | 1 | 9.96 | 26.64 | 0.0001 | ** |
D inoculum ratio (%) | 3.93 | 1 | 3.93 | 10.52 | 0.0059 | ** |
AB | 0.11 | 1 | 0.11 | 0.28 | 0.6034 | |
AC | 0.64 | 1 | 0.64 | 1.71 | 0.2119 | |
AD | 1.1 | 1 | 1.1 | 2.95 | 0.1080 | |
BC | 2.76 | 1 | 2.76 | 7.37 | 0.0168 | * |
BD | 0.72 | 1 | 0.72 | 1.93 | 0.1863 | |
CD | 5.13 | 1 | 5.13 | 13.72 | 0.0024 | ** |
A2 | 228.15 | 1 | 228.15 | 610.04 | <0.0001 | ** |
B2 | 8.81 | 1 | 8.81 | 23.57 | 0.0003 | ** |
C2 | 10.64 | 1 | 10.64 | 28.45 | 0.0001 | ** |
D2 | 14.32 | 1 | 14.32 | 38.29 | <0.0001 | ** |
Residual | 5.24 | 14 | 0.37 | |||
Lack of Fit | 4.84 | 10 | 0.48 | 4.9 | 0.0698 | Not significance |
Pure Error | 0.4 | 4 | 0.099 | |||
Cor Total | 257.76 | 28 | ||||
R2 | 0.9797 | R2Adj | 0.9594 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Ma, T. Production of Bioactive Peptides from Tartary Buckwheat by Solid-State Fermentation with Lactiplantibacillus plantarum ATCC 14917. Foods 2024, 13, 3204. https://doi.org/10.3390/foods13193204
Wang P, Ma T. Production of Bioactive Peptides from Tartary Buckwheat by Solid-State Fermentation with Lactiplantibacillus plantarum ATCC 14917. Foods. 2024; 13(19):3204. https://doi.org/10.3390/foods13193204
Chicago/Turabian StyleWang, Panpan, and Tingjun Ma. 2024. "Production of Bioactive Peptides from Tartary Buckwheat by Solid-State Fermentation with Lactiplantibacillus plantarum ATCC 14917" Foods 13, no. 19: 3204. https://doi.org/10.3390/foods13193204
APA StyleWang, P., & Ma, T. (2024). Production of Bioactive Peptides from Tartary Buckwheat by Solid-State Fermentation with Lactiplantibacillus plantarum ATCC 14917. Foods, 13(19), 3204. https://doi.org/10.3390/foods13193204