Tracing of Di-Ethylhexyl Phthalate in the Tequila Production Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Tequila
2.2. Tequila Factories and Sampling
2.3. Additives, Lubricating Greases, and Neoprene Seals
2.4. Quantification of PAE
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mexican Official Standard NOM-006-SCFI-2012, Alcoholic Beverages-TequilaSpecifications. Ministery of the Economy. Mexico, D.F., Mexico, 2012. Available online: https://www.crt.org.mx/index.php/es/features-3/fundamentos/nom-006-2012 (accessed on 2 October 2023).
- De León-Rodríguez, A.; Escalante-Minakata, P.; Jiménez-García, M.I.; Ordoñez-Acevedo, L.G.; Flores Flores, J.L.; Barba de la Rosa, A.P. Characterization of Volatile Compounds from Ethnic Agave Alcoholic Beverages by Gas Chromatography-Mass Spectrometry. Food Technol. Biotechnol. 2008, 46, 448–455. [Google Scholar]
- Avîrvarei, A.C.; Salanță, L.C.; Pop, C.R.; Mudura, E.; Pasqualone, A.; Anjos, O.; Barboza, N.; Usaga, J.; Dărab, C.P.; Burja-Udrea, C.; et al. Fruit-Based Fermented Beverages: Contamination Sources and Emerging Technologies Applied to Assure Their Safety. Foods 2023, 12, 838. [Google Scholar] [CrossRef]
- Scutaras, E.C.; Carmen, L. Heavy Metals in Foods and Beverages: Global Situation, Health Risks and Reduction Methods. Foods 2023, 12, 3340. [Google Scholar] [CrossRef] [PubMed]
- Di, Y.; Li, J.; Chen, J.; Zhao, X.; Du, G. Simulation and Control of the Formation of Ethyl Carbamate during the Fermentation and Distillation Processes of Chinese Baijiu. Foods 2023, 12, 821. [Google Scholar] [CrossRef] [PubMed]
- Halden, R.U. Plastics and Health Risks. Annu. Rev. Public Health 2010, 31, 179–194. [Google Scholar] [CrossRef]
- Giuliani, A.; Zuccarini, M.; Cichelli, A.; Khan, H.; Reale, M. Critical Review on the Presence of Phthalates in Food and Evidence of Their Biological Impact. Int. J. Environ. Res. Public Health 2020, 17, 5655. [Google Scholar] [CrossRef] [PubMed]
- Wormuth, M.; Scheringer, M.; Vollenweider, M.; Hungerbühler, K. What are the sources of exposure to eight frequently used phthalic acid esters in Europeans? Risk Anal. 2006, 26, 803–824. [Google Scholar] [CrossRef]
- Yan, Y.; Zhu, F.; Zhu, C.; Chen, Z.; Liu, S.; Wang, C.; Gu, C. Dibutyl phthalate release from polyvinyl chloride microplastics: Influence of plastic properties and environmental factors. Water Res. 2021, 204, 117597. [Google Scholar] [CrossRef]
- Eales, J.; Bethel, A.; Galloway, T.; Hopkinson, P.; Morrissey, K.; Short, R.E.; Garside, R. Human health impacts of exposure to phthalate plasticizers: An overview of reviews. Environ. Int. 2022, 158, 106903. [Google Scholar] [CrossRef]
- Hsieh, T.; Tsai, C.; Hsu, C.; Kuo, P.; Lee, J.; Chai, C.; Wang, S.H.; Tsai, E.M. Phthalates induce proliferation and invasiveness of estrogen receptor-negative breast cancer through the AhR/HDAC6/c-Myc signaling pathway. FASEB J. 2012, 26, 778–787. [Google Scholar] [CrossRef]
- Camacho, L.; Latendresse, J.R.; Muskhelishvili, L.; Law, C.D.; Delclos, K.B. Effects of intravenous and oral di(2-ethylhexyl) phthalate (DEHP) and 20% Intralipid vehicle on neonatal rat testis, lung, liver, and kidney. Food Chem. Toxicol. 2020, 144, 111497. [Google Scholar] [CrossRef]
- Huang, Y.Q.; Tang, Y.X.; Qiu, B.H.; Talukder, M.; Li, X.N.; Li, J.L. Di-2-ethylhexyl phthalate (DEHP) induced lipid metabolism disorder in liver via activating the LXR/SREBP-1c/PPARα/γ and NF-κB signaling pathway. Food Chem. Toxicol. 2022, 165, 113119. [Google Scholar] [CrossRef]
- Fasano, E.; Bono-Blay, F.; Cirillo, T.; Montuori, P.; Lacorte, S. Migration of phthalates, alkylphenols, bisphenol A and di(2-ethylhexyl)adipate from food packaging. Food Control. 2012, 27, 132–138. [Google Scholar] [CrossRef]
- Chatonnet, P.; Boutou, S.; Plana, A. Contamination of wines and spirits by phthalates: Types of contaminants present, contamination sources and means of prevention. Food Addit. Contam. Part A Chem. Anal. Control. Expo Risk Assess. 2014, 31, 1605–1615. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, J.D.; Salazar, C.; Moreta, C.; Tena, M.T. Determination of phthalates in wine by headspace solid-phase microextraction followed by gas chromatography-mass spectrometry: Fibre comparison and selection. J. Chromatogr. A 2007, 1164, 248–261. [Google Scholar] [CrossRef] [PubMed]
- Del Carlo, M.; Pepe, A.; Sacchetti, G.; Compagnone, D.; Mastrocola, D.; Cichelli, A. Determination of phthalate esters in wine using solid-phase extraction and gas chromatography-mass spectrometry. Food Chem. 2008, 111, 771–777. [Google Scholar] [CrossRef]
- Pellegrino Vidal, R.B.; Ibañez, G.A.; Escandar, G.M. A green method for the quantification of plastics-derived endocrine disruptors in beverages by chemometrics-assisted liquid chromatography with simultaneous diode array and fluorescent detection. Talanta 2016, 159, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Carnol, L.; Schummer, C.; Moris, G. Quantification of Six Phthalates and One Adipate in Luxembourgish Beer Using HS-SPME-GC/MS. Food Anal. Methods 2017, 10, 298–309. [Google Scholar] [CrossRef]
- Ye, C.-W.; Gao, J.; Yang, C.; Liu, X.-J.; Li, X.-J.; Pan, S.-Y. Development and application of an SPME/GC method for the determination of trace phthalates in beer using a calix[6]arene fiber. Anal. Chim. Acta. 2009, 641, 64–74. [Google Scholar] [CrossRef]
- Rezaei, H.; Moazzen, M.; Shariatifar, N.; Khaniki, G.J. Measurement of phthalate acid esters in non-alcoholic malt beverages by MSPE-GC / MS method in Tehran city: Chemometrics. Environ. Sci. Pollut. Res. 2021, 28, 51897–51907. [Google Scholar] [CrossRef]
- Jurica, K.; Brčić Karačonji, I.; Lasić, D.; Vukić Lušić, D.; Anić Jurica, S.; Lušić, D. Determination of phthalates in plum spirit and their occurrence during plum spirit production. Acta Aliment. 2016, 45, 141–148. [Google Scholar] [CrossRef]
- Montevecchi, G.; Masino, F.; Zanasi, L.; Antonelli, A. Determination of phthalate esters in distillates by ultrasound-vortex-assisted dispersive liquid-liquid micro-extraction (USVADLLME) coupled with gas chromatography/mass spectrometry. Food Chem. 2017, 221, 1354–1360. [Google Scholar] [CrossRef] [PubMed]
- Balderas-Hernández, V.E.; Ornelas-Salas, J.T.; Barba, A.P.; Rosa, D.; Leon-Rodriguez, A. Diminution of migration of phthalic acid esters in tequila beverage by the year of production of production. J. Environ. Sci. Health Part B 2020, 55, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Scientific Panel on Food Additives. Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC) on a request from the Commission related to Butylbenzylphthalate (BBP) for use in food contact materials. EFSA J. 2005, 241, 1–14. [Google Scholar]
- Scientific Panel on Food additives. Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) on a request from the Commission related to Bis(2-ethylhexyl)phthalate (DEHP) for use in food contact materials. EFSA J. 2005, 243, 1–20. [Google Scholar]
- Scientific Panel on Food Additives. Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC) on a request from the Commission related to Di-Butylphthalate (DBP) for use in food contact materials. EFSA J. 2005, 242, 1–17. [Google Scholar]
- European Community. Official Journal of the European Union. Commission Regulation (EU) No 10/2011 of 14 January 2011 on Plastic Materials and Articles Intended to Come into Contact with Food (Text with EEA Relevance) l12. pp. 1–89. Available online: https://www.legislation.gov.uk/eur/2011/10/contents (accessed on 2 October 2023).
- EPA Phthalates Action Plan—U.S. Environmental Protection Agency. 012. pp. 1–16. Available online: https://www.epa.gov/sites/production/files/2015-09/documents/phthalates_actionplan_revised_2012-03-14.pdf (accessed on 2 October 2023).
- Standard, G.N. Determination of Phthalate Esters in Foods. Standardization Administration of China (SAC), General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Available online: https://www.codeofchina.com/standard/GBT21911-2008.html (accessed on 2 October 2023).
- Gonzalez-Castro, M.I.; AF, O.-S.; Medina-Rivero, E.; Ordoñez-Acevedo, L.G.; De León-Rodríguez, A. Phthalates and Bisphenols Migration in Mexican Food Cans and Plastic Food Containers. Bull. Environ. Contam. Toxicol. 2011, 86, 627–631. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Liu, Z.; Yi, L.; Liu, C.; Yang, D. Determination of the Banned Phthalates in PVC Plastic of Toys by the Soxhlet Extraction-Gas Chromatography/Mass Spectrometry Method. Int. J. Chem. 2011, 3, 169–173. [Google Scholar] [CrossRef]
- Pereyra-Camacho, M.A.; Balderas-Hernández, V.E.; De Leon-Rodriguez, A. Biodegradation of diisononyl phthalate by a consortium of saline soil bacteria: Optimisation and kinetic characterisation. Appl. Microbiol. Biotechnol. 2021, 105, 3369–3380. [Google Scholar] [CrossRef]
- Staples, C.A.; Peterson, D.R.; Parkerton, T.F.; Adams, W.J. The Environmental Fate of Phthalate Esters: A Literature Review Charles. Chemosphere 1997, 35, 667–749. [Google Scholar] [CrossRef]
- Bosnir, J.; Puntaric, D.; Galic, A.; Skes, I.; Dijanic, T.; Klaric, M.; Grgic, M.; Curkovic, M.; Smit, Z. Migration of Phthalates from Plastic Containers into Soft Drinks and Mineral Water. Food Technol. Biotechnol. 2007, 45, 91–95. [Google Scholar]
- Chao, K.P.; Huang, C.S.; Huang, M.L. Direct extraction of phthalate esters from polymeric gloves materials. Adv. Mater. Res. 2013, 804, 114–117. [Google Scholar] [CrossRef]
- Teil, M.-J.; Blanchard, M.; Dargnat, C.; Larcher-Tiphagne, K.; Chevreuil, M. Occurrence of phthalate diesters in rivers of the Paris district (France). Hidrol. Process. 2007, 21, 2515–2525. [Google Scholar] [CrossRef]
- López-López, A.; Davila-Vazquez, G.; León-Becerril, E.; Villegas-García, E.; Gallardo-Valdez, J. Tequila vinasses: Generation and full scale treatment processes. Rev. Environ. Sci. Biotechnol. 2010, 9, 109–116. [Google Scholar] [CrossRef]
- Rodríguez-Romero, J.d.J.; Aceves-Lara, C.A.; Silva, C.F.; Gschaedler, A.; Amaya-Delgado, L.; Arrizon, J. 2-Phenylethanol and 2-phenylethylacetate production by nonconventional yeasts using tequila vinasses as a substrate. Biotechnol. Rep. 2020, 25, 1–10. [Google Scholar] [CrossRef]
Name | Abbreviation/CAS Number | Structure | Maximum Permissible Limit (mg kg−1) | Tolerable Daily Intake (mg kg−1 bw−1) * |
---|---|---|---|---|
Di-ethyl phthalate | DEP 84-66-2 | Not reported | Not reported | |
Di-butyl phthalate | DBP 84-74-2 | 3.0 | 0.01 | |
Benzyl butyl phthalate | BBP 85-68-7 | 30.0 | 0.5 | |
Di-ethylhexyl phthalate | DEHP 117-81-7 | 1.5 | 0.05 | |
Di-isononyl phthalate | DINP 28553-12-0 | 9.00 | 0.15 |
Phthalate | Retention Time (min) | Ions for Identification | Ion for Quantification |
---|---|---|---|
DEP | 8.72 | 149, 177, 76, 105 | 149 |
DBP | 11.29 | 149, 104, 76, 223 | 149 |
BBP | 15.41 | 149, 91, 206, 65 | 149 |
DEHP | 17.79 | 149, 167, 57, 71 | 149 |
DINP | 20.0–21.3 | 149, 71, 57, 293 | 149 |
Characteristics | Large Factory | Medium Factory | Small Factory |
---|---|---|---|
Location | Arandas, Jal. Mex. | Tequila, Jal. Mex. | Arenal, Jal. Mex. |
Production (L yr−1) | More than 3 million | 1–3 million | 0.3–1 million |
Crusher | Large equipment that uses food-grade lubricant grease | Small equipment that uses food-grade lubricant grease | Small equipment that uses mineral grease |
Hydrolysis | Stainless steel pressurized container | Masonry oven | Stainless steel drying oven |
Extraction | Diffuser (liquid–solid extraction with water and uncooked agave) uses food-grade lubricant grease | Roller mills that use food-grade lubricant grease | Roller mills that use mineral grease |
Fermentation | Stainless steel tanks | Stainless steel tanks. Without the addition of yeast | Stainless steel tanks. Without the addition of yeast |
Distillation 1 | Still with teflon-covered neoprene seal (97 °C) | Distillation tower with neoprene seal (97 °C) | Still with neoprene seal (97 °C) |
Distillation 2 | Still with teflon-covered neoprene seal (97 °C) | Still with neoprene seal (97 °C) | Still with neoprene seal (97 °C) |
Water supply | Total amount of water comes from a water well inside the grounds of the tequila factory. | Water for extraction and dilution comes from a city-managed water well. Dilution water is purchased from a water purification plant. | Water for extraction and dilution comes from a water well inside the grounds of the tequila factory. Dilution water is purchased from a water purification plant. |
Waste treatment | Bagasse composting. Water treatment plant. | Vinasses are sent to a water treatment company. | Vinasses are sent to a water treatment company. |
Sample | Large Factory | Medium Factory | Small Factory | |||
---|---|---|---|---|---|---|
DEHP | S.D. | DEHP | S.D. | DEHP | S.D. | |
(mg kg−1) | (mg kg−1) | (mg kg−1) | ||||
Raw agave | 0.012 | 0.011 | 0.079 | 0.029 | 0.06 | 0.021 |
Torn raw agave | 0.031 | 0.026 | ND | ND | ND | ND |
Cooked agave | ND | ND | 0.082 | 0.03 | 0.038 | 0.023 |
Bagasse | 0.215 | 0.172 | 0.231 | 0.027 | 0.334 | 0.023 |
Extraction water | 0.011 | 0.001 | 0.019 | 0.014 | 0.014 | 0.001 |
Raw juice | 0.029 | 0.026 | ND | ND | ND | ND |
Hydrolysate | 0.025 | 0.023 | 0.091 | 0.025 | 0.304 | 0.103 |
Live must | 0.014 | 0.009 | 0.108 | 0.034 | 0.334 | 0.14 |
Dead must | 0.013 | 0.007 | 0.094 | 0.011 | 0.233 | 0.068 |
Vinasse 1 | 0.012 | 0.006 | 0.122 | 0.011 | 0.445 | 0.16 |
Ordinary | 0.04 | 0.041 | 0.079 | 0.036 | 1.117 | 0.434 |
Vinasse 2 | 0.011 | 0.007 | 0.042 | 0.02 | 1.214 | 1.126 |
Rectified | 0.059 | 0.044 | 0.19 | 0.117 | 0.478 | 0.382 |
Dilution water | 0.011 | 0.001 | 0.038 | 0.024 | 0.021 | 0.013 |
Silver tequila | 0.045 | 0.01 | 0.238 | 0.035 | 1.433 | 0.48 |
Type of Additive | DEHP (mg L−1) | Contribution of DEHP per Liter of Tequila (mg L−1) |
---|---|---|
Wood aroma | 0.575 | 0.0003 |
Cooked agave aroma | 0.324 | 0.0002 |
Caramel coloring | 1.849 | 0.0009 |
Oak extract | 2.863 | 0.0014 |
Raw agave aroma | 1.128 | 0.0006 |
Chocolate flavor | 1.333 | 0.0007 |
Wood color | 0.926 | 0.0005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ornelas-Salas, J.T.; Tapia-Picazo, J.C.; De Leon-Rodriguez, A. Tracing of Di-Ethylhexyl Phthalate in the Tequila Production Process. Foods 2024, 13, 334. https://doi.org/10.3390/foods13020334
Ornelas-Salas JT, Tapia-Picazo JC, De Leon-Rodriguez A. Tracing of Di-Ethylhexyl Phthalate in the Tequila Production Process. Foods. 2024; 13(2):334. https://doi.org/10.3390/foods13020334
Chicago/Turabian StyleOrnelas-Salas, Jose Tomas, Juan Carlos Tapia-Picazo, and Antonio De Leon-Rodriguez. 2024. "Tracing of Di-Ethylhexyl Phthalate in the Tequila Production Process" Foods 13, no. 2: 334. https://doi.org/10.3390/foods13020334
APA StyleOrnelas-Salas, J. T., Tapia-Picazo, J. C., & De Leon-Rodriguez, A. (2024). Tracing of Di-Ethylhexyl Phthalate in the Tequila Production Process. Foods, 13(2), 334. https://doi.org/10.3390/foods13020334