Bioactive Lipids in Dunaliella salina: Implications for Functional Foods and Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Microalgae Material
2.3. Total Lipid Extraction
2.4. Quantification of Phospholipids
2.5. Quantification of Glycolipids
2.6. Quantification of Triglycerides
2.7. Quantification of Pigments
2.8. C18 Liquid Chromatography-Mass Spectrometry (C18 LC-MS)
2.9. Fatty Acid Analysis by GC-MS
2.10. Anti-Inflammatory Activity
2.11. Antioxidant Activity
2.12. Antidiabetic Activity—α-Glucosidase Inhibition Assay
2.13. Statistical Analysis
3. Results and Discussion
3.1. Lipid Content
3.2. Lipidome Profiling
3.3. Fatty Acid Profiling
3.4. Bioactive Properties of D. salina Lipids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clemente-Suárez, V.J.; Beltrán-Velasco, A.I.; Redondo-Flórez, L.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023, 15, 2749. [Google Scholar] [CrossRef] [PubMed]
- Urban Food System Transformation in the Context of Food 2030—Current Practice and Outlook Towards 2030—European Commission. Available online: https://research-and-innovation.ec.europa.eu/news/all-research-and-innovation-news/urban-food-system-transformation-context-food-2030-current-practice-and-outlook-towards-2030-2023-05-31_en (accessed on 4 September 2024).
- Conde, T.; Neves, B.; Couto, D.; Melo, T.; Lopes, D.; Pais, R.; Batista, J.; Cardoso, H.; Silva, J.L.; Domingues, P.; et al. Polar Lipids of Marine Microalgae Nannochloropsis oceanica and Chlorococcum amblystomatis Mitigate the LPS-Induced Pro-Inflammatory Response in Macrophages. Mar. Drugs 2023, 21, 629. [Google Scholar] [CrossRef] [PubMed]
- Regueiras, A.; Huguet, Á.; Conde, T.; Couto, D.; Domingues, P.; Domingues, M.R.; Costa, A.M.; da Silva, J.L.; Vasconcelos, V.; Urbatzka, R. Potential Anti-Obesity, Anti-Steatosis, and Anti-Inflammatory Properties of Extracts from the Microalgae Chlorella vulgaris and Chlorococcum amblystomatis under Different Growth Conditions. Mar. Drugs 2021, 20, 9. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, F. Evaluation of the Green Alga Chlorella pyrenoidosa for Management of Diabetes. J. Food Drug Anal. 2020, 20, 28. [Google Scholar] [CrossRef]
- Barbosa, M.; Inácio, L.G.; Afonso, C.; Maranhão, P. The Microalga Dunaliella and Its Applications: A Review. Appl. Phycol. 2023, 4, 99–120. [Google Scholar] [CrossRef]
- Andriopoulos, V.; Gkioni, M.D.; Koutra, E.; Mastropetros, S.G.; Lamari, F.N.; Hatziantoniou, S.; Kornaros, M. Total Phenolic Content, Biomass Composition, and Antioxidant Activity of Selected Marine Microalgal Species with Potential as Aquaculture Feed. Antioxidants 2022, 11, 1320. [Google Scholar] [CrossRef]
- Gonabadi, E.; Samadlouie, H.R.; Shafafi Zenoozian, M. Optimization of Culture Conditions for Enhanced Dunaliella salina Productions in Mixotrophic Culture. Prep. Biochem. Biotechnol. 2022, 52, 154–162. [Google Scholar] [CrossRef]
- Lv, H.; Qiao, C.; Zhong, C.; Jia, S. Metabolic Fingerprinting of Dunaliella salina Cultured under Sulfur Deprivation Conditions. J. Appl. Phycol. 2018, 30, 355–365. [Google Scholar] [CrossRef]
- de Celente, G.S.; Rizzetti, T.M.; Sui, Y.; de Souza Schneider, R.D.C. Potential Use of Microalga Dunaliella salina for Bioproducts with Industrial Relevance. Biomass Bioenergy 2022, 167, 106647. [Google Scholar] [CrossRef]
- Lordan, R.; Redfern, S.; Tsoupras, A.; Zabetakis, I. Inflammation and Cardiovascular Disease: Are Marine Phospholipids the Answer? Food Funct. 2020, 11, 2861–2885. [Google Scholar] [CrossRef]
- Conde, T.A.; Neves, B.F.; Couto, D.; Melo, T.; Neves, B.; Costa, M.; Silva, J.; Domingues, P.; Domingues, M.R. Microalgae as Sustainable Bio-Factories of Healthy Lipids: Evaluating Fatty Acid Content and Antioxidant Activity. Mar. Drugs 2021, 19, 357. [Google Scholar] [CrossRef] [PubMed]
- Moreira, A.S.P.; Gonçalves, J.; Conde, T.A.; Couto, D.; Melo, T.; Maia, I.B.; Pereira, H.; Silva, J.; Domingues, M.R.; Nunes, C. Chrysotila pseudoroscoffensis as a Source of High-Value Polar Lipids with Antioxidant Activity: A Lipidomic Approach. Algal Res. 2022, 66, 102756. [Google Scholar] [CrossRef]
- Maurício, T.; Couto, D.; Lopes, D.; Conde, T.; Pais, R.; Batista, J.; Melo, T.; Pinho, M.; Moreira, A.S.P.; Trovão, M.; et al. Differences and Similarities in Lipid Composition, Nutritional Value, and Bioactive Potential of Four Edible Chlorella vulgaris Strains. Foods 2023, 12, 1625. [Google Scholar] [CrossRef]
- Rey, F.; Melo, T.; Lopes, D.; Couto, D.; Marques, F.; Domingues, M.R. Applications of Lipidomics in Marine Organisms: Progress, Challenges and Future Perspectives. Mol. Omics 2022, 18, 357–386. [Google Scholar] [CrossRef]
- Lopes, D.; Rey, F.; Melo, T.; Pinho, M.; Moreira, A.S.P.; Pes, K.; Mata, L.; Domingues, M.R. Lipidomic Fingerprinting of the Red Seaweed Asparagopsis spp. Evidencing Specific Profiling in Gametophyte and Tetrasporophyte Life Stages. Algal Res. 2024, 77, 103353. [Google Scholar] [CrossRef]
- Oliveira, A.L.S.; Carvalho, M.J.; Oliveira, D.L.; Costa, E.; Pintado, M.; Madureira, A.R. Sugarcane Straw Polyphenols as Potential Food and Nutraceutical Ingredient. Foods 2022, 11, 4025. [Google Scholar] [CrossRef]
- Babich, O.; Dolganyuk, V.; Andreeva, A.; Katserov, D.; Matskova, L.; Ulrikh, E.; Ivanova, S.; Michaud, P.; Sukhikh, S. Isolation of Valuable Biological Substances from Microalgae Culture. Foods 2022, 11, 1654. [Google Scholar] [CrossRef]
- Hadizadeh, Z.; Mehrgan, M.S.; Shekarabi, S.P.H. The Potential Use of Stickwater from a Kilka Fishmeal Plant in Dunaliella salina Cultivation. Environ. Sci. Pollut. Res. 2020, 27, 2144–2154. [Google Scholar] [CrossRef] [PubMed]
- Sandgruber, F.; Gielsdorf, A.; Baur, A.C.; Schenz, B.; Müller, S.M.; Schwerdtle, T.; Stangl, G.I.; Griehl, C.; Lorkowski, S.; Dawczynski, C. Variability in Macro- and Micronutrients of 15 Commercially Available Microalgae Powders. Mar. Drugs 2021, 19, 310. [Google Scholar] [CrossRef]
- Monte, J.; Ribeiro, C.; Parreira, C.; Costa, L.; Brive, L.; Casal, S.; Brazinha, C.; Crespo, J.G. Biorefinery of Dunaliella salina: Sustainable Recovery of Carotenoids, Polar Lipids and Glycerol. Bioresour. Technol. 2020, 297, 122509. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, J.; Xin, Q.; Yuan, R.; Miao, Y.; Yang, M.; Mo, H.; Chen, K.; Cong, W. Protective Effects of Oleic Acid and Polyphenols in Extra Virgin Olive Oil on Cardiovascular Diseases. Food Sci. Hum. Wellness 2024, 13, 529–540. [Google Scholar] [CrossRef]
- Vanitha, A.; Narayan, M.S.; Murthy, K.N.C.; Ravishankar, G.A. Comparative Study of Lipid Composition of Two Halotolerant Alga, Dunaliella bardawil and Dunaliella salina. Int. J. Food Sci. Nutr. 2007, 58, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.H.; Thompson, G.A. Galactolipids of Thylakoid Pigment Protein Complexes Separated Electrophoretically from Thylakoids of Dunaliella salina Labeled with Radioactive Fatty Acids 1. Plant Physiol. 1989, 90, 610–616. [Google Scholar] [CrossRef]
- Ha, K.S.; Thompson, G.A. Diacylglycerol Metabolism in the Green Alga Dunaliella salina under Osmotic Stress: Possible Role of Diacylglycerols in Phospholipase C-Mediated Signal Transduction. Plant Physiol. 1991, 97, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Ahn, H.M.; Lim, S.R.; Hong, S.-J.; Cho, B.-K.; Lee, H.; Lee, C.-G.; Choi, H.-K. Comparative Lipidomic Profiling of Two Dunaliella tertiolecta Strains with Different Growth Temperatures under Nitrate-Deficient Conditions. J. Agric. Food Chem. 2015, 63, 880–887. [Google Scholar] [CrossRef]
- Alves, E.; Melo, T.; Barros, M.P.; Domingues, M.R.M.; Domingues, P. Lipidomic Profiling of the Olive (Olea europaea L.) Fruit towards Its Valorisation as a Functional Food: In-Depth Identification of Triacylglycerols and Polar Lipids in Portuguese Olives. Molecules 2019, 24, 2555. [Google Scholar] [CrossRef]
- Alves, E.; Rey, F.; Melo, T.; Barros, M.P.; Domingues, P.; Domingues, R. Bioprospecting Bioactive Polar Lipids from Olive (Olea europaea Cv. Galega vulgar) Fruit Seeds: LC-HR-MS/MS Fingerprinting and Sub-Geographic Comparison. Foods 2022, 11, 951. [Google Scholar] [CrossRef]
- Sabzi, F.; Sirbu, D.; Kuhnert, N. Profiling of Regioisomeric Triacylglycerols in Pistachio Nuts by High-Performance Liquid Chromatography-Electrospray Ionization Mass Spectrometry. J. Food Compos. Anal. 2023, 122, 105395. [Google Scholar] [CrossRef]
- Ge, Y.; Zang, X.; Liu, Y.; Wang, L.; Wang, J.; Li, Y.; Ma, W. Multi-Omics Analysis to Visualize Ecotype-Specific Heterogeneity of the Metabolites in the Mesocarp Tissue of Three Avocado (Persea americana Mill.) Ecotypes. Horticulturae 2021, 7, 94. [Google Scholar] [CrossRef]
- Gaspar, L.; Ricardo, F.; Melo, T.; Domingues, P.; Domingues, M.R.; Calado, R.; Rey, F. Lipidomics of Common Octopus’ (Octopus vulgaris) Arm Muscle Using Untargeted High-Resolution Liquid Chromatography-Mass Spectrometry. J. Food Compos. Anal. 2023, 115, 104871. [Google Scholar] [CrossRef]
- Lauritano, C.; Helland, K.; Riccio, G.; Andersen, J.H.; Ianora, A.; Hansen, E.H. Lysophosphatidylcholines and Chlorophyll-Derived Molecules from the Diatom Cylindrotheca closterium with Anti-Inflammatory Activity. Mar. Drugs 2020, 18, 166. [Google Scholar] [CrossRef] [PubMed]
- Bruno, A.; Rossi, C.; Marcolongo, G.; Di Lena, A.; Venzo, A.; Berrie, C.P.; Corda, D. Selective in Vivo Anti-Inflammatory Action of the Galactolipid Monogalactosyldiacylglycerol. Eur. J. Pharmacol. 2005, 524, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Banskota, A.H.; Gallant, P.; Stefanova, R.; Melanson, R.; O’Leary, S.J.B. Monogalactosyldiacylglycerols, Potent Nitric Oxide Inhibitors from the Marine Microalga Tetraselmis chui. Nat. Prod. Res. 2013, 27, 1084–1090. [Google Scholar] [CrossRef] [PubMed]
- Saide, A.; Martínez, K.A.; Ianora, A.; Lauritano, C. Unlocking the Health Potential of Microalgae as Sustainable Sources of Bioactive Compounds. Int. J. Mol. Sci. 2021, 22, 4383. [Google Scholar] [CrossRef]
- Nogoy, K.M.C.; Kim, H.J.; Lee, Y.; Zhang, Y.; Yu, J.; Lee, D.H.; Li, X.Z.; Smith, S.B.; Seong, H.A.; Choi, S.H. High Dietary Oleic Acid in Olive Oil-supplemented Diet Enhanced Omega-3 Fatty Acid in Blood Plasma of Rats. Food Sci. Nutr. 2020, 8, 3617–3625. [Google Scholar] [CrossRef]
- Saini, R.K.; Prasad, P.; Sreedhar, R.V.; Akhilender Naidu, K.; Shang, X.; Keum, Y.-S. Omega-3 Polyunsaturated Fatty Acids (PUFAs): Emerging Plant and Microbial Sources, Oxidative Stability, Bioavailability, and Health Benefits-A Review. Antioxidants 2021, 10, 1627. [Google Scholar] [CrossRef]
- Šimat, V.; Bogdanović, T.; Poljak, V.; Petričević, S. Changes in Fatty Acid Composition, Atherogenic and Thrombogenic Health Lipid Indices and Lipid Stability of Bogue (Boops boops Linnaeus, 1758) during Storage on Ice: Effect of Fish Farming Activities. J. Food Compos. Anal. 2015, 40, 120–125. [Google Scholar] [CrossRef]
- Matos, Â.P.; Feller, R.; Moecke, E.H.S.; de Oliveira, J.V.; Junior, A.F.; Derner, R.B.; Sant’Anna, E.S. Chemical Characterization of Six Microalgae with Potential Utility for Food Application. J. Am. Oil Chem. Soc. 2016, 93, 963–972. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Dongho Dongmo, F.F.; Fogang Mba, A.R.; Njike Ngamga, F.H.; Djeukeu Asongni, W.; Zokou, R.; Simo Noutsa, B.; Ngo Hagbe, D.; Tchuenbou-Magaia, F.L.; Ebelle Etame, R.M. An Overview of Fatty Acids-Based Nutritional Quality Indices of Fish Oils from Cameroon: Impact of Fish Pre-Treatment and Preservation Methods. J. Food Compos. Anal. 2024, 131, 106250. [Google Scholar] [CrossRef]
- Khalili Tilami, S.; Kouřimská, L. Assessment of the Nutritional Quality of Plant Lipids Using Atherogenicity and Thrombogenicity Indices. Nutrients 2022, 14, 3795. [Google Scholar] [CrossRef] [PubMed]
- Bito, T.; Okumura, E.; Fujishima, M.; Watanabe, F. Potential of Chlorella as a Dietary Supplement to Promote Human Health. Nutrients 2020, 12, 2524. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, L.; Batista, A.P.; Miranda, A.; Empis, J.; Raymundo, A. Chlorella vulgaris Biomass Used as Colouring Source in Traditional Butter Cookies. Innov. Food Sci. Emerg. Technol. 2007, 8, 433–436. [Google Scholar] [CrossRef]
- Chitranjali, T.; Anoop Chandran, P.; Muraleedhara Kurup, G. Omega-3 Fatty Acid Concentrate from Dunaliella salina Possesses Anti-Inflammatory Properties Including Blockade of NF-κB Nuclear Translocation. Immunopharmacol. Immunotoxicol. 2015, 37, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Conde, T.A.; Zabetakis, I.; Tsoupras, A.; Medina, I.; Costa, M.; Silva, J.; Neves, B.; Domingues, P.; Domingues, M.R. Microalgal Lipid Extracts Have Potential to Modulate the Inflammatory Response: A Critical Review. Int. J. Mol. Sci. 2021, 22, 9825. [Google Scholar] [CrossRef]
- Peraman, M.; Nachimuthu, S. Identification and Quantification of Fucoxanthin in Selected Carotenoid-Producing Marine Microalgae and Evaluation for Their Chemotherapeutic Potential. Pharmacogn. Mag. 2019, 15, 243–249. [Google Scholar] [CrossRef]
- Cakmak, Y.S.; Kaya, M.; Asan-Ozusaglam, M. Biochemical Composition and Bioactivity Screening of Various Extracts from Dunaliella salina, a Green Microalga. EXCLI J. 2014, 13, 679–690. [Google Scholar]
- Tamel Selvan, K.; Goon, J.A.; Makpol, S.; Tan, J.K. Therapeutic Potentials of Microalgae and Their Bioactive Compounds on Diabetes Mellitus. Mar. Drugs 2023, 21, 462. [Google Scholar] [CrossRef]
- Cunha, S.A.; Coscueta, E.R.; Nova, P.; Silva, J.L.; Pintado, M.M. Bioactive Hydrolysates from Chlorella vulgaris: Optimal Process and Bioactive Properties. Molecules 2022, 27, 2505. [Google Scholar] [CrossRef]
- Wang, J.; Hu, X.; Chen, J.; Wang, T.; Huang, X.; Chen, G. The Extraction of β-Carotene from Microalgae for Testing Their Health Benefits. Foods 2022, 11, 502. [Google Scholar] [CrossRef]
- Gallego, R.; Valdés, A.; Sánchez-Martínez, J.D.; Suárez-Montenegro, Z.J.; Ibáñez, E.; Cifuentes, A.; Herrero, M. Study of the Potential Neuroprotective Effect of Dunaliella salina Extract in SH-SY5Y Cell Model. Anal. Bioanal. Chem. 2022, 414, 5357–5371. [Google Scholar] [CrossRef] [PubMed]
- Valdés, A.; Sánchez-Martínez, J.D.; Gallego, R.; Ibáñez, E.; Herrero, M.; Cifuentes, A. In Vivo Neuroprotective Capacity of a Dunaliella salina Extract—Comprehensive Transcriptomics and Metabolomics Study. npj Sci. Food 2024, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- El-Baz, F.K.; Salama, A.A.A.; Hussein, R.A. Dunaliella salina Microalgae Oppose Thioacetamide-Induced Hepatic Fibrosis in Rats. Toxicol. Rep. 2020, 7, 36–45. [Google Scholar] [CrossRef] [PubMed]
Phospholipid | Total Number of Lipid Molecular Species | Number of Lipid Molecular Species with FA 18:3 | Number of Lipid Molecular Species with FA 18:1 | Most Abundant Molecular Species |
PC | 33 | 1 | 3 | PC 18:1/18:1; PC 16:0_18:1; PC 16:0_18:2 |
LPC | 4 | 1 | 0 | LPC 16:0; LPC 18:2; LPC 18:3 |
PG | 20 | 2 | 6 | PG 16:0_18:2; PG 18:1/18:1; PG 16:0_18:1 |
PI | 3 | 1 | 1 | PI 16:0_18:1; PI 16:0_18:2; PI 16:0_18:3 |
Glycolipid | Total Number of Lipid Molecular Species | Number of Lipid Molecular Species with FA 18:3 | Number of Lipid Molecular Species with FA 18:1 | Most Abundant Molecular Species |
MGDG | 13 | 4 | 4 | MGDG 16:4_18:3; MGDG 16:4_18:2; MGDG 16:0_18:1 |
MGMG | 2 | 1 | 0 | MGMG 18:3; MGMG 16:0 |
DGDG | 33 | 8 | 7 | DGDG 16:0_18:1; DGDG 16:1_18:2; DGDG 16:1_18:1 |
DGMG | 2 | 1 | 0 | DGMG 16:0; DGMG 18:3 |
SQDG | 16 | 0 | 0 | SQDG 32:0; SQDG 34:3; SQDG 34:1 |
SQMG | 1 | 0 | 0 | SQMG 16:0 |
Betaine Lipids | Total Number of Lipid Molecular Species | Number of Lipid Molecular Species with FA 18:3 | Number of Lipid Molecular Species with FA 18:1 | Most Abundant Molecular Species |
DGTS | 42 | 14 | 12 | DGTS 16:1_18:2; DGTS16:0_18:2; DGTS 16:0_18:1 |
MGTS | 9 | 1 | 1 | MGTS 18:2 |
Sphingolipids | Total Number of Lipid Molecular Species | Number of Lipid Molecular Species with FA 18:3 | Number of Lipid Molecular Species with FA 18:1 | Most Abundant Molecular Species |
Cer | 20 | 0 | 1 | Cer 18:2;O/17:0; Cer 22:0;O3/26:0; Cer 35:0;O2_3 |
PI-Cer | 1 | 0 | 0 | PI-Cer 20:1;O2/14:0 |
Neutral Lipids | Total Number of Lipid Molecular Species | Number of Lipid Molecular Species with FA 18:3 | Number of Lipid Molecular Species with FA 18:1 | Most Abundant Molecular Species |
TG | 97 | 21 | 43 | TG 16:0_16:0_18:1; TG 16:0_18:1_18:1; TG 16:0_16:0_18:2 |
DG | 10 | 2 | 3 | DG 16:0_18:3;O2; DG 16:0_18:3; DG 18:1/18:1 |
Fatty Acid | µg FA/mg Biomass | Relative Abundance (%) |
---|---|---|
FA 16:0 | 8.13 ± 0.77 | 43.35 ± 1.67 |
FA 16:1 | 0.13 ± 0.01 | 0.69 ± 0.06 |
FA 16:1 n-7 | 0.27 ± 0.02 | 1.43 ± 0.12 |
FA 16:1 n-9 | 0.17 ± 0.03 | 0.89 ± 0.07 |
FA 16:2 n-6 | 0.21 ± 0.02 | 1.09 ± 0.02 |
FA 16:3 n-6 | 0.09 ± 0.01 | 0.49 ± 0.01 |
FA 16:3 n-3 | 0.28 ± 0.04 | 1.47 ± 0.09 |
FA 16:4 n-3 | 0.49 ± 0.10 | 2.59 ± 0.35 |
FA 17:0 | 0.04 ± 0.01 | 0.23 ± 0.04 |
FA 18:0 | 1.13 ± 0.32 | 5.93 ± 1.16 |
FA 18:1 n-9 | 2.74 ± 0.22 | 14.66 ± 1.09 |
FA 18:1 n-7 | 0.42 ± 0.04 | 2.27 ± 0.23 |
FA 18:2 n-8 | 0.14 ± 0.02 | 0.76 ± 0.01 |
FA 18:2 n-6 | 1.16 ± 0.12 | 6.21 ± 0.26 |
FA 18:3 n-6 | 0.15 ± 0.02 | 0.79 ± 0.07 |
FA 18:3 n-3 | 2.55 ± 0.47 | 13.55 ± 1.58 |
FA 20:0 | 0.21 ± 0.03 | 1.16 ± 0.26 |
FA 22:0 | 0.22 ± 0.03 | 1.20 ± 0.26 |
FA 24:0 | 0.23 ± 0.02 | 1.25 ± 0.20 |
Σ SFA | 9.97 ± 0.98 | 53.11 ± 1.26 |
Σ MUFA | 3.73 ± 0.30 | 19.95 ± 1.43 |
Σ PUFA | 5.07 ± 0.79 | 26.94 ± 2.35 |
Σ PUFA n-3 | 3.31 ± 0.61 | 17.60 ± 2.02 |
Σ PUFA n-6 | 1.61 ± 0.17 | 8.57 ± 0.34 |
n-6/n-3 | 0.49 ± 0.04 | |
AI | 0.93 ± 0.06 | |
TI | 0.64 ± 0.07 | |
h/H | 0.88 ± 0.05 |
Anti-Inflammatory Activity | COX-2 Assay |
% inhibition | 35.68 ± 5.16 |
Antioxidant Activity | DPPH• Assay |
TE | 54.59 ± 4.32 |
IC15 | 153.65 ±12.17 |
Antioxidant Activity | ABTS•+ Assay |
TE | 223.97 ± 3.12 |
IC50 | 81.99 ± 1.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pais, R.; Conde, T.; Neves, B.B.; Pinho, M.; Coelho, M.; Pereira, H.; Rodrigues, A.M.C.; Domingues, P.; Gomes, A.M.; Urbatzka, R.; et al. Bioactive Lipids in Dunaliella salina: Implications for Functional Foods and Health. Foods 2024, 13, 3321. https://doi.org/10.3390/foods13203321
Pais R, Conde T, Neves BB, Pinho M, Coelho M, Pereira H, Rodrigues AMC, Domingues P, Gomes AM, Urbatzka R, et al. Bioactive Lipids in Dunaliella salina: Implications for Functional Foods and Health. Foods. 2024; 13(20):3321. https://doi.org/10.3390/foods13203321
Chicago/Turabian StylePais, Rita, Tiago Conde, Bruna B. Neves, Marisa Pinho, Marta Coelho, Hugo Pereira, Alexandre M. C. Rodrigues, Pedro Domingues, Ana Maria Gomes, Ralph Urbatzka, and et al. 2024. "Bioactive Lipids in Dunaliella salina: Implications for Functional Foods and Health" Foods 13, no. 20: 3321. https://doi.org/10.3390/foods13203321
APA StylePais, R., Conde, T., Neves, B. B., Pinho, M., Coelho, M., Pereira, H., Rodrigues, A. M. C., Domingues, P., Gomes, A. M., Urbatzka, R., Domingues, R., & Melo, T. (2024). Bioactive Lipids in Dunaliella salina: Implications for Functional Foods and Health. Foods, 13(20), 3321. https://doi.org/10.3390/foods13203321