Could Snacks Based on Lupin Be a Nutritious Treat? A Point of View
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Protein
Product | Moisture | Protein | Ash | Fat | Carbohydrates | Fibre | Reference |
---|---|---|---|---|---|---|---|
% | % | % | % | % | % | ||
Extruded | [15] | ||||||
30%P (BLPI + WS) 1 | 8.3 | 30 | 2.8 | 67.0 * | |||
30%P (WLPI + WS) 1 | 7.0 | 30 | 2.8 | 64.1 * | n.a. | ||
50%P (BLPI + WS) 1 | 7.8 | 50 | 3.4 | 46.7 * | n.a. | ||
50%P (WLPI + WS) 1 | 6.5 | 50 | 3.3 | 41.8 * | n.a. | ||
100% MF (Control) 2 | 5.6 | 8.1 | 1.6 | 5.6 | 81.4 | 1.6 | [1] |
90% MF + 10% LAF 2 | 6.9 | 10.7 | 1.9 | 3.2 | 75.4 | 1.9 | |
85% MF + 15% LAF 2 | 7.0 | 13.7 | 1.9 | 4.8 | 70.2 | 2.3 | |
80% MF + 20% LAF 2 | 6.9 | 17.8 | 2.1 | 5.7 | 64.9 | 2.6 | |
Control (100% RF) 3 | 4.6 | 7.5 | 0.4 | 0.2 | 90.4 | 1.5 | [21] |
90% RF + 10% SPF 3 | 4.3 | 7.8 | 0.5 | 0.3 | 89.4 | 2.1 | |
87.5% RF + 10% SPF + 2.5% LAF 3 | 4.3 | 8.6 | 0.6 | 0.4 | 88.3 | 2.2 | |
85.0% RF + 10% SPF + 5.0% LAF 3 | 4.3 | 9.4 | 0.7 | 0.4 | 87.2 | 2.2 | |
82.5% RF + 10% SPF + 7.5% LAF 3 | 4.2 | 10.1 | 0.8 | 0.5 | 86.2 | 2.3 | |
80.0% RF + 10% SPF + 10.0% LAF 3 | 4.2 | 11.1 | 0.9 | 0.6 | 85.0 | 2.4 | |
100% LMF 4 | n.a. | 55.7 | 1.7 | 24.8 | 17.8 | n.a. | [19] |
Dried and fried snacks | |||||||
100% LM 5 | 6.0 | 51.7 | 2.4 | 21.6 | 15.9 | 8.3 | [22] |
3.2. Fibre
3.3. Fat
3.4. Micronutrients
3.5. Functional Properties
3.6. Instrumental Evaluation
Used in | Formula and Conditions | Instrumental Evaluation | Sensory Evaluation | Reference |
---|---|---|---|---|
Ext 1 | 30%P (BLPI + WS) | SEI ≈ 11; D ≈ 0.45; SH ≈ 0.25 | S = highest preference | [15] |
Ext 1 | 30%P (WLPI + WS) | SEI ≈ 9.5; D ≈ 0.55 SH ≈ 0.25 | S = Good evaluation | |
Ext 1 | 50%P (BLPI + WS) | SEI ≈ 5; D ≈ 0.6 SH ≈ 0.7 | S = highest preference | |
Ext 1 | 50%P (WLPI + WS) | SEI ≈ 5; D ≈ 0.6; SH ≈ 0.5 | S = Good evaluation | |
Ext 2 | 100% MF. | RER = 0.92; BD = 0.58; WAI = 5.8; WSI = 10.2 | C = 4.9; Ta = 5.6; F = 5.8; Te = 5.7; OA = 5.5 | [1] |
Ext 2 | 90% MF + 10% LAF; T = 135 C; M = 18% | RER = 0.89; BD = 0.65; WAI = 6.3; WSI = 11.5 | C = 6.2; Ta = 6.2; F = 6.3; Te = 6.0; OA = 6.2 | |
Ext 2 | 85% MF + 15% LAF; T = 120 C, M = 18% | RER = 0.95; BD = 0.53; WAI = 5.6; WSI = 12.3 | C = 7.2; Ta = 6.2; F = 6.5; Te = 6.5; OA = 6.6 | |
Ext 2 | 85% MF + 15% LAF; T = 150 C, M = 14% | RER = 1.2; BD = 0.33; WAI = 5.7; WSI = 15.3 | C = 6.7; Ta = 6.2; F = 6.7; Te = 6.4; OA = 6.7 | |
Ext 2 | 80% MF + 20% LAF; T = 120 C, M = 16% | RER = 0.71; BD = 0.8; WAI = 4.9; WSI = 13.8 | C = 7.3; Ta = 6.2; F = 6.2; Te = 6.1; OA = 6.8 | |
Ext 3 | 100% RF | ER = 3.21; BD = 0.77 **; WAI = 9.7; WSI = 23.7 | C = 8.7; Ta = 9.6; O = 9.6; Cr = 9.3; AT = 5.6; OA = 8.5 | [21] |
Ext 3 | 90% RF, 10% SP | ER = 3.19, BD = 0.78 **; WAI = 9.6; WSI = 23.5 | C = 9.7; Ta = 9.6; O = 9.7; Cr = 9.6; AT = 5.6; OA = 8.8 | |
Ext 3 | 87.5% RF, 10% SPF, 2.5% LAF | ER = 3.11; BD = 0.80 **; WAI = 8.5; WSI = 22.3 | C = 9.6; Ta = 9.6; O = 9.7; Cr = 9.6; AT = 5.6; OA = 8.9 | |
Ext 3 | 85.0% RF, 10% SPF, 5% LAF | ER = 3.0; BD = 0.84 **; WAI = 8.1; WSI = 20.8 | C = 9.6; Ta = 9.6; O = 9.7; Cr = 9.7; AT = 5.7; OA = 8.8 | |
Ext 3 | 82.5% RF, 10% SPF, 7.5% LAF | ER = 2.95; BD = 0.87 **; WAI = 7.8; WSI = 18.8 | C = 9.5; Ta = 9.7; O = 9.8; Cr = 9.8; AT = 6.2; OA = 8.9 | |
Ext 3 | 80.0% RF, 10% SPF, 10% LAF | ER = 2.42; BD = 0.90 **; WAI = 7.2; WSI = 16.6 | C = 9.5; Ta = 9.4; O = 9.5; Cr = 9.4; AT = 6.32; OA = 8.7 | |
(D + F) 4 | 100% LM | S = 100% judges accepted, 83% perfect adherence | [22] |
3.7. Sensory Evaluation
4. Feasibility of Lupin Snacks from a Global Perspective
5. Conclusions
6. Recommendations for New Studies on Salty Lupin Snacks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muhammed, A.; Sadik, J.A.; Admasu, W. Optimization of lupine (Lupinus albus L.) composition, feed moisture content and barrel temperatures for best quality maize based extruded snack food. Nutr. Food Sci. 2020, 50, 853–869. [Google Scholar]
- De Sousa, T.; Ribeiro, M.; Sabença, C.; Igrejas, G. The 10,000-year success story of wheat! Foods 2021, 2021, 2124. [Google Scholar] [CrossRef]
- FAO; IFAD; WFP; WHO; UNICEF. The State of Food Security and Nutrition in the World 2020: Transforming Food Systems for Affordable Healthy Diets; FAO: Roma, Italy, 2020; p. 320. [Google Scholar]
- Henchion, M.; Hayes, M.; Mullen, A.M.; Fenelon, M.; Tiwari, B. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef] [PubMed]
- Sharif, M.K.; Saleem, M.; Sharif, H.R.; Saleem, R. Enrichment and fortification of traditional foods with plant protein isolates. In Plant Protein Foods Annamalai; Manickavasagan, M.K., Lim, L.T., Ali, A., Eds.; Springer Nature: Cham, Switzerland, 2022; p. 511. [Google Scholar]
- Carvajal-Larenas, F.E.; Linnemann, A.; Nout, M.J.R.; Koziol, M.J.; van Boekel, M.A.J.S. Lupinus mutabilis: Composition, uses, toxicology and debittering. Crit. Rev. Food Sci. Nutr. 2015, 56, 1454–1487. [Google Scholar] [CrossRef] [PubMed]
- Rebolledo-Leiva, R.; Almeida-García, F.; Pereira-Lorenzo, S.; Ruíz-Nogueira, B.; Moreira, M.T.; González-García, S. Determining the environmental and economic implications of lupin cultivation in wheat-based organic rotation systems in Galicia, Spain. Sci. Total Environ. 2022, 845, 157342. [Google Scholar] [CrossRef] [PubMed]
- de Vries, M.; de Boer, I.J.M. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livest. Sci. 2010, 128, 1–11. [Google Scholar] [CrossRef]
- Jones, O.G. Recent advances in the functionality of non-animal-sourced proteins contributing to their use in meat analogs. Curr. Opin. Food Sci. 2016, 7, 7–13. [Google Scholar] [CrossRef]
- Malav, O.P.; Talukder, S.; Gokulakrishnan, P.; Chand, S. Meat Analog: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1241–1245. [Google Scholar] [CrossRef]
- Osen, R.; Toelstede, S.; Wild, F.; Eisner, P.; Schweiggert-Weisz, U. High moisture extrusion cooking of pea protein isolates: Raw material characteristics, extruder responses, and texture properties. J. Food Eng. 2014, 127, 67–74. [Google Scholar] [CrossRef]
- Abreu, B.; Lima, J.; Rocha, A. Consumer perception and acceptability of lupin-derived products: A systematic review. Foods 2023, 12, 1241. [Google Scholar] [CrossRef]
- Kohajdová, Z.; Karovičová, J.; Schmidt, Š. Lupin composition and possible use in bakery—A review. Czech J. Food Sci. 2011, 29, 203–211. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of the United Nations. FAOSTAT. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 26 September 2024).
- Martin, A.; Schmidt, V.; Osen, R.; Bez, J.; Ortner, E.; Mittermaier, S. Texture, sensory properties and functionality of extruded snacks from pulses and pseudocereal proteins. J. Sci. Food Agric. 2022, 102, 5011–5021. [Google Scholar] [CrossRef] [PubMed]
- Huamaní-Perales, C.; Vidaurre-Ruiz, J.; Salas-Valerio, W.; Cabezas, D.M.; Repo-Carrasco-Valencia, R. A review of techno functional properties of legume proteins and their potential for development of new products. Eur. Food Res. Technol. 2024, 250, 2069–2092. [Google Scholar] [CrossRef]
- Lampart-Szscapa, E.; Konieczny, P.; Nogala-Kalucka, M.; Walczak, S.; Kossowska, I.; Malinowska, M. Some functional properties of lupin proteins modified by lactic fermentation and extrusion. Food Chem. 2006, 96, 290–296. [Google Scholar] [CrossRef]
- Palanisamy, M.; Franke, K.; Berger, R.G.; Heinz, V.; Töpfl, S. High moisture extrusion of lupin protein: Influence of extrusion parameters on extruder responses and product properties. J. Sci. Food Agric. 2019, 99, 2175–2185. [Google Scholar] [CrossRef]
- Córdova-Ramos, J.S.; Glorio-Paulet, P.; Camarena, F.; Brandolini, J.; Hidalgo, A. Andean lupin (Lupinus mutabilis Sweet): Processing effects on chemical composition, heat damage, and in vitro protein digestibility. Cereal Chem. 2020, 97, 827–835. [Google Scholar] [CrossRef]
- El-Hady, E.A.; Habiba, R.A. Effect of soaking and extrusion conditions on antinutrients and protein digestibility of legume seeds. LWT Food Sci. Technol. 2003, 36, 285–293. [Google Scholar] [CrossRef]
- Algarni, E.H.; Hussien, H.A.; Salem, E.M. Development of nutritious extruded snacks. Life Sci. J. 2019, 19, 23–31. [Google Scholar]
- Fornasini, M.; Abril, V.B.P.; Villacrés, E.; Cuadrado, L.; Robalino, F.; Sánchez, R.; Ricaurte, P.; Muñoz, E.; Benítez, N.; Baldeón, M.E. Efficacy of a Lupinus mutabilis Sweet snack as complement to conventional type 2 diabetes mellitus treatment. Nutr. Hosp. 2019, 36, 905–911. [Google Scholar]
- Chamone, M.E.R.; Ascheri, J.L.R.; Vargas-Solórzano, J.W.; Stephan, M.P.; Carvalho, C.W.P. Chemical Characterization of White Lupin (Lupinus albus) Flour Treated by Extrusion Cooking and Aqueous Debittering Processes. Plant Foods Hum. Nutr. 2023, 78, 292–298. [Google Scholar] [CrossRef]
- Zhong, L.; Fang, Z.; Wahlqvist, M.L.; Hodgson, J.M.; Johnson, S.K. Extrusion cooking increases soluble dietary fibre of lupin seed coat. LWT 2019, 99, 547–554. [Google Scholar] [CrossRef]
- Zhong, L.; Fang, Z.; Wahlqvist, M.L.; Hodgson, J.M.; Johnson, S.K. Multi-response surface optimisation of extrusion cooking to increase soluble dietary fibre and polyphenols in lupin seed coat. LWT 2021, 140, 110767. [Google Scholar] [CrossRef]
- Naumann, S.; Schweiggert-Weisz, U.; Martin, A.; Schuster, M.; Eisner, P. Effects of extrusion processing on the physiochemical and functional properties of lupin kernel fibre. Food Hydrocoll. 2021, 111, 106222. [Google Scholar] [CrossRef]
- Diaz, J.M.R.; Sundarrajan, L.; Kariluoto, S.; Lampi, A.-M.; Tenitz, S.; Jouppila, K. Partial least squares regression modeling of physical and chemical properties of corn-based snacks containing kañiwa and lupine. J. Food Process Eng. 2017, 40, e12396. [Google Scholar] [CrossRef]
- Çoban, D.İ.; Babiker, E.E.; AlJuhaimi, F.; Uslu, N.; Ghafoor, M.; Ahmed, I.A.M.; Almusallam, I.A. Fatty acid composition, mineral content and glycemic index values of chips produced with different cooking methods and lupine (Lupinus albus L.) flour formulations. J. Food Process. Preserv. 2021, 45, 15161. [Google Scholar] [CrossRef]
- Özcan, M.M.; İpek, D.; Ghafoor, K.; Al Juhaimi, F.; Uslu, N.; Babiker, E.E.; Mohamed Ahmed, I.A.; Alsawmahi, O.N. Physico-chemical and sensory properties of chips produced using different lupin (Lupinus albus L.) flour formulations and cooking methods. Int. J. Food Sci. Technol. 2020, 56, 2780–2788. [Google Scholar] [CrossRef]
- Carvajal-Larenas, F.E. Nutritional, rheological and sensory evaluation of Lupinus mutabilis food products—A Review. Czech J. Food Sci. 2019, 37, 301–311. [Google Scholar] [CrossRef]
- Carvajal-Larenas, F.E.; van Boekel, M.A.J.S.; Koziol, M.J.; Nout, M.J.R.; Linnemann, A. Effect of processing on the diffusion of alkaloids and quality of Lupinus mutabilis Sweet. J. Food Process. Preserv. 2014, 38, 1461–1471. [Google Scholar] [CrossRef]
- Carvajal-Larenas, F.; Nout, M.; van Boekel, M.; Koziol, M.; Linnemann, A. Modeling of the aqueous debittering process of Lupinus mutabilis Sweet. LWT Food Sci. Technol. 2013, 53, 507–516. [Google Scholar] [CrossRef]
- Świątek, M.; Antosik, A.; Kochanowska, D.; Jeżowski, P.; Smarzyński, K.; Tomczak, A.; Kowalczewski, Ł.P. The potential for the use of leghemoglobin and plant ferritin as sources of iron. Open Life Sci. 2023, 18, 20220805. [Google Scholar] [CrossRef]
- Arnoldi, A.; Boschin, G.; Zanoni, C.; Lammi, C. The health benefits of sweet lupin seed flours and isolated proteins. J. Funct. Foods 2015, 18, 550–563. [Google Scholar] [CrossRef]
- Mollard, R.C.; Luhovyy, B.L.; Panahi, S.; Nunez, M.; Hanley, A.; Anderson, G.H. Regular consumption of pulses for 8 weeks reduces metabolic syndrome risk factors in overweight and obese adults. Br. J. Nutr. 2012, 108, S111–S122. [Google Scholar] [CrossRef]
- Muñoz-Llandes, C.B.; Palma-Rodríguez, H.M.; Perea-Flores, M.D.J.; Martínez-Villaluenga, C.; Castro-Rosas, J.; Salgado-Delgado, R.; Guzmán-Ortiz, F.A. Incorporation of germinated lupin into corn-based extrudates: Focus on starch digestibility, matrix structure and physicochemical properties. Food Chem. 2024, 458, 140196. [Google Scholar] [CrossRef]
- Xiang, G.; Li, J.; Han, W.; Yang, Y.; Lin, Q.; Yang, Y.; Liu, Q.; Guo, X.; Pan, Q.; Huang, Z.; et al. The influence of temperature changes on the rice starch structure and digestive characteristics: One and two-step annealing. Foods 2022, 11, 3641. [Google Scholar] [CrossRef]
- BeMiller, J.N. (Ed.) Starches: Molecular and Granular Structures and Properties. In Carbohydrate Chemistry for Food Scientist, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 160–189. [Google Scholar]
- BeMiller, J.N. (Ed.) Starches: Conversions, Modifications, and Uses. In Carbohydrate Chemistry for Food Scientist, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 191–221. [Google Scholar]
- BeMiller, J.N. (Ed.) Guar, Locust Bean, Tara, and Cassia Gums. In Carbohydrate Chemistry for Food Scientist, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 241–252. [Google Scholar]
- BeMiller, J.N. (Ed.) Xanthan. In Carbohydrate Chemistry for Food Scientist, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 261–269. [Google Scholar]
- ISO 13299:2016; Sensory Analysis—Methodology—General Guidance for Establishing a Sensory Profile. ISO: Geneva, Switzerland, 2016.
- BeMiller, J.N. Physical Modification of Starch. In Starch in Food. Structure, Function and Aplications, 2nd ed.; Sjöö, M., Nilsson, L., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 223–253. [Google Scholar]
- Ibrahim, N.I.; Emam, W.H.; El-Faham, S.Y. Different natural carotene sources and its effect on quality of rice extruded products. J. Appl. Sci. Res. 2012, 8, 4064–4073. [Google Scholar]
- Joray, M.L.; Rayas-Duarte, P.; Mohamed, A.; van Santen, E. Coated lupin bean snacks. J. Food Qual. 2007, 30, 267–279. [Google Scholar] [CrossRef]
- Erbas, M. The effects of different debittering methods on the production of lupin bean snack from bitter Lupinus albus L. seeds. J. Food Qual. 2010, 33, 742–757. [Google Scholar] [CrossRef]
- Agarwal, D.; Wallace, A.; Kim, E.H.-J.; Wadamori, Y.; Feng, L.; Hedderley, D.; Morgenstern, M.P. Rheological, structural and textural characteristics of 3D-printed and conventionally-produced gluten-free snack made with chickpea and lupin flour. Future Foods 2022, 5, 100134. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of the United Nations. FAOSTAT. Apparent Intake (Based on Household Consumption and Expenditure Surveys). Available online: https://www.fao.org/faostat/en/#data/HCES (accessed on 30 September 2024).
- CarbonCloud. ClimateHub. Lupin Seeds Dry. Available online: https://apps.carboncloud.com/climatehub/product-reports/id/60497451124 (accessed on 30 September 2024).
- Ritchie, H. You Want to Reduce the Carbon Footprint of Your Food? Focus on What You Eat, Not Whether Your Food Is Local. Available online: https://ourworldindata.org/food-choice-vs-eating-local (accessed on 30 September 2024).
- Sozer, N.; Holopainen-Mantila, U.; Poutanen, K. Traditional and new food uses of pulses. Cereal Chem. 2016, 94, 66–73. [Google Scholar] [CrossRef]
- Guzmán, T.J.; Martínez-Ayala, A.L.; García-López, P.M.; Soto-Luna, I.C.; Gurrola-Díaz, C.M. Effect of acute and chronic administration of Lupinus albus β-conglutin on glycaemia, circulating colesterol, and genes potentially involved. Biomed. Pharmacother. 2021, 133, 110969. [Google Scholar] [CrossRef]
- Suleiko, A.; Dubencovs, K.; Kazaks, A.; Suleiko, A.; Daugavietis, J.E.; Didrihsone, E.; Liepins, J.; Bolmanis, E.; Grigs, O.; Vanags, J. Performance of recombinant Komagataella phaffii in plant-based meat flavor compound-leghemoglobin (LegH) production through fed-batch fermentations. Fermentation 2024, 10, 55. [Google Scholar] [CrossRef]
- Al-Zahrani, M.T.S. Development of fortified laddoo with sweet lupin. Int. J. Eng. Res. Technol. 2019, 78, 918–923. [Google Scholar]
- Mengist Asres, A.; Woldemichael Woldemariam, H.; Gobena Gemechu, F. Physicochemical and sensory properties of ice cream prepared using sweet lupin and soymilk as alternatives to cow milk. J. Food Prop. 2022, 25, 278–287. [Google Scholar] [CrossRef]
- Csutoras, C.; Gian, L.; Hudak, O.; Racz, L. Development and evaluation of potential functional food biscuits made from white lupin. Prog. Agric. Eng. Sci. 2021, 17, 89–100. [Google Scholar]
- Jardim-Botelho, A.; Lopes de Oliveira, L.C.; Motta-Franco, J.; Solé, D. Nutritional management of immediate hypersensitivity to legumes in vegetarians. Allergol. Immunopathol. 2022, 50, 37–45. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvajal Larenas, F.E.; Koziol, M.J.; Caviedes, M. Could Snacks Based on Lupin Be a Nutritious Treat? A Point of View. Foods 2024, 13, 3227. https://doi.org/10.3390/foods13203227
Carvajal Larenas FE, Koziol MJ, Caviedes M. Could Snacks Based on Lupin Be a Nutritious Treat? A Point of View. Foods. 2024; 13(20):3227. https://doi.org/10.3390/foods13203227
Chicago/Turabian StyleCarvajal Larenas, Francisco E., Michael J. Koziol, and Mario Caviedes. 2024. "Could Snacks Based on Lupin Be a Nutritious Treat? A Point of View" Foods 13, no. 20: 3227. https://doi.org/10.3390/foods13203227
APA StyleCarvajal Larenas, F. E., Koziol, M. J., & Caviedes, M. (2024). Could Snacks Based on Lupin Be a Nutritious Treat? A Point of View. Foods, 13(20), 3227. https://doi.org/10.3390/foods13203227