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Abstract: Soil mulching is a useful agronomic practice that promotes early fruit maturation and affects
fruit quality. However, the regulatory mechanism of fruit metabolites under soil-mulching treatments
remains unknown. In this study, variations in the gene sets and metabolites of grape berries after
mulching (rice straw + felt + plastic film) using transcriptome and metagenomic sequencing were
investigated. The results of the cluster analysis and orthogonal projection to latent structures dis-
criminant analysis of the metabolites showed a difference between the mulching and control groups,
as did the principal component analysis results for the transcriptome. In total, 36 differentially
expressed metabolites were identified, of which 10 (resveratrol, ampelopsin F, piceid, 3,4′-dihydroxy-
5-methoxystilbene, ε-viniferin, trans resveratrol, epsilon-viniferin, 3′-hydroxypterostilbene, 1-methyl-
resveratrol, and pterostil-bene) were stilbenes. Their content increased after mulching, indicating
that stilbene synthase activity increased after mulching. The weighted gene co-expression net-
work analysis revealed that the turquoise and blue modules were positively and negatively re-
lated to stilbene compounds. The network analysis identified two seed genes (VIT_09s0054g00610,
VIT_13s0156g00260) and two transcription factors (VIT_13s0156g00260, VIT_02s0025g04590). Overall,
soil mulching promoted the accumulation of stilbene compounds in grapes, and the results provided
key genetic information for further studies.

Keywords: mulching; grape; stilbene; transcriptome; metabolomics; berry quality; weighted gene
co-expression network analysis (WGCNA)

1. Introduction

Grapevines are among the most economically important fruit trees worldwide [1].
In most southern areas of China, the maturity period of table grapes is from July to
August, whereas in most northern areas of China, the maturity period is in September.
The concentration of maturity often decreases the price of table grapes. Early maturation
is a key agronomic trait of plants; however, the common breeding procedure for early
maturing varieties is challenging in fruit tree breeding [2,3]. Promoting early maturity
through agronomic practices such as dormancy breaking or soil mulching—which can
help raise the selling price of grapes, reduce the use of pesticides, and avoid the hazard of
typhoons—is common and effective for boosting production [4,5].

Yield and quality are important factors for producers when promoting early mature
cultivation systems. Previous studies have shown that crop or fruit yield, nutritional
content, and flavor change in an early-maturity cultivation model [6,7]. For example, a
combination of chemical application treatments significantly advanced budbreak, and
apple fruit quality and yield increased after treatment [8]. Another study showed that
different plastic-film mulch treatments accelerated tomato ripening and changed yield and
quality [9,10]. Although agronomic practices for promoting early maturity can affect plant
growth and quality performance, the underlying regulatory mechanisms remain unclear.

Stilbenes are natural phenolic compounds synthesized in plants that mainly act as
phytoalexins in response to abiotic- or biotic-stress conditions [11,12]. In addition, previous
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studies have demonstrated that stilbenes possess various health-promoting properties,
including antioxidant, anti-aging, and anticancer effects [13]. Stilbene occurred in limited
plant species because stilbene synthase (STS), the key enzyme in stilbene biosynthesis,
is not commonly distributed in all plant species [14]. Table grapes or wine are primary
sources of stilbenes for humans [15]. The content of stilbenes in grapes can be affected
by factors such as grape variety, growth stage, agronomy practices, and environmental
conditions [16,17]. It remains unclear how the content of stilbenes in grapes varies under
early maturing cultivation systems.

A weighted gene co-expression network analysis (WGCNA) was used to determine
modules of highly correlated genes and identify gene modules related to external pheno-
typic traits [18]. This is useful for identifying genes associated with numerous gene sets
and target traits. Thus far, it has been used to screen for key genes associated with plant
development and quality as well as abiotic and biotic stresses [19–22]. Sheng et al. [23] used
transcriptome sequencing to identify gene co-expression patterns of gene networks highly
related to sesame plant height; a module showed a significantly positive relationship with
plant height, and a hub gene in the regulation of plant height was found using WGCNA.
Wang et al. [19] used metabolome- and genome-wide transcriptome analyses to reveal
flavor formation in kiwifruit, and WGCNA was conducted to investigate the co-expression
patterns of differentially expressed genes (DEGs), finding that gene sets in three modules
were associated with flavor-associated metabolites. The same analysis method has also
been used to investigate key gene modules associated with heat stress, drought stress, and
powdery-mildew resistance [19,24,25].

Our previous study found that grape ripening occurred 5 to 7 days earlier in the soil
mulch group than in the control group, but changes in fruit quality were not evaluated. The
present study determined fruit quality during the maturation period using conventional
physical testing and transcriptomic and metabolomic methods. This study aimed to reveal
and explain the changes in grape quality during soil mulching.

2. Materials and Methods
2.1. Plant Materials and Field Experiment

The field experiment was conducted in a vineyard within a plastic greenhouse. The
study site was located at the Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu
Province, China (32◦02′ N, 118◦52′ E, approximately above sea level, with an average
annual precipitation of 1106 mm, frost-free 225 d). Zijinhongxia (Vitis vinifera L.) was used
as the plant material in this study, with a planting density of 1.8 m between lines. There
were two treatments with three replicates in the present study: (1) conventional tillage with
no mulching (control) and (2) mulching with rice straw + felt + plastic film (treatment). Each
replicate consisted of 3 grapevine trees. The field experiments were conducted between
December 2021 and July 2022. In December 2021, the grapevines were spur-pruned. In
February 2022, the plastic film was closed, and the grapevines were irrigated. Two days
after irrigation, the soil was covered with rice straw (5 cm thickness), and then, an arched
shed (0.57 m height, 0.8 m width) was constructed with iron wire (3.5 mm thickness), glass
fiber bar (5 mm thickness, 1.5 m length), felt (200 g·m2), and plastic film (0.08 mm).

2.2. Plant Sampling

The grape berries were sampled 90 d after flowering. Three biological replicates were
obtained, each consisting of 54 berries from 6 clusters. The berries were immediately frozen
in liquid nitrogen and stored at −80 ◦C for ribonucleic acid (RNA) extraction and metage-
nomic analyses. In addition, fruit quality, including single-berry weight, longitudinal and
transverse diameters, total soluble solids, total soluble sugar, and total titratable acid, was
determined according to a handbook of plant physiology experiments and specifications
for grape germplasm description [26,27]. Stilbene synthase activity was determined using
an astragalus synthase (STS) ELISA kit (KIRbio, Beijing, China).
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2.3. RNA Extraction, High-Throughput Sequencing, and Data Processing and Analysis

Using the RNAprep Pure Plant Kit (TIANGEN, Beijing, China), total RNA was
extracted. Its quantity was measured by Nanodrop ND-2000 (Nanodrop technologies,
Wilmington, DE, USA). The NEBNext Ultra II FS DNA Library Kit for Illumina® (NEB,
Ipswich, MA, USA) was used for complementary deoxyribonucleic acid library construc-
tion and then sequencing on Illumina sequencing platform (Metware Biotechnology Co.,
Ltd., Wuhan, China) [28]. Gene expression was estimated using the fragments per kilo-
base of transcript per million mapped reads, which was computed using featureCounts
v1.6.2/StringTie v1.3.4d [29,30]. The differential expression between the two groups was
analyzed using DESeq2 v1.22.1/edgeR v3.24.3 [31,32], and the Benjamini–Hochberg tech-
nique was employed to adjust the p-values. For varying expression levels, the corrected
p-value and |log2foldchange| were employed as thresholds. A hypergeometric test was
used to perform an enrichment analysis. Pathway units were used in a hypergeometric
distribution test for a Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Finally,
an analysis was conducted using gene ontology (GO).

2.4. Metabolomic Analysis

Using a vacuum freeze-dryer (Scientz-100F, Ningbo Scientz Biotechnology Co., Ltd.,
Ningbo, China), the fruit samples were freeze-dried and then dissolved in 70% methanol
solution. Using a UPLC-ESI-MS/MS system (ExionLCTM AD; MS, Applied Biosystems
6500 Q TRAP (ABsciex, Framingham, MA, USA)), the supernatant was analyzed under the
analytical conditions specified by [33]. The procedure outlined by [34] was used to identify
the differentially expressed metabolites (DEMs). The differences between the control and
treatment groups were investigated using an orthogonal projection to latent structures
discriminant analysis (OPLS-DA) model.

2.5. WGCNA and Correlation Analysis

The software WGCNAv1.69 R was used for the gene co-expression network analy-
sis [35]. The networks were visualized by Cytoscape (3.8.2). Correlations between different
modules derived from WGCNA and stilbene compounds were evaluated using Pearson
correlation coefficients. The functions of the DEMs were determined using the KEGG
database. The functions of the DEGs were annotated using GO and KEGG databases.

3. Results
3.1. Fruit Appearance and Quality

Mulching treatment did not result in obvious differences in fruit appearance or qual-
ity (Table S1). Various parameters including single-berry weight, transverse diameter,
soluble solids, soluble sugar, and titratable acid did not show any significant variation
after mulching. Only the longitudinal diameter increased under the mulching treatment
(Table S1). In both groups, the shape index fell in the range of 1.1–1.3, showing that berry
shape did not change under mulching treatment.

3.2. Metabolomic Level Analysis of Grape Berries under Mulching Treatment

Based on the metagenome results, two distinct distinctions were observed in both
cluster analysis and OPLS-DA (Figure 1). The results indicated clear differences between
the mulch and control groups. All the metabolites determined were divided into nine
classes under Class I, and alkaloid, nucleotide, derivative, and phenolic acid contents were
higher in the mulching treatment than in the control (Figure 1C, Table S2). The detected
compounds from the other Class I classes were also divided into nine classes, and aldehyde
compounds and lactones were more abundant in the mulch treatment than in the control
(Figure 1D, Table S3).
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Figure 1. Metabolites of berry fruit in the control and mulch treatment groups: (A) Cluster analysis based
on Bray–Curtis distances of metabolites; (B) OPLS-DA based on Bray–Curtis distances of metabolites;
(C) Relative abundance of metabolites in Class I and (D) others in Class I.

The metabolites that differed significantly between the control and mulch treatment
groups were largely related to metabolism, particularly the biosynthesis of secondary
metabolites (Figure 2A). According to the KEGG enrichment results (Figure 2B, Table S4),
the differential metabolites were assigned to 23 KEGG pathways, and the top 4 significant
pathways were stilbenoid, diarylheptanoid, and gingerol biosynthesis (ko00945); linoleic
acid metabolism (ko00591); ether lipid metabolism (ko00565); and the biosynthesis of
various plant secondary metabolites (ko00999).
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Thirty-six differential metabolites were identified, as shown in the heatmap (Figure 3A).
Phenolic acids, flavonoids, and other compounds accounted for 66.67% of the differen-
tial metabolites, whereas stilbene metabolites accounted for more than 99% of the other
metabolites (Figure 3A). All stilbene metabolites observed (resveratrol, ampelopsin F, pi-
ceid, 3,4′-dihydroxy-5-methoxystilbene, ε-viniferin, trans resveratrol, epsilon-viniferin,
3′-hydroxypterostilbene, 1-methyl-resveratrol, and pterostilbene) in this study were higher
in the mulching treatment than in the control. Similarly, all phenolic acids (monogalloyl-
diglucose, 1,6-Di-O-galloyl-β -D-glucose, 6′-O-feruloyl-D-sucrose, sibiricose A5, gallic acid
ethyl ester, ethyl gallate, gallic acid, 1-O-feruloylquinic acid, and 3,5-dihydroxytoluene)
were higher in the treatment group than in the control group (Figure 3A). The differential
radar chart shows that the five most significant metabolites were 2,3-dihydroxy-5(6),12(13)-
diene-ursolic acid, 3,5-dihydroxytoluene, pterostilbene, gallic acid ethyl ester, ethyl gallate,
and 3,5-dihydroxytoluene (Figure 3B).

3.3. Transcriptomic Level Analysis of Grape Berries between the Control and Mulching Groups

This study identified 289,253,990 reads from the six treatments; the Q20 rates were
all greater than 97%, and the Q30 rates were all greater than 92% (Table S5). As Figure 4A
shows, 641 DEGs (upregulated: 357, downregulated: 284) were identified when the control
and mulch treatment groups were compared. Based on the PCA results, the control and
mulch treatments were grouped into two significantly different clusters (Figure 4B). GO
enrichment of the DEGs showed that cellular processes, metabolic processes, responses to
stimuli in biological processes (BPs), cellular anatomical entities in cellular components
(CCs), and binding and catalytic activities in molecular functions (MFs) were the most
likely targets of mulch treatment (Figure 4C). In addition, the KEGG pathway enrichment
analysis results (Figure 4D, Table S6) showed that the top five enriched pathways were
(ko04141), photosynthesis–antenna proteins (ko00196), galactose metabolism (ko00052),
thiamine metabolism (ko00730), and steroid biosynthesis (ko00100). However, only one
significantly enriched pathway (protein processing in the endoplasmic reticulum, corrected
p < 0.001) was identified.
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3.4. Integrated Transcriptomic and Metabolomic Analysis
3.4.1. KEGG Enrichment Analysis

Furthermore, a combination of transcriptome and metabolomic analyses were used
to determine the co-enrichment of DEGs and DEMs. The results showed that 14 KEGG
pathways were mapped for the enrichment of DEGs and DEMs (Figure 5). Among the
DEM-enriched KEGG pathways, four pathways (stilbenoid, diarylheptanoid, gingerol
biosynthesis, linoleic acid metabolism, ether lipid metabolism, and biosynthesis of various
plant secondary metabolites), stilbenoid, diarylheptanoid, and gingerol biosynthesis were
significantly enriched. In addition, the stilbene synthase activity in the mulch treatment
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was higher than that in the control (Figure 5). These results indicate a greater effect of
mulching on metabolites related to stilbene compounds.
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3.4.2. Weighted Gene Co-Expression Network Analysis of DEGs and Correlation with
Stilbene Compounds

To further determine the molecular mechanism of the change in stilbene caused by
mulching, 24,760 genes were subjected to WGCNA, which identified 10 co-expression mod-
ules (Figure 6A). A module–trait heatmap showed that genes belonging to the turquoise
and blue modules were more strongly correlated with stilbene compounds than genes from
the other modules (Figure 6A).

Next, a correlation analysis was conducted between the contents of the 10 stilbene com-
pounds and the 10 modules. The correlation analysis results showed that the accumulation
of transcripts in turquoise and blue was significantly positively and negatively correlated
with stilbene-associated metabolites, including 3,4′-dihydroxy-5-methoxystilbene, piceid,
and 1-methyl-resveratrol, respectively (Figure 6B). These results indicate that the genes in
these two modules were mainly associated with stilbene compounds. Furthermore, hub
gene networks of the turquoise and blue modules were obtained (Figure 6C). The number
of hub genes in the turquoise module in the mulching treatment was higher than that in the
control, whereas the counts of hub genes in the blue module were higher in the control than
in the mulching treatment; VIT_09s0054g00610 was the seed gene in the turquoise module,
and VIT_13s0156g00260 was the seed gene in the blue module. In these two modules,
transcription factors HB-HD-ZIP TCP (VIT_13s0156g00260) and TCP (VIT_02s0025g04590)
were observed.
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Figure 6. Weighted correlation network analysis modules of all genes established after soil mulch
treatment: (A) Stilbene activity in the control and mulch treatment groups; (B) Tree graphs of
3000 genes by hierarchical clustering of overlapping topological dissimilarities. Red indicates a
positive correlation, and blue indicates a negative correlation; (C) Heatmap showing module–stilbene
compound correlations. Each row corresponds to a module indicated by a different color. Red
indicates a positive correlation, and blue indicates a negative correlation; (D) Co-expression gene
network of MEblue and MEturquoise. Blue indicates gene expression in the control, and pink
indicates gene expression in the mulch. * p < 0.05, ** 0.001 < p < 0.01, *** p < 0.001.

4. Discussion

As a conventional soil management practice, mulching affects not only soil conditions
but also plant yield and quality. Previous studies have shown that mulch strategies can
enhance fruit production and quality [36]. For example, ref. [37] found that organic and
plastic mulches had significant positive effects on pomegranate fruit size, which contributed
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to an increase in fruit yield, while [38] showed that tomato yield decreased with plastic-film
mulching treatment. In the present study, no significant differences were observed in the
berry fruit weight. The berry shape index showed that the shapes of the berries were
the same in the control and mulch treatment groups. This result was consistent with that
reported by [39]. In this study, soluble solids, sugars, and titratable acids were evaluated.
Some studies have found that plastic films or a combination of plastic films and straw
mulches improve the total soluble-solid content [40,41]. However, another study found that
mulched soil in double-layer high tunnels led to lower total soluble solids and total soluble-
acid values in tomatoes than those in bare soil [42]. No obvious differences were observed
between the three indicators. Therefore, variations in fruit weight, yield, and quality among
the different mulching treatments were not always the same, and the treatment period,
plant species, and mulching materials might have affected these indicators.

Metagenomic sequencing results showed that the content of several stilbene com-
pounds increased with the mulching treatment (Figure 3). KEGG pathways of the DEMs
related to stilbenoid, diarylheptanoid, and gingerol biosynthesis were identified (Figure 2).
The results showed that the grapes subjected to the mulching treatment in our study had
higher antioxidant properties. Previous studies have shown that the KEGG pathway of
DEGs in roots between plastic-film mulching and clean tillage is linked to stilbenoid, di-
arylheptanoid, and gingerol biosynthesis; however, no stilbene compounds were found in
this treatment. In addition, our previous study showed that, under mulching treatment
(rice straw + felt + plastic film), grapevine root tissue DEGs were significantly enriched in
stilbenoid, diarylheptanoid, and gingerol biosynthesis [5]. Previous studies have shown
that stilbenes are involved in grapevine defense responses against fungal pathogens and
abiotic stress [43–45]. Our previous study found that the plant–pathogen pathway was
enriched under mulching [5], which may explain why stilbene-related pathways were
enriched after treatment.

Two modules significantly related to stilbene compounds (3,4′-dihydroxy-5-methoxystilbene,
piceid, and 1-methyl-resveratrol) were determined by integrated transcriptomic and metabolomic
analyses using WGCNA. Two key transcription factors were identified in both the modules.
Several transcription factors that are involved in regulating stilbene biosynthesis have been
reported [46]. MYBs are among the largest families of plant transcription factors that regulate
stilbenes [47]. The Chinese wild grape VdMYB1 transcription factor might activate the gene
expression of stilbenoid biosynthesis enzymes [48]. WRKY and ERF have also been found to
regulate stilbene synthesis by interacting with MYB [49,50]. In the present study, HB-HD-ZIP
TCP (VIT_13s0156g00260) and TCP (VIT_02s0025g04590) had positive and negative relation-
ships, respectively, with the number of stilbene compounds (3,4′-dihydroxy-5-methoxystilbene,
piceid, and 1-methyl-resveratrol). The transcription factors related to stilbene compounds that
we identified were different from those identified in previous studies, and the target metabolism
differed between the present and previous studies. While the previous study focused on
resveratrol synthesis, our study focused on 3,4′-dihydroxy-5-methoxystilbene, piceid, and
1-methyl-resveratrol. Two key seed genes (VIT_09s0054g00610 and VIT_13s0156g00260)
were identified in the turquoise and blue modules; however, their function and structure
require further investigation. In addition, the results were obtained during the grape
maturity period, and all berry development periods should be considered in further re-
search, which would provide more sufficient and comprehensive data for the study of
related mechanisms.

Stilbenes, a major family of polyphenols, exhibit a wide range of pharmacological
properties and various health benefits [51,52]. In our study, 10 stilbene compounds were de-
tected, which showed a significantly increasing trend after mulch treatment (Figure 3).
Resveratrol, ampelopsin F, piceid, ε-viniferintrans-resveratroll, epsilon-viniferin, and
pterostilbene possess anticancer, antioxidant, anti-inflammatory, cardiovascular-protective,
and anti-aging properties [53–58]. Overall, the mulching treatment used in this study may
have beneficial effects on grapes.
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