Three Licorice Extracts’ Impact on the Quality of Fresh-Cut Sweet Potato (Ipomoea batatas (L.) Lam) Slices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Experiment Design
2.2. Textural Properties
2.3. Weight Loss and Decay Rate
2.4. Appearance Quality
2.5. Polyphenol Oxidase and Peroxidase Activities
2.6. Superoxide Dismutase Activities
2.7. Statistical Analysis
3. Results
3.1. Texture Properties
3.2. Appearance Quality
3.3. Weight Loss Rate and Decay Rate
3.4. Polyphenol Oxidase Activities
3.5. Peroxidase Activities
3.6. Superoxide Dismutase Activities
3.7. Correlation Analysis
3.8. Cluster Analysis
4. Discussion
4.1. The Effect of Licorice Extracts on FCSPSs in Texture Properties
4.2. Antioxidant Activity of Licorice Extracts
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- González-Aguilar, G.A.; Ayala-Zavala, J.F.; Olivas, G.I.; de la Rosa, L.A.; Álvarez-Parrilla, E. Preserving quality of fresh-cut products using safe technologies. J. Verbraucherschutz Und Leb. 2010, 5, 65–72. [Google Scholar] [CrossRef]
- Cheng, S.H.; Hou, Y.F.; Chen, C.C. Does continuity of care matter in a health care system that lacks referral arrangements? Health Policy Plan. 2011, 26, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, L.; Zhang, L.; Nawaz, G.; Zhao, C.; Zhang, J.; Cao, Q.; Dong, T.; Xu, T. Exogenous melatonin alleviates browning of fresh-cut sweetpotato by enhancing anti-oxidative process. Sci. Hortic. 2022, 297, 110937. [Google Scholar] [CrossRef]
- Geng, S.; Liu, Z.; Golding, J.B.; Pristijono, P.; Lv, Z.; Lu, G.; Yang, H.; Ru, L.; Li, Y. Transcriptomic analyses of carvone inhibited sprouting in sweet potato (Ipomoea batatas (L.) Lam cv ‘Yan 25’) storage roots. Postharvest Biol. Technol. 2023, 195, 112142. [Google Scholar] [CrossRef]
- Behera, S.; Chauhan, V.B.S.; Pati, K.; Bansode, V.; Nedunchezhiyan, M.; Verma, A.K.; Monalisa, K.; Naik, P.K.; Naik, S.K. Biology and biotechnological aspect of sweet potato (Ipomoea batatas L.): A commercially important tuber crop. Planta 2022, 256, 40. [Google Scholar] [CrossRef]
- Xu, X.; Wu, S.; Chen, K.; Zhang, H.; Zhou, S.; Lv, Z.; Chen, Y.; Cui, P.; Cui, Z.; Lu, G. Comprehensive Evaluation of Raw Eating Quality in 81 Sweet Potato (Ipomoea batatas (L.) Lam) Varieties. Foods 2023, 12, 261. [Google Scholar] [CrossRef]
- Watanabe, T.; Sekiyama, Y.; Kawamura, T.; Fukuda, Y.; Nagata, M. Tissue structural analysis for internal browning sweet potatoes using magnetic resonance imaging and bio-electrochemical impedance spectroscopy. J. Food Eng. 2023, 349, 111451. [Google Scholar] [CrossRef]
- Krishnan, J.G.; Padmaja, G.; Moorthy, S.N.; Suja, G.; Sajeev, M.S. Effect of pre-soaking treatments on the nutritional profile and browning index of sweet potato and yam flours. Innov. Food Sci. Emerg. Technol. 2010, 11, 387–393. [Google Scholar] [CrossRef]
- Chen, T.; Ji, D.; Zhang, Z.; Li, B.; Qin, G.; Tian, S. Advances and Strategies for Controlling the Quality and Safety of Postharvest Fruit. Engineering 2021, 7, 1177–1184. [Google Scholar] [CrossRef]
- Baptista, R.C.; Horita, C.N.; Sant’Ana, A.S. Natural products with preservative properties for enhancing the microbiological safety and extending the shelf-life of seafood: A review. Food Res. Int. 2020, 127, 108762. [Google Scholar] [CrossRef]
- Han, Y.; Pang, X.; Zhang, X.; Han, R.; Liang, Z. Resource sustainability and challenges: Status and competitiveness of international trade in licorice extracts under the Belt and Road Initiative. Glob. Ecol. Conserv. 2022, 34, e02014. [Google Scholar] [CrossRef]
- Zhang, H.; Kong, B.; Xiong, Y.L.; Sun, X. Antimicrobial activities of spice extracts against pathogenic and spoilage bacteria in modified atmosphere packaged fresh pork and vacuum packaged ham slices stored at 4 °C. Meat Sci. 2009, 81, 686–692. [Google Scholar] [CrossRef]
- Chakotiya, A.S.; Chawla, R.; Thakur, P.; Tanwar, A.; Narula, A.; Grover, S.S.; Goel, R.; Arora, R.; Sharma, R.K. In vitro bactericidal activity of promising nutraceuticals for targeting multidrug resistant Pseudomonas aeruginosa. Nutrition 2016, 32, 890–897. [Google Scholar] [CrossRef]
- Dal Bosco, A.; Mattioli, S.; Matics, Z.; Szendrő, Z.; Gerencsér, Z.; Mancinelli, A.C.; Kovács, M.; Cullere, M.; Castellini, C.; Dalle Zotte, A. The antioxidant effectiveness of liquorice (Glycyrrhiza glabra L.) extract administered as dietary supplementation and/or as a burger additive in rabbit meat. Meat Sci. 2019, 158, 107921. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Zhang, X.; True, A.D.; Zhou, L.; Xiong, Y.L. Inhibition of lipid oxidation and rancidity in precooked pork patties by radical-scavenging licorice (Glycyrrhiza glabra) extract. J. Food Sci. 2013, 78, C1686–C1694. [Google Scholar] [CrossRef] [PubMed]
- Wittschier, N.; Faller, G.; Hensel, A. Aqueous extracts and polysaccharides from Liquorice roots (Glycyrrhiza glabra L.) inhibit adhesion of Helicobacter pylori to human gastric mucosa. J. Ethnopharmacol. 2009, 125, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hu, X.; Zhang, H.; Pan, Y.; Zhang, Z.; You, T.; Han, Y.; Wei, J.; Shen, W. Scoping review of clinical studies on Chinese herbal medicine against Helicobacter pylori and an exploration of its usage pattern. Eur. J. Integr. Med. 2023, 63, 102268. [Google Scholar] [CrossRef]
- Hu, Y.; Liang, P.; Wang, Z.; Jiang, C.; Zeng, Q.; Shen, C.; Wu, Y.; Liu, L.; Yi, Y.; Zhu, H.; et al. Explore the effect of the structure-activity relationship and dose-effect relationship on the antioxidant activity of licorice flavonoids. J. Mol. Struct. 2023, 1292, 136101. [Google Scholar] [CrossRef]
- Fu, Y.; Chen, J.; Li, Y.-J.; Zheng, Y.-F.; Li, P. Antioxidant and anti-inflammatory activities of six flavonoids separated from licorice. Food Chem. 2013, 141, 1063–1071. [Google Scholar] [CrossRef]
- Quintana, S.E.; Cueva, C.; Villanueva-Bermejo, D.; Moreno-Arribas, M.V.; Fornari, T.; García-Risco, M.R. Antioxidant and antimicrobial assessment of licorice supercritical extracts. Ind. Crops Prod. 2019, 139, 111496. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, B.; Ma, L.; Zheng, X.; Gong, D.; Xue, H.; Bi, Y.; Wang, Y.; Zhang, Z.; Prusky, D. Benzo-(1, 2, 3)-thiadiazole-7-carbothioic acid s-methyl ester (BTH) promotes tuber wound healing of potato by elevation of phenylpropanoid metabolism. Postharvest Biol. Technol. 2019, 153, 125–132. [Google Scholar] [CrossRef]
- Lin, Y.; Huang, G.; Zhang, Q.; Wang, Y.; Dia, V.P.; Meng, X. Ripening affects the physicochemical properties, phytochemicals and antioxidant capacities of two blueberry cultivars. Postharvest Biol. Technol. 2020, 162, 111097. [Google Scholar] [CrossRef]
- Liu, R.; Yu, Z.-L.; Sun, Y.-L.; Zhou, S.-M. The enzymatic browning reaction inhibition effect of strong acidic electrolyzed water on different parts of sweet potato slices. Food Biosci. 2021, 43, 101252. [Google Scholar] [CrossRef]
- Cao, X.; Cai, C.; Wang, Y.; Zheng, X. The inactivation kinetics of polyphenol oxidase and peroxidase in bayberry juice during thermal and ultrasound treatments. Innov. Food Sci. Emerg. Technol. 2018, 45, 169–178. [Google Scholar] [CrossRef]
- Yu, J.; Su, D.; Yang, D.; Dong, T.; Tang, Z.; Li, H.; Han, Y.; Li, Z.; Zhang, B. Chilling and Heat Stress-Induced Physiological Changes and MicroRNA-Related Mechanism in Sweetpotato (Ipomoea batatas L.). Front. Plant Sci. 2020, 11, 687. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Li, L.; Cao, R.; Xu, S.; Cheng, L.; Yu, M.; Lv, Z.; Lu, G. Changes in cell wall components and polysaccharide-degrading enzymes in relation to differences in texture during sweetpotato storage root growth. J. Plant Physiol. 2020, 254, 153282. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Q.; Lu, Y.Z.; Li, Y.; Li, T.T.; Zhou, B.Y.; Qiao, L.P. Effect of purslane (Portulaca oleracea L.) extract on anti-browning of fresh-cut potato slices during storage. Food Chem. 2019, 283, 445–453. [Google Scholar] [CrossRef]
- Sugri, I.; Maalekuu, B.K.; Gaveh, E.; Kusi, F. Compositional and shelf-life indices of sweet potato are significantly improved by pre-harvest dehaulming. Ann. Agric. Sci. 2019, 64, 113–120. [Google Scholar]
- Sanchez, P.D.C.; Hashim, N.; Shamsudin, R.; Mohd Nor, M.Z. Effects of different storage temperatures on the quality and shelf life of Malaysian sweet potato (Ipomoea Batatas L.) varieties. Food Packag. Shelf Life 2021, 28, 100642. [Google Scholar] [CrossRef]
- Wang, C.; Chen, L.; Peng, C.; Shang, X.; Lv, X.; Sun, J.; Li, C.; Wei, L.; Liu, X. Postharvest benzothiazole treatment enhances healing in mechanically damaged sweet potato by activating the phenylpropanoid metabolism. J. Sci. Food Agric. 2020, 100, 3394–3400. [Google Scholar] [CrossRef]
- Hermann, S.; Orlik, M.; Boevink, P.; Stein, E.; Scherf, A.; Kleeberg, I.; Schmitt, A.; Schikora, A. Biocontrol of Plant Diseases Using Glycyrrhiza glabra Leaf Extract. Plant Dis. 2022, 106, 3133–3144. [Google Scholar] [CrossRef]
- Li, C.; Liu, X.; Abouelnasr, H.; Mohamed Hamed, A.; Kou, M.; Tang, W.; Yan, H.; Wang, X.; Wang, X.; Zhang, Y.; et al. Inhibition of miR397 by STTM technology to increase sweetpotato resistance to SPVD. J. Integr. Agric. 2022, 21, 2865–2875. [Google Scholar] [CrossRef]
- Torres, A.; Aguilar-Osorio, G.; Camacho, M.; Basurto, F.; Navarro-Ocana, A. Characterization of polyphenol oxidase from purple sweet potato (Ipomoea batatas L. Lam) and its affinity towards acylated anthocyanins and caffeoylquinic acid derivatives. Food Chem. 2021, 356, 129709. [Google Scholar] [CrossRef] [PubMed]
- Aziz, M.; Karboune, S. Natural antimicrobial/antioxidant agents in meat and poultry products as well as fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 486–511. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xing, M.; Chen, T.; Tian, S.; Li, B. Effects and mechanisms of plant bioactive compounds in preventing fungal spoilage and mycotoxin contamination in postharvest fruits: A review. Food Chem. 2023, 415, 135787. [Google Scholar] [CrossRef]
- Iida, K.; Uematsu, Y.; Suzuki, K.; Yasuno, T.; Hirata, K.; Ito, K. Properties of Commercial Licorice Extracts Used as a Food Additive. Food Hyg. Saf. Sci. 2007, 48, 112–117. [Google Scholar] [CrossRef]
- Antolak, H.; Czyzowska, A.; Kregiel, D. Antibacterial and Antiadhesive Activities of Extracts from Edible Plants against Soft Drink Spoilage by Asaia spp. J. Food Prot. 2017, 80, 25–34. [Google Scholar] [CrossRef]
- Xu, Z.; Xu, Z.; Gu, J.; Zhou, J.; Sha, G.; Huang, Y.; Wang, T.; Fan, L.; Zhang, Y.; Xi, J. In situ formation of ferrous sulfide in glycyrrhizic acid hydrogels to promote healing of multi-drug resistant Staphylococcus aureus-infected diabetic wounds. J. Colloid Interface Sci. 2023, 650, 1918–1929. [Google Scholar] [CrossRef]
- Cui, Y.; Yu, L.; Ao, M.; Yang, Y.; Wang, L. Studies on Glycyrrhizic Acid Extraction and Its Bacteriostatic Activities. Nat. Prod. Res. Dev. 2006, 18, 428–431, (In Chinese with English abstract). [Google Scholar]
- Singh, V.; Pal, A.; Darokar, M.P. A polyphenolic flavonoid glabridin: Oxidative stress response in multidrug-resistant Staphylococcus aureus. Free Radic. Biol. Med. 2015, 87, 48–57. [Google Scholar] [CrossRef]
- Yang, C.; Xie, L.; Ma, Y.; Cai, X.; Yue, G.; Qin, G.; Zhang, M.; Gong, G.; Chang, X.; Qiu, X.; et al. Study on the fungicidal mechanism of glabridin against Fusarium graminearum. Pestic. Biochem. Physiol. 2021, 179, 104963. [Google Scholar] [CrossRef] [PubMed]
- Bombelli, A.; Araya-Cloutier, C.; Boeren, S.; Vincken, J.P.; Abee, T.; den Besten, H.M.W. Effects of the antimicrobial glabridin on membrane integrity and stress response activation in Listeria monocytogenes. Food Res. Int. 2024, 175, 113687. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Zhang, M.; Bhandari, B.; Gao, Z. Recent developments in novel shelf life extension technologies of fresh-cut fruits and vegetables. Trends Food Sci. Technol. 2017, 64, 23–38. [Google Scholar] [CrossRef]
Treatment | Solution | Concentration (mg/mL) |
---|---|---|
CK | Deionized water | / |
LA10 | Licorice acid (LA) | 10 |
LA30 | 30 | |
LA50 | 50 | |
LF10 | Licorice flavonoids (LF) | 10 |
LF30 | 30 | |
LF50 | 50 | |
LP10 | Licorice polysaccharides (LP) | 10 |
LP30 | 30 | |
LP50 | 50 |
Treatments | Day after Storage (DAS) | ||||
---|---|---|---|---|---|
0 | 1 | 3 | 5 | 7 | |
CK | 78.78 ± 5.28 | 84.50 ± 5.82 b | 75.96 ± 1.58 e | 82.41 ± 6.57 de | 71.91 ± 5.08 e |
LA10 | 84.24 ± 4.61 b | 79.51 ± 3.62 de | 86.57 ± 5.71 bcde | 87.32 ± 5.81 cd | |
LA30 | 85.10 ± 3.92 b | 79.23 ± 4.57 de | 80.17 ± 5.32 e | 82.72 ± 6.62 d | |
LA50 | 85.71 ± 2.93 b | 86.70 ± 4.37 c | 83.67 ± 1.35 cde | 84.03 ± 2.01 d | |
LF10 | 82.68 ± 5.95 b | 88.12 ± 4.01 bc | 89.12 ± 3.01 abc | 85.91 ± 2.86 cd | |
LF30 | 84.53 ± 2.25 b | 87.40 ± 2.12 bc | 91.55 ± 4.05 ab | 88.26 ± 4.32 bcd | |
LF50 | 85.08 ± 5.64 b | 93.74 ± 3.26 a | 93.27 ± 5.87 a | 93.54 ± 3.82 b | |
LP10 | 83.22 ± 3.40 b | 83.84 ± 6.08 cd | 84.49 ± 2.89 cde | 85.79 ± 4.98 cd | |
LP30 | 96.26 ± 3.18 a | 84.79 ± 2.41 c | 85.66 ± 4.44 bcde | 91.48 ± 3.08 bc | |
LP50 | 99.08 ± 4.59 a | 92.21 ± 5.06 ab | 87.06 ± 3.18 abcd | 99.24 ± 3.91 a |
Treatments | Day after Storage (DAS) | ||||
---|---|---|---|---|---|
0 | 1 | 3 | 5 | 7 | |
CK | 0.15 ± 0.04 | 0.10 ± 0.02 e | 0.11 ± 0.02 d | 0.14 ± 0.06 b | 0.13 ± 0.02 d |
LA10 | 0.16 ± 0.01 bc | 0.14 ± 0.02 cd | 0.15 ± 0.03 b | 0.18 ± 0.02 b | |
LA30 | 0.17 ± 0.01 b | 0.14 ± 0.04 bcd | 0.16 ± 0.02 b | 0.13 ± 0.03 d | |
LA50 | 0.16 ± 0.02 b | 0.15 ± 0.03 bc | 0.15 ± 0.02 b | 0.16 ± 0.02 bc | |
LF10 | 0.14 ± 0.01 cd | 0.20 ± 0.02 a | 0.21 ± 0.02 a | 0.13 ± 0.02 d | |
LF30 | 0.13 ± 0.01 de | 0.17 ± 0.01 ab | 0.18 ± 0.03 ab | 0.15 ± 0.01 cd | |
LF50 | 0.12 ± 0.02 de | 0.17 ± 0.02 abc | 0.18 ± 0.01 ab | 0.29 ± 0.03 a | |
LP10 | 0.20 ± 0.03 a | 0.20 ± 0.05 a | 0.15 ± 0.03 b | 0.13 ± 0.02 d | |
LP30 | 0.18 ± 0.02 ab | 0.17 ± 0.02 abc | 0.16 ± 0.03 b | 0.13 ± 0.01 d | |
LP50 | 0.17 ± 0.02 b | 0.20 ± 0.02 a | 0.17 ± 0.02 b | 0.13 ± 0.01 d |
Treatments | Day after Storage (DAS) | ||||
---|---|---|---|---|---|
0 | 1 | 3 | 5 | 7 | |
CK | 9.53 ± 0.52 | 8.39 ± 1.79 g | 9.44 ± 1.04 c | 9.87 ± 1.80 e | 8.75 ± 4.49 f |
LA10 | 13.22 ± 0.82 cd | 10.58 ± 2.09 c | 15.29 ± 1.82 bc | 21.03 ± 2.48 b | |
LA30 | 14.26 ± 1.03 bc | 9.42 ± 1.69 c | 12.85 ± 1.88 cd | 9.69 ± 1.66 ef | |
LA50 | 13.09 ± 1.22 cde | 11.62 ± 1.80 c | 12.82 ± 2.00 cd | 13.51 ± 1.62 c | |
LF10 | 11.46 ± 0.87 ef | 16.24 ± 1.68 ab | 18.41 ± 1.98 a | 10.55 ± 1.54 ef | |
LF30 | 10.59 ± 0.97 f | 15.23 ± 1.31 b | 15.74 ± 2.01 b | 12.94 ± 0.98 cd | |
LF50 | 11.68 ± 1.67 def | 15.95 ± 1.78 ab | 16.37 ± 1.42 ab | 26.33 ± 1.81 a | |
LP10 | 15.12 ± 1.19 ab | 15.16 ± 1.63 b | 11.52 ± 2.07 de | 11.38 ± 1.93 cde | |
LP30 | 16.74 ± 1.74 a | 14.32 ± 1.89 b | 11.99 ± 1.43 de | 11.09 ± 1.58 de | |
LP50 | 15.91 ± 1.48 ab | 18.10 ± 1.33 a | 14.85 ± 1.32 bc | 13.26 ± 1.25 cd |
Treatments | Day after Storage (DAS) | ||||
---|---|---|---|---|---|
0 | 1 | 3 | 5 | 7 | |
CK | 52.40 ± 4.90 | 48.16 ± 3.53 ef | 59.74 ± 3.72 f | 56.55 ± 4.83 cde | 55.64 ± 4.49 e |
LA10 | 53.00 ± 2.07 de | 44.18 ± 3.06 h | 57.62 ± 3.32 cd | 65.19 ± 3.38 b | |
LA30 | 65.13 ± 4.29 c | 54.92 ± 2.71 g | 57.72 ± 4.18 cd | 57.72 ± 3.23 de | |
LA50 | 70.06 ± 4.27 c | 65.06 ± 3.91 de | 55.67 ± 2.57 de | 64.12 ± 4.19 bc | |
LF10 | 46.43 ± 4.67 f | 62.21 ± 4.75 ef | 64.81 ± 3.04 b | 53.86 ± 3.10 e | |
LF30 | 57.12 ± 4.81 d | 69.11 ± 2.04 d | 78.30 ± 3.86 a | 63.00 ± 4.61 bcd | |
LF50 | 67.70 ± 2.88 c | 83.86 ± 3.89 b | 79.10 ± 4.44 a | 95.23 ± 1.03 a | |
LP10 | 105.83 ± 4.01 a | 85.91 ± 3.42 b | 51.58 ± 2.98 e | 45.27 ± 4.35 f | |
LP30 | 78.51 ± 4.63 b | 74.64 ± 4.57 c | 59.74 ± 4.72 bcd | 57.40 ± 4.56 de | |
LP50 | 82.22 ± 4.67 b | 100.39 ± 3.39 a | 61.93 ± 4.13 bc | 58.69 ± 4.76 cde |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Zhang, H.; Jin, S.; Zhu, Y.; Lv, Z.; Cui, P.; Lu, G. Three Licorice Extracts’ Impact on the Quality of Fresh-Cut Sweet Potato (Ipomoea batatas (L.) Lam) Slices. Foods 2024, 13, 211. https://doi.org/10.3390/foods13020211
Xu X, Zhang H, Jin S, Zhu Y, Lv Z, Cui P, Lu G. Three Licorice Extracts’ Impact on the Quality of Fresh-Cut Sweet Potato (Ipomoea batatas (L.) Lam) Slices. Foods. 2024; 13(2):211. https://doi.org/10.3390/foods13020211
Chicago/Turabian StyleXu, Ximing, Heyao Zhang, Sheng Jin, Yueming Zhu, Zunfu Lv, Peng Cui, and Guoquan Lu. 2024. "Three Licorice Extracts’ Impact on the Quality of Fresh-Cut Sweet Potato (Ipomoea batatas (L.) Lam) Slices" Foods 13, no. 2: 211. https://doi.org/10.3390/foods13020211
APA StyleXu, X., Zhang, H., Jin, S., Zhu, Y., Lv, Z., Cui, P., & Lu, G. (2024). Three Licorice Extracts’ Impact on the Quality of Fresh-Cut Sweet Potato (Ipomoea batatas (L.) Lam) Slices. Foods, 13(2), 211. https://doi.org/10.3390/foods13020211