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Abstract: This study explores the impact on the stability of drying and the encapsulation of a camu
camu extract (CCX) using the non-thermal, high-throughput electrospraying assisted by pressurized
gas (EAPG) technique. The dried and encapsulated products by the EAPG processing techniques
were compared in terms of total soluble phenolic compounds, antioxidant activity, and storage
stability. Whey protein concentrate (WPC) and zein (ZN) were selected as the protective excipients
for encapsulation. Dried and encapsulated products were obtained in the form of microparticles,
which were smaller and more spherical in the case of the encapsulates. No significant differences
were observed in the total polyphenolic content (TSP), and only relatively small differences in the
antioxidant capacity were measured among samples. The generated products were subjected to
various storage conditions to assess their stability and the preservation of the TSP and the antioxidant
properties, i.e., 0% relative humidity (RH) and 4 ◦C; 0% RH and 21 ◦C; 23% RH and 21 ◦C; 56% RH
and 21 ◦C; and UV light exposure. The results indicated that ZN encapsulation notably enhanced
the retention of total soluble polyphenols and the antioxidant activity compared to WPC and dried
CCX, especially in the ratio of 2:1 (encapsulating polymer: dried CCX). This study demonstrates the
potential of protein-based encapsulation, particularly using ZN, for stabilizing bioactive compounds
against degradation mechanisms induced by humidity, temperature, or ultraviolet radiation exposure.

Keywords: camu camu extract; room-temperature drying; encapsulation; microparticles; whey
protein concentrate; zein; EAPG

1. Introduction

There is a growing interest among consumers in natural bioactive compounds that
possess the potential to promote health benefits and contribute to the prevention and/or
treatment of chronic diseases. Consequently, investigating and researching these natu-
ral bioactive compounds is a matter of great importance for numerous laboratories and
industries [1,2].

Among the bioactive compounds, phytochemicals stand out due to their ability to
inhibit oxidative reactions, thereby protecting the organism from reactive oxygen species,
which are implicated in numerous degenerative diseases such as cataracts, atherosclerosis,
and cancer [3].

The Amazon region boasts an extraordinary biodiversity of both native and exotic
fruits. Camu camu (Myrciaria dubia (H.B.K) McVaugh) is a fruit that is distributed along
Bolivia, Brazil, Colombia, Ecuador, Peru, and Venezuela, and it is emerging as a standout
due to its remarkable nutritional prospects [4,5]. The composition of camu camu has
garnered considerable interest due to its elevated levels of bioactive compounds, such
as ascorbic and citric acid and phenolic compounds, including ellagic acid, ellagitannins,
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and proanthocyanidins [6–8], being reported for its purported bioactivities encompassing
antihyperglycemic, anti-inflammatory, antihypertensive, and antimicrobial, among other
properties [9–11]. In this sense, investigations have demonstrated that camu camu exhibits
potent antioxidant and anti-inflammatory properties, surpassing those observed in vitamin
C tablets when tested in human subjects [12]. Moreover, studies have also reported the
potential antiobesity effects of camu camu in a rat model of diet-induced obesity [13]. Ad-
ditionally, several studies have suggested that camu camu possesses antidiabetic activities,
indicating its potential in treating this disease [7,14–16].

To develop functional ingredients based on the active properties of camu camu, it is
necessary to extract the bioactive compounds from the fruit or the different parts of the
plant [10,14], a process that can be followed by a drying step to facilitate its industrial
handling. However, it is well-known that some bioactive compounds present low solubility
in water or are unstable, making them susceptible to high temperature, light, pH, oxidative
stress, and degradative enzymes, which can negatively impact their biological activities,
limiting their use in functional foods or nutraceuticals. Proof of that is that Neves et al.
observed a significant decrease in the total phenolic content of camu camu fruits after 5 days
of cold storage under controlled conditions [17]. Consequently, developing strategies to
protect and preserve them, particularly under conditions of processing and storage, and to
enhance their bioaccessibility and bioavailability is crucial [18,19]. Among these strategies,
encapsulation has emerged as a promising approach to address this challenge.

Encapsulation involves entrapping the bioactive components within a protective ma-
trix, which can slow down degradation processes, prevent the loss of their functionality,
and increase bioavailability [2,20]. Therefore, encapsulating bioactive compounds makes
extending their shelf life possible, improving their stability throughout various processing
stages and final use at consumption and enhancing their compatibility with different for-
mulations [1,21]. Furthermore, the encapsulation strategy could provide controlled release
mechanisms and a sustained and targeted delivery of these compounds in the body [22–24].
Thus, various encapsulation methods have been explored so far [25]. The choice of the
suitable process varies with the active ingredient’s nature, the coating material’s properties,
and the final product’s desired characteristics based on the intended use.

Recent evidence underscores that microencapsulation is a potent process to enhance
the stability and bioavailability of the naturally occurring bioactive compounds in camu
camu, such as ascorbic acid and anthocyanins. Until now, Fujita et al. have reported
the microencapsulation of camu camu juice into Arabic gum and maltodextrin via spray
drying [15]. Figueiredo et al. reported the microencapsulation of the camu camu extract
from pulp and peels by spray drying using maltodextrin, inulin, and oligofructose as
encapsulating matrixes [26]. Complementary findings by García-Chacón et al. reveal that
spray-drying camu camu pulp with maltodextrin, whey protein, and a 50:50 mixture of
both is a strategy to increase the bioactive compounds stability, modulate the fruit sensory
properties, and improve their bioavailability [27].

However, among the techniques available, electrohydrodynamic processing, including
electrospraying or electrospinning, has emerged as a promising and versatile method for
encapsulating bioactive agents. Electrospraying offers several advantages over traditional
encapsulation techniques [28]: It enables the production of micro- or nano-scale particles; it
is simple and versatile in terms of the materials that can be processed; it allows the produc-
tion of particles at low or ambient temperatures [28]. However, the main disadvantage of
this technology is its low production yield, which has been solved thanks to the integration
of electrospraying and gas-driven nebulization [29]. This technology has been named and
patented as electrospraying assisted by pressurized gas (EAPG). It involves atomizing the
solution through a pneumatic injector using compressed air that nebulizes within a high
electric field. This process forms fine droplets that are dried at room temperature and
collected as a free-flowing powder. Therefore, this process is suitable for sensitive bioactive
compounds. Moreover, it gathers all the advantages of the electrospray process, such as
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high encapsulation efficiency and control of particle size and morphology, and it is already
available on an industrial scale.

Hitherto, camu camu has been encapsulated mainly into polysaccharides [15,27].
However, based on our encapsulation expertise [30,31], food-grade proteins can provide
increased stability to sensitive bioactive ingredients [32]. Therefore, this work aimed to
study the potential of room-temperature EAPG technology to dry and microencapsulate a
camu camu extract (CCX). Whey protein concentrate (WPC) and zein (ZN) were selected as
encapsulating agents. The microcapsules were characterized by morphology, total soluble
polyphenol (TSP) content, and antioxidant activity. Additionally, this study aimed to assess
the storage stability of CCX EAPG-derived microcapsules under different humidity and
temperature conditions and against photooxidation.

2. Materials and Methods
2.1. Materials

Camu camu powder (CCP) was provided by Qomer BioActive Ingredients (Valencia,
Spain). Whey protein concentrate (WPC) 80% was purchased from Beurrespa S.L. (Madrid,
Spain). According to the distributor, WPC was claimed to contain 81.6% protein (on dry
basis) and 7.5% fat. Maize zein (ZN), gallic acid, sodium carbonate, Folin–Ciocalteau
reagent, magnesium nitrate, potassium acetate, and silica gel were purchased from Sigma-
Aldrich (Saint Louis, MO, USA). Methanol (reagent grade) was purchased from Labbox
(Premia de Dalt, Spain). Ethanol 96 vol.% was purchased from Panreac Química SLU
(Barcelona, Spain). Deionized water was used throughout this study.

2.2. Preparation of Camu Camu Extract (CCX)

The CCP was extracted following a standardized adapted method as described by
Fracassetti et al. [8]. A mixture of alcohol and water (85%) was used as the extraction
solvent. The extraction process was carried out at a concentration of 5% (w/v), where 50 g
of CCP was mixed with 1000 mL of the extraction solvent. The mixture was homogenized
using a magnetic stirrer (H20 series, LBX Instruments, Premia de Dalt, Spain) at room
temperature until complete dissolution of CCP. Subsequently, the mixture was sonicated in
a SONOPULS HD 2200.2 (Bandelin electronic GMbH and Co. KG, Berlin, Germany) for an
additional 30 min. After sonication, the solution was centrifuged at 3000 rpm for 15 min at
4 ◦C using an Avanti J-26 XPI Beckman Coulter centrifuge (Brea, CA, USA). The resulting
supernatant was then filtered under vacuum filtration using Whatman No. 1 filter paper
by Cytiva (Marlborough, MA, USA). The filtered supernatant was collected and used for
further encapsulation processes.

2.3. Preparation of the Polymer Solution

To prepare the encapsulating solutions, a 20% (w/v) solution of whey protein concen-
trate (WPC) in water was prepared, and a 4% (w/v) solution of zein (ZN) in an 85% (v/v)
ethanol aqueous solution. Then, the encapsulating solutions were created by slowly adding
the pre-prepared camu camu extract (CCX) to the respective encapsulating matrix solutions
at ratios of 1:1 w/w and 2:1 w/w (encapsulant to dry weight CCX ratio). The solutions were
continuously stirred using a magnetic stirrer (H20 series, LBX Instruments, Premia de Dalt,
Spain) at room temperature overnight until a homogenous mixture of polymer solutions
was obtained.

2.4. EAPG Process

The EAPG process was used to dry the CCX solution and encapsulate the CCX into
WPC and ZN, using the CapsultekTM pilot plant from Bioinicia S.L. (Valencia, Spain). The
pilot plant consists of a nebulizer that generates aerosol droplets, which are subjected to a
high electric field, a drying chamber, and a cyclonic collector. The process was conducted
under controlled ambient conditions of 25 ◦C and 30% relative humidity (RH), as detailed
in the study by Busolo et al. [29]. The solution was pumped to the injection unit at a flow
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rate of 10 mL/min, with an air pressure of 10 L/min and a voltage of 15 kV. The resulting
particles were collected from the cyclone as a free-flowing powder, stored in flasks under
vacuum at −20 ◦C, and protected from light to prevent oxidation until further analysis.

The theoretical loading capacity for the CCX encapsulates was 50% for the ratio of 1:1
and 33% for the ratio of 2:1. Furthermore, a 100% encapsulation efficiency was obtained,
meaning no significant bioactive loss occurred during the encapsulation process.

2.5. Microscopy

Scanning electron microscopy (SEM) analysis of the particle morphology was con-
ducted using a Hitachi S-4800 field-emission scanning electron microscope (Hitachi High
Technologies Corp., Tokyo, Japan). The microscope was operated at an electron beam accel-
eration of 5 kV. Before analysis, approximately 5 mg of the capsules from each sample were
coated with a thin layer of gold/palladium to enhance conductivity and imaging quality
during SEM observations. The SEM images were captured, and the average diameters of
the particles were determined using Image J Launcher v1.41 software developed by the
National Institutes of Health (Bethesda, MD, USA).

2.6. Color

The color was determined using a chroma meter CR-400 (Konica Minolta, Tokyo,
Japan). Color differences between samples were calculated using the CIE Lab* color
space, which measures color in three dimensions: lightness (L*), red–green axis (a*), and
yellow–blue axis (b*). The total color difference, ∆E*, was determined based on the Eu-
clidean distance between the two points in the Lab space, following the formula:

∆E∗ = 2

√[
(∆L∗)2 + (∆a∗)2 + (∆b∗)2

]
(1)

This metric represents the magnitude of the perceptual color difference. According
to established thresholds, a ∆E* value below 1 is imperceptible to the human eye, while a
value between 1 and 2 can be detected only by experienced observers. A ∆E* value between
2 and 3.5 is noticeable to most observers, values between 3.5 and 5 indicate a clear color
difference, and values above 5 indicate that the colors appear distinctly different. This
method allows for an objective comparison of color changes, facilitating the assessment of
product consistency during storage or processing.

2.7. Moisture

The CCX EAPG-derived samples were dried at 40 ◦C in a vacuum oven (Vaciotem-T,
J.P. Selecta, Barcelona, Spain) until reaching a constant weight. Subsequently, the mois-
ture content was determined by measuring the weight differential before and after the
drying process.

2.8. Assessment of the Stability of CCX Formulations

The stability of CCX formulations was evaluated under different storage conditions
of relative humidity (RH) and temperatures and accelerated oxidation conditions under
ultraviolet (UV) radiation. To simulate different humidity levels, samples of CCX formu-
lations were placed in desiccators containing either silica gel (0% RH), potassium acetate
oversaturated solution (23% RH), or magnesium nitrate oversaturated solution (56% RH).
The desiccators were kept at a cooling temperature (4 ◦C) or ambient temperature (~21 ◦C)
accordingly. The samples were stored under the above conditions and monitored for
40 days. Weekly samples were collected and analyzed.

Regarding UV radiation, a commercially available OSRAM Ultra-Vitalux lamp (OS-
RAM, Garching, Germany) irradiated the samples with UV light. This lamp consists of a
quartz discharge tube and a tungsten filament, producing a blend of radiation like natural
sunlight. The lamp was operated at a power of 300 W, and only wavelengths like those
present in daylight passed through the special glass bulb. After 1 h of exposure, the ra-
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diation between 315–400 nm was measured to be 13.6 W, and the radiation between 280
and 315 nm was measured to be 3 W. Approximately 20 g of capsules were evenly spread
on Petri dishes and positioned at 20 cm under the UV lamp. The powder in the Petri dish
was stirred daily to maintain a uniform treatment. The thickness of the powder layer was
maintained below 5 mm to ensure consistent exposure to UV light. The capsules were
subjected to the specified storage conditions, and their stability was evaluated over 40 days.
Weekly samples were taken from the capsules for analysis.

The analysis of the samples was specifically made to focus on variations in total soluble
polyphenols and antioxidant capacity, and attenuated total reflectance Fourier-transform
infrared (ATR-FTIR) spectroscopy was utilized.

2.9. Total Soluble Polyphenols

The total soluble polyphenol (TSP) content in the CCX formulations was determined
using the Folin–Ciocalteu method described by Singleton and Rossi [33]. For the analysis,
10 mg of the CCX formulations were diluted in ethanol at a concentration of 50% (v/v).
Similarly, an equivalent amount of WPC-CCX capsules was diluted in ethanol at 33%
(v/v), and an equivalent amount of ZN-CCX capsules was diluted in ethanol at 75% (v/v).
The ethanol concentrations utilized in this study were specifically selected to facilitate the
optimal solubility of each encapsulating matrix (WPC and ZN) as well as the solubility of
the CCX. After dissolution, 20 µL of the capsule’s solution was mixed with 1.2 mL of water
and 300 µL of sodium carbonate solution at a concentration of 7.5% (w/v) in Eppendorf
tubes. The mixture was then homogenized for 1 min using a vortex shaker and left to stand
for 5 min.

Next, 380 µL of water was added to the mixture, followed by 100 µL of a 10% (v/v)
Folin reagent solution. The reaction proceeded for 15 min under dark conditions and at
room temperature. Subsequently, the absorbance of the resulting solution was measured in
triplicate at a wavelength of 765 nm using a UV/Vis spectrophotometer (UV4000 Dinko
Instruments, Barcelona, Spain). The absorbance values obtained were then used to calculate
the total soluble polyphenols content of the samples, expressed in gallic acid equivalents
(mg GAE/g of dried CCX).

2.10. Antioxidant Activity

The antioxidant capacity of the CCX formulations was evaluated using the DPPH
(2,2-diphenyl-1-picrylhydrazyl hydrate) free radical scavenging assay, a widely accepted
method for assessing the ability of compounds to neutralize free radicals, which is indica-
tive of their antioxidant activity. CCX-EAPG-derived samples were dissolved in ethanol at
specific concentrations, like how TSP determination is performed. Then, they were mixed
with a DPPH methanolic solution and followed the DPPH methodology from previous
studies [31]. After the incubation period, the absorbance of the resulting mixture was mea-
sured at a wavelength of 517 nm using a UV/Vis spectrophotometer (Dinko Instruments,
Barcelona, Spain).

2.11. Attenuated Total Reflection–Fourier Transform Infrared (ATR-FTIR)

The ATR-FTIR spectra of CCX formulations were measured using a Bruker Tensor
37 FT-IR Spectrometer (Bruker, Ettlingen, Germany) equipped with an ATR sampling
accessory called the low-temperature Golden Gate from Specac Ltd. (Orpington, UK).
This accessory ensures proper contact between the diamond crystal and the encapsulated
samples, enhancing the quality of the spectra. Approximately 50 mg of the capsules were
used for each measurement.

The spectra were precisely collected using ATR-FTIR spectroscopy within the
4000–600 cm−1 wavenumber range, capturing a comprehensive infrared frequency spec-
trum crucial for molecular bond characterization. The protocol averaged 10 scans per
spectrum to enhance the signal-to-noise ratio, a standard analytical chemistry practice
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for data quality improvement. Spectral resolution was set at 4 cm−1, allowing proper
resolution for molecular vibration interpretation.

The OPUS 4.0 data collection software program, developed by Bruker (Ettlingen,
Germany), was used to analyze the spectral data. This software enables the processing,
analysis, and interpretation of the ATR-FTIR spectra, allowing for the identification and
characterization of the encapsulated samples. Measurements were performed in triplicate
to ensure the reproducibility and reliability of the results. For comparison purposes, first,
the baseline of the analyzed spectra was adjusted, and then the spectra were maximized to
the band with the highest intensity in the wavenumber range between 1800 and 800 cm−1.

2.12. Statistical Analysis

The data were expressed as mean ± standard deviation. To determine the significance
of the differences observed among the different samples, an analysis of variance (ANOVA)
was conducted. Following ANOVA, a Tukey test was performed to compare the means of
multiple groups. In this analysis, differences were considered significant when the p-value
was less than 0.05. For this analysis, the software used was Statgraphics Centurion Version
17.2.04, developed by Statistical Graphics Corp. (Rockville, MD, USA).

3. Results and Discussion

This study investigates the effect of the drying of CCX and its microencapsulation
using WPC and ZN via EAPG technology. The resulting microcapsules were analyzed for
their morphology, color, total phenolic content, antioxidant activity, and storage stability
under different ambient conditions.

3.1. Physicochemical Characterization

The obtained particles were characterized in terms of morphology, moisture, and color.
Figure 1 provides a comparative analysis of particle morphologies achieved through EAPG
technology. When drying neat CCX (Figure 1A), irregular, non-uniform, and agglomer-
ated structures were predominantly observed, resulting in a particle size distribution of
10.01 ± 1.84 µm, as shown in Table 1.

Table 1. Physicochemical properties of CCX dried via EAPG process and encapsulated with WPC
and ZN.

Sample Particle Size
(µm)

Moisture
(%)

Color

L* a* b* ∆E*

CCX-EAPG 10.01 ± 1.84 a 4.67 ± 1.32 a 37.56 5.11 7.50

WPC-CCX 1:1 6.74 ± 2.57 ab 5.17 ± 1.93 a 39.14 4.21 8.96 2.33

WPC-CCX 2:1 7.24 ± 2.49 ab 4.78 ± 0.97 a 39.46 3.74 8.36 2.50

ZN-CCX 1:1 6.24 ± 1.72 b 4.15 ± 1.31 a 37.79 4.15 7.15 1.05

ZN-CCX 2:1 5.85 ± 1.45 b 4.07 ± 1.04 a 44.06 2.41 9.04 7.21

Mean values ± standard deviation with different superscripts in the same column are significantly different
(Tukey test, p ≤ 0.05). Color standard deviation ≤ 0.10.

The CCX encapsulates exhibited a spherical morphology, and the average particle sizes
are gathered in Table 1. The encapsulates showed an average particle size of around 6 µm
with a narrow size distribution and with no significant differences among formulations.
These results are consistent with earlier successful EAPG encapsulations of bioactive
compounds, such as Eicosapentaenoic acid (EPA) [30] and Dragon’s blood sap (DBS) [31],
which produced microparticles with average sizes around 6 µm and 11 µm, respectively.
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Figure 1. SEM micrographs of dried CCX structures. (A) The neat CCX dried using the EAPG process.
(B) WPC-CCX 1:1 w/w; (C) WPC-CCX 2:1 w/w; (D) ZN-CCX 1:1 w/w; (E) ZN-CCX 2:1 w/w. The
scale bar corresponds to 30 µm.

Figure 2 illustrates the particle size distribution of the CCX EAPG-derived capsules.
The samples were monodispersed. Broad size distribution for the neat CCX dried by EAPG
and the encapsulates with WPC was observed. However, ZN encapsulates showed smaller
particle sizes and a narrower particle size distribution. This difference between WPC and
ZN encapsulates can be attributed to the protein composition of the WPC, i.e., 80% WP
and 20% lactose, resulting in a broader particle size distribution. Similar observations were
made by Prieto et al. when comparing the particle morphology and size distribution when
encapsulating algae oil in WP with different protein content [34].
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Figure 2. Histograms of dried CCX structures. (A) The neat CCX dried using the EAPG process.
(B) WPC-CCX 1:1 w/w; (C) WPC-CCX 2:1 w/w; (D) ZN-CCX 1:1 w/w; (E) ZN-CCX 2:1 w/w.

Nevertheless, the particle sizes were consistently below the acceptable detection thresh-
old of 20 µm, ensuring no detectable sensory impact [35], thus preserving the potential for
maintaining texture in the final product formulation. This is an advantage of the EAPG pro-
cess in comparison to conventional technologies. For instance, in a recent study conducted
by García-Chacón et al., the use of whey protein concentrate (WPC) and maltodextrin as
coating agents were compared during the spray drying process of camu camu. Maltodex-
trin produced particles of sizes ranging from 1.5 to 12.5 µm, while whey protein resulted in
particles ranging from 5 to 45 µm [27]. In another study, Figueredo et al. encapsulated a
camu camu extract via spray drying using maltodextrin, inulin, and oligofructose as carrier
agents, observing varying particle sizes between 5 and 54 µm [36].

Regarding the moisture content of the samples obtained, it was on average below 5%,
as shown in Table 1. This moisture level is widely acknowledged as safe, as it inhibits the
growth of most harmful bacteria [37].

Color analysis was conducted on the CCX samples produced through the EAPG
technique, and the results are presented in Table 1. The CCX-EAPG sample reflects the
natural color of camu camu, which is attributed to its high phenolic content, particularly
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anthocyanins and carotenoids, along with its notable ascorbic acid content, contributing to
its visual appearance [17].

However, the color of the encapsulates resulted in a mixture between the color of the
CCX and the color of the pure encapsulating matrices. WPC had L*, a*, and b* values
of 57.94 ± 0.18, −0.12 ± 0.07, and 9.52 ± 0.08, respectively, while ZN showed values of
50.14 ± 0.18, 0.93 ± 0.02, and 10.93 ± 0.06, respectively. Thus, encapsulation with WPC
caused a noticeable color change, with ∆E* values within the range of 2 to 3.5, meaning
that the color difference would be perceptible to most observers but not strikingly different.
The WPC encapsulation process slightly lightened the samples and reduced the red hues
while enhancing the yellow tones, suggesting that WPC creates a subtle masking effect on
the natural pigments without drastically altering the overall color.

Regarding the encapsulation with ZN, the most significant color changes were ob-
served in ZN-CCX 2:1 ratio capsules with ∆E* well above 5. This substantial increase in
lightness and reduction in redness suggests a more pronounced influence on the protein
color. These results underline the critical role of the matrix composition in influencing the
visual appearance of the encapsulates in addition to its protection role.

In addition, it is important to mention that the capsules were readily soluble in water
or ethanol depending on the nature of the encapsulating matrix, as no thermal treatment or
chemical reaction occurred during the EAPG encapsulation process.

3.2. Characterization of Antioxidant Activity and the Polyphenol Content

The antioxidant activity and polyphenol content of the CCX-EAPG-derived capsules are
shown in Table 2. Previous studies have demonstrated that camu camu possesses antioxidant
capabilities that significantly surpass those of various fruits by over tenfold [27,38,39]. In our
investigation, DPPH inhibition percentages for the CCX were 89.06%, which increased to
some small extent to 94.07% for CCX-EAPG, potentially attributed to humidity loss during
drying by EAPG. Regarding the encapsulates, the 2:1 encapsulation ratio in protein-based
formulations was found to be more antioxidant for the 2:1 ratio than for the 1:1 ratio,
especially in the case of zein. This observation is consistent with findings from prior studies
on dragon blood sap (DBS) with EAPG-delivered capsules [30], where a 1:1 coating-to-core
ratio led to decreased DPPH radical scavenging activity. In any case, the differences among
samples are relatively small and could be within the experimental error associated with
the process and the analytical method. In future studies, other antioxidant tests, such as
ORAC, ABTS, or FRAP, will be considered to study the differences between the samples.

Table 2. Total soluble polyphenol content and antioxidant activity for CCX dried by EAPG (CCX-
EAPG) and encapsulated CCX into whey protein concentrate (WPC) and zein (ZN).

Sample DPPH Inhibition
(%)

TSPs
(mg GAE/g Dried CCX)

CCX 89.06 ± 0.02 a 1.13 ± 0.05 a

CCX-EAPG 94.03 ± 0.02 b 1.14 ± 0.07 a

WPC-CCX 1:1 91.60 ± 0.06 ab 1.15 ± 0.04 a

WPC-CCX 2:1 94.07 ± 0.04 b 1.11 ± 0.05 a

ZN-CCX 1:1 85.32 ± 0.02 a 1.21 ± 0.06 a

ZN-CCX 2:1 93.22 ± 0.04 b 1.15 ± 0.05 a

Mean values ± standard deviation with different superscripts in the same column are significantly different
(Tukey test, p ≤ 0.05). DPPH inhibition percentage of the DPPH reactive. TSPs—total soluble polyphenols.
GAE—gallic acid equivalent.

To further investigate the stability and antioxidant characteristics of the processed ma-
terials, the total soluble polyphenols (TSPs) were also determined using the Folin–Ciocalteu
method. The results, shown in Table 2, unveiled consistent TSP levels across all samples,
with a narrow range from 1.06 to 1.15 mg GAE/g dried CCX. The consistent retention of



Foods 2024, 13, 3280 10 of 22

total soluble polyphenols (TSPs) indicates the efficiency of the EAPG method in preserving
the initial TSP content during drying or encapsulation. Moreover, the comparable TSP
values among samples imply that the choice of coating materials did not significantly
affect the polyphenol content. These results align with prior research demonstrating the
preservation of bioactive compounds, including polyphenols, throughout encapsulation
processes [31].

According to the literature, the total phenolic content within camu camu is influenced
by factors such as fruit composition, ripeness, and postharvest processing methods. The
camu camu flour used in this study was obtained through a comprehensive procedure
involving handpicked fruits subjected to fluidized bed drying at temperatures below 60 ◦C,
followed by the fruits being finely ground into a powder and packaged under controlled
conditions to safeguard their purity. Regarding the results provided by other authors,
Genovese et al. (2008) reported a concentration of 19.92 mg GAE/g in commercial camu
camu fruit samples [40]. Similarly, Chirinos et al. (2010) observed varying polyphenolic
content among different color stages of camu camu fruit, with concentrations ranging from
12.42 to 15.74 mg GAE/g [41]. Conversely, often overlooked seeds showcased a notably
elevated phenolic content of 3.36 mg GAE/g, underscoring their potential as a concentrated
source of valuable compounds. Fidelis et al. (2020) extended to seed extracts, documenting
values ranging from 6.57 mg GAE/g to 54.20 mg GAE/g [42].

Furthermore, Fracassetti et al. (2013) noted substantial differences in TSP content
among various components of camu camu [8]. Specifically, processed derivatives such
as flour exhibited a higher concentration of phenolics at 6.73 mg GAE/g, whereas less
processed forms like pulp powder contained significantly lower levels at 0.49 mg GAE/g.
Despite being rich in phytonutrients, the peel displayed a relatively modest phenolic
content of 0.11 mg GAE/g, whereas fresh pulp exhibited 0.09 mg GAE/g. Therefore, this
aspect must be taken into account in order to consider the potential of industrialization.

3.3. Storage Stability

This study evaluated the stability of EAPG-dried CCX and CCX microencapsulates
under various storage conditions. Microcapsules were exposed to diverse relative humidity
(0%, 23%, and 56%) and temperatures (4 ◦C and 21 ◦C) over 40 days. An accelerated aging
treatment was conducted to assess photo-oxidation stability by subjecting the microcapsules
to UV light irradiation. During this storage time, particle size and morphology revealed no
significant changes in the obtained samples. TSPs and DPPH were used to quantify the
stability of the bioactive, whereas ATR-FTIR was used to provide a qualitative description
of the chemical changes that occurred under the studied storing conditions.

3.3.1. Polyphenol Content Stability

Throughout the study, TSP evolution was monitored for each formulation to indicate
its storage stability. The EAPG-dried CCX exhibited a time-dependent reduction in TSPs
throughout the 40-day storage period (Figure 3A). Significant differences (p < 0.05) were
observed among the storage conditions. Microcapsules stored under low humidity and
temperature (0% RH, 4 ◦C) displayed the lowest TSP reduction. Conversely, exposure
to UV light irradiation or higher relative humidity (23% and 56% RH) and moderate
temperature (21 ◦C) substantially reduced TSP. This observation is consistent with prior
scientific investigations emphasizing the vulnerability of polyphenols to temperature [43]
and photodegradation when exposed to UV light [44] and humidity [45,46].

Regarding the encapsulates, the WPC-CCX 1:1 ratio microparticles (Figure 3B) dis-
played significant TSP decay across all tested storage conditions throughout the 40 days,
although to a lesser extent than EAPG-dried CCX. Conversely, WPC-CCX microparticles
at a 2:1 ratio (Figure 3C) demonstrated substantial TSP retention under most conditions,
except for the high humidity (56% RH) experiment, where significant differences in TSP
decay occurred.
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In contrast, ZN-CCX microparticles at both 1:1 and 2:1 ratios (Figure 3D,E, respectively)
exhibited superior TSP retention under most storage conditions, highlighting the efficiency
of ZN in polyphenol protection. However, ZN encapsulation at a 1:1 ratio was seen to be
less effective in TSP protection under high humidity, as evidenced by a significant decrease
in TSP content at 56% RH. Therefore, the encapsulation with ZN at a 2:1 ratio exhibited the
best preservation even under high relative humidity and UV light.
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3.3.2. IP-DPPH Storage Stability

This study investigated the stability of the antioxidant activity measured as DPPH
inhibition in the EAPG-dried CCX and CCX microencapsulates under the studied storage
conditions, including exposure to UV light as an accelerated photooxidation treatment
(Figure 4).
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Figure 4. Evolution of the DPPH inhibition decay of CCX EAPG-derived microcapsules over 40 days
under diverse storage conditions. (A) Non-encapsulated CCX; (B) WPC-CCX 1:1 w/w; (C) WPC-CCX
2:1 w/w; (D) ZN-CCX 1:1 w/w; (E) ZN-CCX 2:1 w/w.

Under low humidity conditions (0% RH), regardless of temperature, the dried CCX
(Figure 4A) showed less than 20% decay in DPPH inhibition over the 40 days. Conversely,
exposure to higher humidity levels (23% and 56%) or UV light resulted in a notable decrease
in DPPH inhibition, up to approximately 30%. The effect of the high relative humidity
and UV light on the stability of the antioxidant activity is consistent with the observations
reported for dragon blood sap [45] and curcumin [47].

Regarding the formulations of the encapsulates, it was found that the same conditions
affected the stability of the antioxidant activity. However, the encapsulant materials helped
to decrease the observed decay. The microcapsules with a higher encapsulating material
ratio (2:1) offered better protection against degradation compared to those with a lower
ratio (1:1). WPC-CCX microcapsules displayed less DPPH inhibition compared to ZN-CCX
microcapsules, suggesting that ZN provides better protection against the degradation of
antioxidant activity. This is consistent with the stability results for TSPs and with a previous
work analyzing the stability of dragon’s blood sap against different storage conditions [31].
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3.4. ATR-FTIR Analysis

Attenuated total reflection–Fourier transform infrared spectroscopy (ATR-FTIR) anal-
ysis of the EAPG-dried CCX is shown in Figure 5. The band envelope at ca. 3260 cm−1

is primarily associated with O-H stretching vibrations, a chemical group present in the
main bioactive compounds of camu camu such as citric acid, ascorbic acid, or phenolic
compounds [44,45], but that may also be associated with residual moisture or the residual
ethanol from the extraction process. The band at ca. 2920 cm−1 is attributed to alkyl
-C-H stretching vibrations [48]. The band at around 1675 cm−1 is assigned to the carbonyl
group [49], a common chemical group in the bioactive compounds prevalent in camu
camu [4,6]. The band at ca. 1600 cm−1 is associated with alkenyl groups also characteristic
of the main bioactive molecules present in camu camu [50,51]. The spectrum also features
a band at ca. 1440 cm−1 linked to -CH deformation and aromatic ring vibrations [52], also
characteristics of some of the bioactive molecules of camu camu such as flavonoids and
proanthocyanidins [27,39]. The band at around 1338 cm−1 is related to C-C bending vibra-
tions, while the band envelope from 1300 to 1000 cm−1 is associated with C-O stretching
vibrations related to ether, esters, and alcohol groups, even aromatic alcohols also present
in the characteristic bioactive compounds of camu camu such as ascorbic acid, flavonoids,
and proanthocyanidins [53]. Lastly, out-of-plane C-H vibrations from 900 to 700 cm−1

provide insights into the aliphatic hydrocarbon composition of the CCX [26,49].

Foods 2024, 13, x FOR PEER REVIEW 13 of 22 
 

 

3.4. ATR-FTIR Analysis 
Attenuated total reflection–Fourier transform infrared spectroscopy (ATR-FTIR) 

analysis of the EAPG-dried CCX is shown in Figure 5. The band envelope at ca. 3260 cm−1 
is primarily associated with O-H stretching vibrations, a chemical group present in the 
main bioactive compounds of camu camu such as citric acid, ascorbic acid, or phenolic 
compounds [44,45], but that may also be associated with residual moisture or the residual 
ethanol from the extraction process. The band at ca. 2920 cm−1 is attributed to alkyl -C-H 
stretching vibrations [48]. The band at around 1675 cm−1 is assigned to the carbonyl group 
[49], a common chemical group in the bioactive compounds prevalent in camu camu [4,6]. 
The band at ca. 1600 cm−1 is associated with alkenyl groups also characteristic of the main 
bioactive molecules present in camu camu [50,51]. The spectrum also features a band at 
ca. 1440 cm−1 linked to -CH deformation and aromatic ring vibrations [52], also character-
istics of some of the bioactive molecules of camu camu such as flavonoids and proantho-
cyanidins [27,39]. The band at around 1338 cm−1 is related to C-C bending vibrations, while 
the band envelope from 1300 to 1000 cm−1 is associated with C-O stretching vibrations 
related to ether, esters, and alcohol groups, even aromatic alcohols also present in the 
characteristic bioactive compounds of camu camu such as ascorbic acid, flavonoids, and 
proanthocyanidins [53]. Lastly, out-of-plane C-H vibrations from 900 to 700 cm−1 provide 
insights into the aliphatic hydrocarbon composition of the CCX [26,49]. 

 
Figure 5. Attenuated total reflection–Fourier transform infrared spectroscopy (ATR-FTIR) of EAPG-
dried CCX. 

The main characteristic bands of the camu camu dried extract were defined, and ATR-
FTIR was used to perform a qualitative analysis to determine the storage stability of the 
different formulations. Figure 6 illustrates the ATR-FTIR spectral evolution of the EAPG-
dried CCX microparticles after 40 days under the studied storage conditions. Significant 
changes in the spectrum were primarily observed in the 1800–800 cm−1 wavenumber 
range, which could indicate CCX degradation. The spectra were maximized to their high-
est intensity for clearer comparisons to compare relative changes among bands. After a 
40-day storage period, the most significant changes in the dried CCX were observed when 
samples were subjected to high humidity conditions and exposure to UV light (as depicted 
in Figures 6E,F). These were mainly detected in the band envelopes at ca. 1800–1600 cm−1 

Figure 5. Attenuated total reflection–Fourier transform infrared spectroscopy (ATR-FTIR) of EAPG-
dried CCX.

The main characteristic bands of the camu camu dried extract were defined, and ATR-
FTIR was used to perform a qualitative analysis to determine the storage stability of the
different formulations. Figure 6 illustrates the ATR-FTIR spectral evolution of the EAPG-
dried CCX microparticles after 40 days under the studied storage conditions. Significant
changes in the spectrum were primarily observed in the 1800–800 cm−1 wavenumber
range, which could indicate CCX degradation. The spectra were maximized to their highest
intensity for clearer comparisons to compare relative changes among bands. After a 40-day
storage period, the most significant changes in the dried CCX were observed when samples
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were subjected to high humidity conditions and exposure to UV light (as depicted in
Figure 6E,F). These were mainly detected in the band envelopes at ca. 1800–1600 cm−1

and at ca. 1200–900 cm−1. The first band envelope is ascribed to the carbonyl stretching
absorption, which showed a decrease in the number of carboxylic acid groups and an
increase in the number of ketone and aldehyde groups, which is aligned with the reported
reactions of oxidation of the main bioactive compounds in camu camu such as citric acid,
ascorbic acid, flavonoids, and proanthocyanidins [54–58]. Regarding the second band
envelope at ca. 1200–900 cm−1, this is associated with the stretching vibration of the C-
O bond. The observed changes in band position and intensity variation were due to the
formation of linear and aromatic ether groups due to the oxidation reactions of the bioactive
compounds present in the dried CCX [54–58].
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Figure 6. Spectral evolution of attenuated total reflection–Fourier transform infrared spectroscopy
(ATR-FTIR) for the EAPG-dried CCX stored under various conditions: (A) 0 days; (B) 40 days, 0%
RH, 4 ◦C; (C) 40 days, 0% RH, 21 ◦C; (D) 40 days, 23% RH, 21 ◦C; (E) 40 days, 56% RH, 21 ◦C;
(F) 40 days, UV light exposure. The spectra were maximized to the band with the highest intensity in
the wavenumber range between 1800 and 800 cm−1.

Regarding the encapsulates, Figures 7 and 8 provide the evolution of the ATR-FTIR
spectra at the different storage conditions for the system WPC-CCX at 1:1 and 2:1 ratios,
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respectively. In contrast, Figures 9 and 10 represent the spectra of the system ZN-CCX
at 1:1 and 2:1 ratios, respectively. Both encapsulant matrices have a protein nature, and
consequently, similar characteristic bands were detected; notably, the band located at ca.
1740 cm−1 ascribed to the trenching vibration of the C=O bond, the band at ca. 1632 cm−1

and at ca. 1520 cm−1 ascribed to the bending vibration of the N-H bond of amides I and II,
respectively [59,60].
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Figure 7. Spectral evolution of attenuated total reflection–Fourier transform infrared spectroscopy
(ATR-FTIR) for WPC-CCX 1:1 w/w EAPG-derived microcapsules stored under various conditions:
(A) 0 days; (B) 40 days, 0% RH, 4 ◦C; (C) 40 days, 0% RH, 21 ◦C; (D) 40 days, 23% RH, 21 ◦C;
(E) 40 days, 56% RH, 21 ◦C; (F) 40 days, UV light exposure. The spectra were maximized to the band
with the highest intensity in the wavenumber range between 1800 and 800 cm−1.
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Figure 8. Spectral evolution of attenuated total reflection–Fourier transform infrared spectroscopy
(ATR-FTIR) for WPC-CCX 2:1 w/w EAPG-derived microcapsules stored under various conditions:
(A) 0 days; (B) 40 days, 0% RH, 4 ◦C; (C) 40 days, 0% RH, 21 ◦C; (D) 40 days, 23% RH, 21 ◦C;
(E) 40 days, 56% RH, 21 ◦C; (F) 40 days, UV light exposure. The spectra were maximized to the band
with the highest intensity in the wavenumber range between 1800 and 800 cm−1.

The ATR-FTIR spectroscopy analysis of WPC-CCX encapsulates revealed small shifts
in the spectral evolution. The most significant changes were observed when samples were
subjected to high humidity (Figures 7E and 8E) and UV light (Figures 7F and 8F), as an
intensity variation in the band envelope between 1600 and 1800 cm−1 as a consequence
of the formation of aldehydes, ketones, and esters as oxidation products of the bioactive
compounds of camu camu [54–58] and a small decrease in the band associated with the
secondary amine at ca 1520 cm−1, probably due to a slight degradation of the protein. The
band envelope between 1200 and 900 cm−1 did not show significant differences, probably
because the changes in the spectra might be hidden by the bands of the protein. No
significant differences were detected for the ratios studied.
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Figure 9. Spectral evolution of attenuated total reflection–Fourier transform infrared spectroscopy
(ATR-FTIR) for ZN-CCX 1:1 w/w EAPG-derived microcapsules stored under various conditions:
(A) 0 days; (B) 40 days, 0% RH, 4 ◦C; (C) 40 days, 0% RH, 21 ◦C; (D) 40 days, 23% RH, 21 ◦C;
(E) 40 days, 56% RH, 21 ◦C; (F) 40 days, UV light exposure. The spectra were maximized to the band
with the highest intensity in the wavenumber range between 1800 and 800 cm−1.

The spectral evolution of ATR-FTIR for ZN-CCX encapsulates at 1:1 and 2:1 encapsu-
lation ratios is shown in Figures 9 and 10, respectively. After 40 days of experimentation,
slight changes become discernible at high relative humidity and under UV light radiation.
Main variations were detected in the 1800–1600 cm−1 band envelope as a consequence of
the increase in aldehyde and ketone as ester groups due to the progression of the oxidation
reactions [54–58] and a slight decrease in intensity in the band related to the amide II of
the protein. The band envelope between 1200 and 900 cm−1 did not show significant
differences, probably because the changes in the spectra might be hidden by the bands of
the protein. The ZN-CCX 2:1 encapsulation ratio (Figure 10) exhibits fewer changes than
the 1:1 encapsulates, results that agree with the observations made in previous sections.
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Figure 10. Spectral evolution of attenuated total reflection–Fourier transform infrared spectroscopy
(ATR-FTIR) for ZN-CCX 2:1 w/w EAPG-derived microcapsules stored under various conditions:
(A) 0 days; (B) 40 days, 0% RH, 4 ◦C; (C) 40 days, 0% RH, 21 ◦C; (D) 40 days, 23% RH, 21 ◦C;
(E) 40 days, 56% RH, 21 ◦C; (F) 40 days, UV light exposure. The spectra were maximized to the band
with the highest intensity in the wavenumber range between 1800 and 800 cm−1.

4. Conclusions

This study demonstrates for the first time the impact on the stability of the electrohy-
drodynamic EAPG technique to dry or encapsulate camu camu extract (CCX) at n. The
resulting microparticles exhibit favorable attributes for application in food products, effec-
tively preserving the bioactive properties of CCX and maintaining consistent levels of total
soluble polyphenols (TSPs) and antioxidant activity (DPPH inhibition). The comparative
analysis conducted in this study demonstrates the superior effectiveness of the encap-
sulates, especially of ZN as an encapsulation material compared to WPC, in protecting
the bioactive properties of camu camu when subjected to challenging storage conditions.
The encapsulation system with a 2:1 ratio also demonstrated a markedly reduced degree
of degradation compared to its 1:1 counterpart, particularly in environments with high
humidity and UV light exposure. Considering the outcome of this work, it is possible
to state that the EAPG technique stands out as a versatile and promising approach for
creating small particle size and size distribution powders and encapsulated powders of
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camu camu. The obtained results show the potential of this technology to positively impact
the existing drying and encapsulation procedures, establishing a new standard to guarantee
the stability and effectiveness of bioactive compounds across various applications, such as
functional foods, cosmetics, agricultural inputs, or nutraceutical products.
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