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Abstract: This study reviews the applications of big data (BD) and blockchain technology in modern
food testing and explores their impact on educational reform. The first part highlights the criti-
cal role of BD in ensuring food safety across the supply chain, discussing various data collection
methods, such as national and international food safety databases, while addressing the challenges
related to data storage and real-time information retrieval. Additionally, blockchain technology has
been explored for its ability to enhance transparency, traceability, and security in the food-testing
process by creating immutable records of testing data, ensuring data integrity, and reducing the
risk of tampering or fraud. The second part focuses on the influence of BD and blockchain on
educational reform, particularly within food science curricula. BD enables data-driven curriculum
design, supporting personalized learning and more effective educational outcomes, while blockchain
ensures transparency in course management and credentials. This study advocates integrating these
technologies into curriculum reform to enhance both the efficiency and quality of education.

Keywords: big data; blockchain; food testing; education reform

1. Introduction

The World Health Organization defines food safety as the assurance that food is safe
for its intended use and will not harm consumers when prepared and consumed [1]. To
ensure this safety, food testing is performed frequently and routinely in the food industry
for both quality assessment and safety assurance, leading to large datasets that may even
be characterized as big data (BD). In recent years, food-related incidents have occurred
frequently [2–5], with safety concerns being constantly reported worldwide. These reports
have increasing credibility, international status, and impact on local online public opinion,
underscoring the critical importance of food safety measures. These measures encompass
the prevention, reduction, or elimination of physical, chemical, and biological hazard
factors throughout the entire food chain—from production and processing to transportation,
storage, sales, and consumption. Every step from the manufacturers to customers relies
on food testing, and advancements in modern testing technology play a crucial role in
mitigating the occurrence of food-related safety incidents [6].

Despite the critical role of food testing, there are several gaps in current research,
particularly in the handling and analysis of the large volumes of data generated. Modern
food testing not only requires precision, speed, and reliability, but also the ability to
manage and analyze complex datasets from various stages of production. This paper
aims to address these research gaps by exploring the role of BD in food testing processes,
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focusing on four key workflows: data collection, storage and transmission, analysis, and
visualization. The study also delves into the challenges associated with these workflows,
such as data silos, high data storage costs, and inefficiencies in data transfer and analysis.

This study also explored the application of blockchain technology in enhancing the
management and security of data in food testing processes and its future prospects. While
blockchain is not directly involved in conducting food tests, it plays a crucial role in sup-
porting the infrastructure for data management within the food supply chain. Blockchain
enhances transparency [7], security [8], and traceability by providing a decentralized and
tamper-resistant ledger for real-time data recording. This ensures data integrity and secure
sharing among stakeholders, such as producers, distributors, regulators, and retailers [9].
By using a decentralized and tamper-resistant ledger, the blockchain ensures the real-time
recording of data, prevents tampering, and enables secure sharing among stakeholders,
such as producers, distributors, regulators, and retailers [8]. It also supports scalable
solutions for managing large volumes of testing data, while improving traceability and
accountability in food safety management.

However, blockchains still face challenges in food testing. Key issues include ensuring
secure data transmission, balancing information sharing among nodes, and improving the
scalability of the blockchain to handle vast amounts of data. Techniques, such as sharding,
are being explored to enhance the processing capacity [10]. Additionally, there is a need for
improved compatibility and standardization across blockchain systems to ensure seamless
data sharing and interaction within diverse food supply chains. Standardized protocols
and formats are crucial to achieve this goal [11].

Furthermore, this study explores how the integration of BD and blockchain technolo-
gies is driving educational reform, particularly in food science and related curricula. These
technologies have already demonstrated transformative applications across industries,
including food testing, where blockchain ensures supply chain transparency and trace-
ability, and BD enables efficient management and analysis of large-scale testing data. For
instance, blockchain is used to monitor food safety from farm to fork, while BD supports
predictive analytics in food safety management. As these technologies reshape operational
practices and face numerous challenges in practical applications, educational institutions
increasingly need to adjust their curricula to provide students with the skills and knowl-
edge needed to manage and utilize these advanced tools. By integrating case studies
and real-world applications into educational programs, students will be better prepared
to address the complex challenges in modern food safety management and beyond. By
bridging the gap between technological advancements and educational practices, we aim
to contribute to the development of a workforce capable of leveraging these technologies
effectively in the food industry.

1.1. Research Questions

This study aims to address the following research questions:

• How are big data and blockchain technologies currently being applied in food test-
ing processes?

• What are the main challenges and future directions for implementing these technolo-
gies in food testing?

• How do the applications of big data and blockchain in food testing impact educational
curricula in food science and related fields?

1.2. Research Design

This study employs a comprehensive literature review and case study analysis to
explore the applications of big data and blockchain in food testing and their implications
for educational reform. The research design consists of three main components:

• A systematic review of the academic literature and industry reports on big data and
blockchain applications in food testing.
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• An analysis of case studies demonstrating real-world implementations of these tech-
nologies in the food industry.

• An examination of the educational implications based on the identified technological
trends and industry needs.

1.3. Hypotheses

Based on the initial literature review, we propose the following hypotheses:

H1. The integration of Big Data and blockchain technologies in food testing processes significantly
enhances food safety, traceability, and quality control.

H2. The implementation of these technologies in food testing faces significant challenges related to
data management, security, and standardization.

H3. The widespread adoption of Big Data and blockchain in food testing necessitates substantial
changes in food science and related educational curricula.

1.4. Methodology

The methodology for this study involves the following:

• A literature review: A comprehensive review of peer-reviewed articles, industry
reports, and relevant case studies published within the last ten years.

• A case study analysis: An examination of notable implementations of big data and
blockchain in food testing across various segments of the food industry.

• A comparative analysis: Comparison of different technological approaches and their
effectiveness in addressing food testing challenges.

• A gap analysis: Identification of gaps between current educational curricula and the
skills required for implementing big data and blockchain in food testing.

• Synthesis: Integration of findings to develop recommendations for educational reform
and future research directions.

2. Contributions, Challenges and Future Work in BD for Food Testing

De Mauro et al. [12] have proposed a consensus definition of BD: “Big Data represents
the information assets characterized by a high Volume, Velocity, and Variety to require
specific Technology and Analytical Methods for its transformation into Value”. With the
application of intelligent devices, the characteristics of data fragmentation, distribution,
and streaming media are more obvious. Mobile data are rapidly growing. The BD feature
proposed by IBM adds veracity and value aspects. Figure 1 shows the stages in managing
the workflow of a BD project and the tools used [13]. In each phase of a BD project, the
contribution is not possible without the support of artificial intelligence (AI), such as edge
computing, cloud computing, machine learning, and especially deep learning. In the next
phase of this paper, we will explore the application of each phase in food testing, identify
the challenges faced in each phase, and describe future work.

Figure 1. Typical BD case workflow.
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2.1. Data Collection: Online Food Testing Database (Early Warning System and Risk Assessment)

For online food testing databases, examples from different countries and organizations
were collected in this study (Table 1).

Table 1. Online food testing database.

Organization and
Country Database Name Database Type Data Description

WHO (Global) GEMS/food GEMS/food Biological/chemical monitoring data

SAMR (China) SAMR Alerts Alerts/notifications Food testing record

USDA-NAL (USA) USDA National Nutrient
Database for Standard Reference Food product information Nutrient information food products

European Commission
(European Union) RASFF Alerts/notifications Notifications from the Rapid Alert

System for Food and Animal Feed

USFDA (USA)
FDA Recent Recalls, Market

Withdrawals, and Safety Alerts Alerts/notifications
FDA Recalls, Market Withdrawals,

and Safety Alerts in the last 60 days 1

FDA Archive Recalls, Market
Withdrawals, and Safety Alerts

FDA Recalls, Market Withdrawals,
and # Safety Alerts 2

1 Provides information on food recalls, market withdrawals, and safety alerts for the last 60 days. The
link (http://www.fda.gov/Safety/Recalls/default.htm, accessed on 21 October 2024) directs to the FDA of-
ficial recall page, focusing on the latest updates. 2 Provides historical recall records for a longer time span.
The link (https://www.fda.gov/search?site=FDAgov-recalls&client=FDAgov-recalls&proxystylesheet=FDAgov-
recalls&filter=0&getfields=*&q=&requiredfields=recall_category:Food, accessed on 21 October 2024) is to a specific
page that searches through the archive of food recall history.

A comprehensive overview of online food safety databases containing information
on hazards, exposures, surveillance reports, and import refusal reports has been provided
in the literature [14,15]. In the EU, the Rapid Alert System for Food and Feed (RASFF)
remains the central online food safety database used by the authorities, industry, and
scientists. In China, an official open-access food-testing database has not yet emerged.
Only a few researchers have attempted to create an online food safety database using BD
analysis techniques (data mining) [16–18]. Some commercial groups, such as food-mate
(www.foodmate.net, accessed on 1 July 2024), update relevant food safety databases based
on information published by the government.

2.2. Data Storage and Transferring: NoSQL Database and Social Media and Smartphone
Case Studies

Unlike relational databases, such as MySQL (Version 8.3.0), Oracle (Version 23c), and
PostgreSQL (Version 16.0), NoSQL (Version 7.2) is nonrelational. These SQL statements are
open-source and horizontally scalable. The most typical example of NoSQL technology is
the MongoDB database. The ability to efficiently and securely transfer BD is unrealistic,
with only physical transfers, such as disks and CDs, and dedicated software, such as Aspera
(Version 4.2.2) and Talend (Version 8.0), available to transfer and share BD.

In recent years, the growth of the Internet has resulted in its shift from being a potential
source of food safety data [19] to a major way of obtaining and sharing food safety information
in the public eye [20]. By analyzing social BD, social media has become an effective way to
raise public awareness and food testing standards, and to update legislative standards, while
strengthening the food market surveillance mechanism based on the trend of continuous
publicization of social media data [21,22]. However, social media as a public platform has
also become a tool for the dissemination of rumors and false information, particularly during
the 2019 COVID-19 pandemic. These include rumors related to rapid antigen testing [23],
misinformation about pharmaceuticals [24], and false claims regarding vaccine side effects [25].
Furthermore, the rapid dissemination and widespread nature of information on social media
platforms may lead to personal opinions being misconstrued as professional food-testing
reports or the instantaneous spread of food-testing information lacking a scientific basis. Users

http://www.fda.gov/Safety/Recalls/default.htm
https://www.fda.gov/search?site=FDAgov-recalls&client=FDAgov-recalls&proxystylesheet=FDAgov-recalls&filter=0&getfields=*&q=&requiredfields=recall_category:Food
https://www.fda.gov/search?site=FDAgov-recalls&client=FDAgov-recalls&proxystylesheet=FDAgov-recalls&filter=0&getfields=*&q=&requiredfields=recall_category:Food
www.foodmate.net
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are often influenced by sensationalism and emotionally charged portrayals [26], predisposing
them to form subjective opinions without comprehensive understanding [27]. Research
indicates that large language models can significantly enhance false-text detection rates
through baseline statistical analysis. As we anticipate a manifold increase in the quantity and
diversity of news sources in the social media era, a novel distributed architecture incorporating
blockchain technology for content verification has emerged [28].

Smartphones with integrated sensors, such as GPS, accelerometers, gyroscopes, cam-
eras, and microphones, can be used for various purposes, such as quality assessment, food
testing, monitoring, behavior management, and food safety information exchange [29].
Portable intelligent devices are often used as indirect testing tools or media for data trans-
missions. They can only be directly and automatically used for food inspection when
inspecting small volumes of food. Transferring BD information from different smartphones
or data sources to be processed in NoSQL clusters provides a wider and more trustworthy
data source for the next step in data analysis. Alfian et al. [30] developed a real-time
perishable food quality monitoring system that receives temperature, humidity, GPS, and
image data from smartphones and stores it in the MongoDB database. When tested on
the kimchi supply chain in South Korea, as the number of sensors and clients increases,
the system can effectively process a large amount of sensor data input/output, thereby
improving the efficiency of food monitoring.

2.3. Data Analysis: The Heart of BD Workflows

Data analysis plays a crucial role in the food testing industry, as it allows for extracting
valuable insights from the large datasets generated during testing processes. After data is stored
in SQL and moved to the processing unit, data analysis is performed, which is central to the
value creation process, often referred to as the fifth “V” of BD—value [14]. Since 2019, various
approaches (Table 2) have been used to extract knowledge from BD on food safety for food
testing, including image processing algorithms for quality detection, data mining algorithms for
consumer behavior analysis, statistical analysis for food safety monitoring, natural language
processing for label compliance checking, time-series analysis for supply chain management,
and deep learning techniques for allergen detection and harmful substance assessment.

Table 2. Examples of data analysis methods.

Analysis Method Analysis Method Type Database Type Data Description

Image processing
algorithm

Convolutional neural network Appearance defect detection [31]
Image segmentation (U-Net) Foreign object detection [32]

Data mining algorithm
Association rule mining (Apriori, FP-Growth) Consumer behavior analysis [33,34]

K-means clustering Security warning [35]
Decision tree Classification and grading [36]

Statistical analysis Regressive analysis Predicted content and concentration [37]
Bayesian network Comprehensive analysis of multiple variables [38]

Natural language
processing

Text classification Food label classification [39]
Named entity recognition Extract label information [40]

Opinion mining Analyze evaluation and feedback [41]

Machine learning
Summarized by reference [15]Recommendation

system

Deep learning
Generative adversarial networks Food data augmentation [42]

Autoencoder Noise removal and data preprocessing [43]
Long short-term memory Food quality prediction [44]

2.4. Data Visualization

Data visualization tools can be used for forecasting demand, decision analysis, and so
on. Data visualization tools do not directly demonstrate their usefulness for food testing.
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However, data visualization is essential as part of the BD process, where researchers can
analyze food safety ingredient data to develop new or update existing food ingredient
specifications, such as additive standards.

The internationally used data visualization tools were R (http://cran.r-project.org/,
accessed on 5 July 2024), Tableau (http://www.tableausoftware.com/, accessed on 5 July
2024), and Circos (http://circos.ca/, accessed on 5 July 2024). Among these, R and Circos
require users to have a certain programming foundation, which is challenging to start.
Tableau is commercial software, and users do not need to have a programming foundation.
The mainstream data visualization tools in China are Superset (https://superset.apache.org,
accessed on 6 July 2024), DataEase (https://github.com/dataease/dataease, accessed on 6
July 2024), and Meta-Base (https://www.metabase.com, accessed on 6 July 2024). Again,
Superset requires basic knowledge of the SQL language, while DataEase and Meta-base
do not.

2.5. Challenges and Solutions Faced by the Four Stages of Food Testing BD Workflow

In this subsection, we explore the challenges and solutions corresponding to the
four phases of BD mentioned above (from 2.5.1: Data Collection to 2.5.2: Data Storage and
Transmission to 2.5.3: Data Analytics and finally to 2.5.4: Data Visualization).

2.5.1. Low Data Collection Efficiency and Poor Data Quality

In certain special applications of food testing, such as the collection of testing BD
for food microbiological testing, food chemical residue and contaminant testing, or food
sensory evaluation, the collection process often relies on physical sampling or manual
collection of data, resulting in limited access to advanced data collection technologies,
such as IoT devices, sensors [45], and automatic data recording systems [46,47] which can
both reduce transcription errors and allow a higher data frequency. Therefore, compared to
fields that widely adopt advanced data collection techniques, the collection of food testing
BD is still slow and inefficient.

Meanwhile, the diversity of BD sources in food testing not only leads to gaps and
slowness in the data collection process but can also adversely affect the quality of data.
Data quality is defined as the measurement of whether the data are suitable for its intended
use. Food testing data can come from various sources, including links in the production
chain [48], consumer feedback, online social media [49], and government reports. The
sheer diversity of these sources means that the format and quality of the data are typically
variable, leading to applicability and consistency issues when attempting to integrate such
data. Furthermore, poor data quality leads to insufficient, inconsistent, and even erroneous
decision-making by researchers, and existing research focuses on the development of
data quality assessment frameworks. Fadlallah et al. [50] reviewed the existing research
on situational awareness-based BD quality assessment and summarized an advanced
methodological framework for situational awareness of BD quality assessment solutions.
Elouataoui et al. [51] evaluated the quality of BD using weighted indicators based on 12 V
characteristics extended from BD and different scenarios.

2.5.2. Data Silos, High Data Storage Costs, and Inefficient Data Transfer

In the food testing sector, the independent management (non-sharing of data) of
commercially sensitive information or data from private companies and important data
from food regulatory authorities (which may involve state secrets) leads to a pile-up of food
safety data and inhibits the flow of BD [52]. Privacy protection technology (PPT) refers to a
collection of technologies and methods aimed at protecting the privacy of personal data,
which, when combined with machine learning (ML, a branch of AI focused on enabling
computers to learn from data and make decisions or predictions), can support BD sharing
without compromising privacy. Integrating PPT with ML for BD sharing primarily involves
training models with differential privacy, as described in [53], which masks individual
data points to prevent identification while allowing the overall data trends to be analyzed.

http://cran.r-project.org/
http://www.tableausoftware.com/
http://circos.ca/
https://superset.apache.org
https://github.com/dataease/dataease
https://www.metabase.com
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Data analysis using homomorphic encryption, as explained in [54], enables computations
of encrypted data without requiring decryption, thereby preserving data confidentiality.
The method of joint learning with secure multiparty computation, highlighted in [55],
allows multiple parties to collaboratively analyze data without sharing the actual data
itself, ensuring the privacy of each party’s data. Additionally, as an ML model that,
like blockchain, adopts a decentralized architecture, federated learning possesses privacy
protection advantages, such as high network bandwidth efficiency and adaptability to
different data distributions [56]. This makes them particularly suitable for use in sensitive
BD environments.

The volume, velocity, and variety of the 5 V characteristics of BD covered above pose
storage challenges for distributed storage systems and blockchain-based cloud storage
services [57]. Distributed storage systems and blockchain-based cloud storage services
have a strong competitive market, but the following factors must be considered when
storing BD: data consistency, data availability, and partition fault tolerance [58].

The life cycle of data transfer is divided into four stages, as shown in Figure 2, which
was adapted from [59]. In each phase, there are significant challenges in transferring large
amounts of data, as noted in [60]. For example, key challenges include ensuring data
quality and timeliness during collection, handling data heterogeneity and scale during
integration, addressing data security and transmission efficiency in management, and
meeting preprocessing and resource optimization needs in the analysis phase. Identifying
and addressing these challenges is crucial for the effective processing and analysis of BD.
Therefore, data preprocessing is important. Yang et al. [61] used a MapReduce framework
and data compression techniques to effectively reduce the size of unit data before transfer-
ring the data, and proposed an efficient network data transfer model that supports LZMA
(Lempel–Ziv–Markov chain algorithm) and DEFLATE (combines Huffman coding and
LZ77 coding) data compression/decompression techniques. The MapReduce framework
is a programming model used to process large datasets across distributed clusters. It
simplifies data processing on large scales by dividing tasks into smaller subtasks, The term
‘Map’ means that one processes and transforms individual data elements into key-value
pairs, and the term ‘Reduce’ means to aggregate these pairs based on their keys to produce
a consolidated output. LZMA (Lempel–Ziv–Markov chain algorithm) is a standard data
compression algorithm known for high compression ratios, using a Lempel–Ziv method
variant with Markov chain principles. DEFLATE combines LZ77, identifying repeated
strings, with Huffman coding, which assigns shorter codes to more frequent data. Unlike
lossy compression algorithms, lossless compression algorithms compress data without
causing information loss.

2.5.3. High Data Complexity and Challenge of Diversity in Data Analysis Methods

Understanding the relationship between features and developing effective data-mining
methods that can accurately predict future observation results is an important goal in the
data analysis phase [62]. However, as the volume of data from food-testing equipment
continues to increase, analyzing BD poses challenges to the time complexity, spatial com-
plexity, and scalability of the underlying algorithms [63]. For data analysis, Begoli and
Hoery [64] first proposed three system design principles: First, the architecture should
support multiple analytic methods, such as statistical analysis, ML, data mining, and visu-
alization analysis. Second, a single storage mechanism should not be used, as there is no
single style of database that can meet the needs of all types of data, and specialized data
management systems are required for data of different sizes. In addition, the data should be
handled differently at different stages. Third, it is important to make the data accessible, for
example, by using open popular standards, lightweight architectures, and exposing results
using APIs. To produce timely BD analytics results, computationally intensive data-mining
algorithms and high-performance processors are required. Cloud computing infrastructure
can serve as an effective platform to address the computational and data storage needs of
BD analytics applications, and the trend of adoption is increasing [65].
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Figure 2. Lifecycle of data transmission [59].

2.5.4. Difficulty in Real-Time Visualization of Unstructured Data

The goal of data visualization is to show data relationships more intuitively and
effectively using different graphic technologies. In the process of transforming abstract
data into intuitive graphics, visualization tools face the challenge of data processing,
particularly in the production environment of rapid food testing. Food testing data are
usually unstructured or semi-structured, and it is difficult to generate diverse graphics in
real-time. In the future, with the exponential increase in data volume, the privacy problem
of data and information visualization deserves attention. Andrienko et al. [66] proposed
the idea of “federation visualization,” aiming to apply the federated learning algorithm in
the field of AI to the field of data visualization. Simultaneously, the value (or availability)
of visualized data continues to improve, and building a visualized graphical database that
can process heterogeneous data in real time can help users map similar graphical styles to
more efficiently process data relationships [67].
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3. Future Work: Blockchain

Considering that the projected global population will surpass 9 billion by 2050, food
security and a sustainable food supply chain will be required to meet global food de-
mand [68]. Food testing should receive the attention of governments to ensure food safety
from producers to customers. Food testing poses numerous challenges for BD technology,
demanding effective strategies to handle the complexities of large-scale data. Success-
ful processing and analysis of data within defined time frames necessitate a substantial
computing infrastructure. Although cloud services, encompassing cloud computing and
storage, have been widely embraced as solutions by various organizations, the exploration
of cloud computing technologies for BD applications in food testing remains in its nascent
stage. Several research challenges, including security, privacy, and legal concerns, are yet
to be comprehensively addressed in this context.

Blockchain technology has great application prospects in food testing and is expected
to produce a safer and more transparent food chain. Blockchain helps food testing service
providers share data with other stakeholders, while reducing the risk of data leakage. In
addition, storing food testing BD from different stages in the blockchain can eliminate
duplicate food data analyses. Each test result is recorded on the blockchain, and the entire
supply chain process, from the farm to the dining table, can be traced to ensure food safety
and quality.

3.1. Blockchain Technology

A blockchain is a distributed, decentralized ledger technology developed through
leading-edge technologies, including P2P networks, distributed ledgers, smart contracts,
consensus, and cryptography, to ensure that transactions between multiple computers are
recorded in a secure and transparent manner. Each “block” in the chain contains a number
of transactions, and each time a new transaction occurs on the blockchain, a record of that
transaction is added to each participant’s ledger. A block consists of the block version
of the previous block, cryptographic hash, timestamp, nBits, nonce, transaction counter,
and transaction data (Merkle tree) [69]. The decentralized nature of blockchain makes it
resistant to data tampering because, once recorded, data cannot be retroactively altered
unless all subsequent blocks are modified. This decentralized characteristic enhances trust
and security in data transactions.

Originally developed for Bitcoin, blockchain technology has since been applied across
various sectors. In supply chain management, it enhances product traceability and mitigates
fraud [70]. In financial services, it facilitates secure cross-border transactions and supports
decentralized finance [71]. In healthcare, blockchain is used for the secure management of
electronic health records and pharmaceutical traceability [72]. The technology also plays a
critical role in intellectual property protection, safeguarding digital rights and patents [73].
Within public services, blockchain enables secure electronic voting and digital identity
verification [74]. In energy management, it supports peer-to-peer energy trading and
carbon credit tracking [75], while in the charity sector, it increases transparency through
donation tracking [76]. Furthermore, in the legal sector, blockchain-powered smart contracts
reduce the need for intermediaries, ensuring efficient contract execution [77]. Among these
applications, blockchain is also employed in the food-testing industry, where it monitors
the supply chain from farm to fork, ensuring food safety and quality.

Blockchain can be classified into four different deployment modes based on various
application scenarios: public [78], private [79], hybrid [80], and consortium [81]. In the field
of food testing, private and consortium blockchains are more widely applied. A private
blockchain is suitable for data management within a single entity or organization, aiding in
tracking production and supply chain processes to ensure food safety. On the other hand, a
consortium blockchain facilitates reliable sharing of testing data and supply chain information
through joint control by multiple parties, such as farms, producers, distributors, retailers,
and government regulatory agencies, thereby enhancing overall efficiency in food safety and
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quality management [82]. Currently, the application of blockchain technology in the food
testing field primarily focuses on strengthening supply chain traceability, as shown in Table 3.

3.2. Open Issues and Future Directions

Owing to the complex scale of blockchain networks and their extensive resource
consumption, coupled with the fact that they are not yet mature, there is still an urgent
need for further scrutiny and emphasis on certain unresolved issues. The following are
some open issues and future research directions.

• Information security and accessibility: Against the backdrop of the global food chain,
there is a growing need to focus on the security and trustworthiness of testing in-
formation. Therefore, the system requires standardized security protocols to ad-
dress transaction and accessibility-related issues, providing security for consensus
algorithms. Hyperledger Fabric is a permissioned blockchain platform, meaning
that only authorized users can join the network, ensuring a controlled and secure
environment [83]. Information security protocols are uniformly managed through
chaincode (https://hyperledger-fabric.readthedocs.io/en/release-2.5/smartcontract/
smartcontract.html, accessed on 17 October 2024), providing standardized mechanisms
for managing transaction security and accessibility. In Hyperledger Fabric, channels
play a key role in enhancing privacy and confidentiality. Channels are private “sub-
nets” of communication between two or more specific network members, for the
purpose of conducting private and confidential transactions [84]. Hyperledger Fabric
allows developers to customize the number of channels based on design requirements,
including single-channel [85], dual-channel [86], triple-channel [87], and multi-channel
designs [88]. This feature allows for the segregation of data, ensuring that sensitive
food testing information is only accessible to authorized parties. Future work should
focus on optimizing the design and implementation of channels in blockchain systems
for food testing. This includes exploring how to balance the need for data privacy
with the requirement for transparency in food supply chains [89], and investigating
how channel configurations can be optimized to enhance system performance and
scalability while maintaining high levels of security [90].

• Information sharing: The proof-of-stake protocols in blockchain consistently result in
nodes with more information gaining additional data and being selected for mining,
leading to an imbalance in information sharing among the participating nodes in
the blockchain network [10]. To address this issue, at the system level, a concept
framework of fairness was proposed [91], providing all nodes in the blockchain
network with equal opportunities and enabling every participant in the food chain
to access fair testing information. At the technical level, Tao et al. [92], based on a
cloud-fused BD blockchain, introduced a blockchain-cloud fusion solution based on
decentralized attribute-based signatures (DABS), aiming to strengthen information
sharing among different departments.

• Scalability of blockchain–data integration: The scalability performance of blockchain
is measured based on transaction and data read throughput/latency, as well as data
storage capacity. Blockchain can be scaled to any number of users without compro-
mising data integrity and privacy. However, a prominent challenge with BD lies in
the complexity of its nature, making the scalability of integrating blockchain with BD
a significant and primary challenge for blockchain technology itself [93]. Sharding
techniques aim to enhance overall network scalability by dividing the blockchain net-
work into multiple independent fragments. Each shard is responsible for processing
a portion of the data, operating independently of other shards, achieving horizontal
scalability, and improving the throughput and performance. Future research can focus
on optimizing sharding techniques and addressing the two common challenges faced
by sharding. Inefficient sharding allocation schemes can lead to new issues related to
data security and system scalability. Dhulavvagol et al. [94] adopted a hybrid sharding
strategy to create multiple shards or partitions, thereby enhancing the scalability of

https://hyperledger-fabric.readthedocs.io/en/release-2.5/smartcontract/smartcontract.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/smartcontract/smartcontract.html
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the blockchain system. Xu et al. [95] designed a sharding scheme based on graph
partitioning, which significantly balanced the shared distribution and reduced the
data throughput latency. Another challenge is to protect data security within shards.
Cai et al. [96] proposed a multi-objective objective optimization algorithm to enhance
the security of large-scale testing data in the food supply chain. From a broader per-
spective, Li et al. [97] designed a blockchain combined with a PPT scheme applied at a
higher level in a blockchain network.

• Compatibility and standardization: Due to the diversity of the food chain, various
types of blockchains should be customized according to the specific characteristics of
each food chain. Standardized blockchain protocols and data formats can provide a
consistent interaction framework for different types of blockchains, facilitating data
sharing and collaboration among regulatory authorities [11,98]. Additionally, the
application of standardization helps enhance the system‘s credibility, prevent fraud,
reduce barriers to adopting blockchain technology, and provide a more consistent
workflow for all participants in the food chain. For different categories of a Food A
testing BD, such as microscopic data on microbial indicators for Food A and macro-
scopic traceability information for Food A, microscopic microbial indicator data for
Food A, and microbial indicator data for Food B, blockchains must address diverse
group demands and be compatible with complex food testing BD. The design of an
adaptive blockchain for BD is essential, with popular adaptive blockchain designs,
including lightweight blockchains suitable for consumer real-time BD needs and
scalable blockchains suitable for regulatory authorities handling large-scale testing
data. Bandara et al. [99] summarized scalable adaptive blockchains using different
consensus algorithms applied to various scenarios.

Table 3. Application cases of blockchain technology in food testing (food supply chain traceability).

References Research Subjects Experimental Results

Arena et al. [100] Extra virgin olive oil
supply chain

Proposed a blockchain-based Bruschetta traceability system that
records data using a proposed system based on the Hyperledger

Fabric platform

Liu et al. [101] Imported fresh food
supply chain Tracked and detected fresh food information from source to destination

Lu et al. [102] Food anti-counterfeit
traceability

Proposed a blockchain and IoT-based food anti-counterfeiting
traceability system, which uses AES encryption technology to encrypt
it, and the system has higher security, lower transaction latency, and

lower communication cost

Burgess et al. [103] Short food supply chain Developed a blockchain-based quality testing management architecture
for the short food supply chain

Cao et al. [104] Australian beef Multiple signature approach based on STN and PoA blockchain for
improved governance of geographically dispersed beef supply chains

Bumblauskas
et al. [105] Egg supply chain

Tracked and inspected eggs in the supply chain from farm to consumer,
increasing efficiency by reducing the risk of food recalls, fraud and

product damage

Dey et al. [106] Milk, pumpkin
Digitized food production information in QR codes and made it easy
for customers and producers to detect and verify, FoodSQRBlock was

built using the Google Cloud Platform

Cocco et al. [107] Italian Carasau bread Proposed a smart contract-based blockchain that provided
transparency and traceability for the Calabrian supply chain in Italy

Salah et al. [108] Soybean supply chain

Utilized the decentralized file system (IPFS) for a blockchain-based
traceability system for the soybean supply chain on an Ethereum
platform and smart contracts, to standardize the in-chain testing

process and transaction management
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Table 3. Cont.

References Research Subjects Experimental Results

Kumar et al. [109] Rice supply chain
Adopted a blockchain system for comprehensive traceability of the rice

supply chain to combat food fraud, and implemented automation
using smart contracts

Xie et al. [110] Apple
Proposed an integrated machine-to-machine traceability data

generation system as an implementation of blockchain, to automatically
access apple production information and enhance testing efficiency

Yang et al. [111] Fruits

A dual storage structure of "database + blockchain" was established,
and a reputation-based smart contract was designed to ensure the

authenticity and reliability of data in fruit and vegetable
supply chain management

Wang et al. [112] Fish supply chain

A fish source and quality testing and tracking (BeFAQT) system was
developed, enabled by blockchain, and a multi-layer blockchain

architecture based on attribute encryption (ABE) was proposed to
address the privacy issue caused by the application of blockchain in
protecting supply chain data and achieving trusted and confidential

data sharing among all parties in the fish supply chain

4. The Application of BD and Blockchain Technology in the Food Industry and Its
Impact on Educational Curriculum Reform

BD and blockchain technology have become increasingly important in the food in-
dustry, improving efficiency in food safety and quality control and driving new business
models and marketing strategies. These technologies also have profound implications for
the field of education, particularly for the reform of food testing-related curricula. This
section analyzes the specific applications of BD and blockchain technology in the food
industry (as shown in Figure 3) and discusses how these applications inform and inspire
educational curriculum reform.

Figure 3. The widespread application and teaching cases of big data and blockchain in the foodindustry.
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4.1. Real-Time Food Safety Monitoring and Predictive Analytics

The adoption of BD analytics for real-time monitoring of food safety parameters
throughout the supply chain presents both significant opportunities and challenges. While
this approach allows for early detection of potential hazards and predictive analysis of
food safety risks, it also demands a transformation in how food safety professionals are
trained and educated.

Nestlé implemented a BD-driven quality assurance system that collects and analyzes
data from over 100,000 suppliers. This system allows for real-time monitoring of food
safety parameters and early detection of potential issues (https://www.nestle.com/csv/
raw-materials, accessed on 25 September 2024). Recent research [113] has highlighted the
importance of the Internet of Things (IoT) in food safety monitoring. Bouzembrak et al. [114]
conducted a comprehensive literature review and bibliometric analysis, demonstrating
the growing trend of IoT applications in food safety. Furthermore, Mishra et al. [115]
proposed an IoT-based framework for food safety and quality monitoring in food processing
industries, showcasing the potential of these technologies in real-world applications.

However, Ghashim et al. [116] pointed out that concerns about data security and
privacy are one of the biggest obstacles to IoT adoption in the education sector, while also
highlighting challenges in data standardization and system interoperability, highlighting
the necessity of establishing industry wide protocols. Curriculum reform needs to focus
on cultivating students’ abilities in data quality assessment, standardization methods,
and heterogeneous data processing. The educational content should cover advanced
data collection technologies, such as the application of IoT devices, sensors, and auto-
matic data recording systems, to improve data collection efficiency and accuracy. In
addition, given the importance of data privacy and security, the course needs to include
the principles and applications of privacy protection technologies, such as differential
privacy, homomorphic encryption, and federated learning. To tackle the challenges of
large-scale data processing, students need to learn the use of distributed computing
frameworks, such as MapReduce and cloud computing infrastructure. Finally, based on
the demand for multi method data analysis, education should cultivate students’ ability
to master various analysis methods, such as statistical analysis, machine learning, data
mining, and visualization analysis.

4.2. Rapid and Non-Destructive Food Testing Techniques

BD and AI have facilitated the development of rapid, non-destructive food testing
methods, such as hyperspectral imaging and electronic noses.

Advancements in portable spectroscopy, such as those developed by Ocean Optics,
have enabled rapid, non-destructive analysis of food composition and quality. These
devices generate large datasets that are analyzed using machine learning algorithms to
determine food authenticity and quality [117]. The application of near infrared (NIR)
spectroscopy in food production has been extensively studied. Porep et al. [118] reviewed
the online application of NIR spectroscopy in food production, highlighting its potential
for rapid and non-destructive analysis. Grassi and Alamprese [119] further discussed the
advances in NIR spectroscopy applied to process analytical technology in food industries,
emphasizing its role in ensuring food quality and safety.

Curriculum reform needs to focus on the integration of interdisciplinary knowledge,
enabling students to understand and apply the principles of advanced detection technolo-
gies, such as hyperspectral imaging and electronic noses. Considering the unstructured or
semi-structured nature of food testing data, students need to master advanced data visu-
alization skills, especially real-time visualization methods for complex data. In addition,
given the potential application of blockchain technology in food traceability, the course
should include basic knowledge of blockchain technology, especially the use of licensed
blockchain platforms, such as Hyperledger Fabric, as well as how to design and implement
blockchain systems for food testing. To tackle the challenges of integrating big data and
blockchain, students need to learn how to design and implement blockchain systems capa-

https://www.nestle.com/csv/raw-materials
https://www.nestle.com/csv/raw-materials


Foods 2024, 13, 3391 14 of 22

ble of handling large-scale data, including the application of sharding technology. Finally,
considering the diversity of the food industry, the course should cover data standards and
protocols in the food industry, as well as how to design adaptive blockchain systems that
are compatible with different needs [120].

4.3. Blockchain for Food Traceability and Authenticity Verification

Blockchain technology provides an immutable record of a food product’s journey
through the supply chain, enhancing traceability and authenticity verification. Walmart
collaborated with IBM to implement the Food Trust blockchain platform, which allows
for end-to-end traceability of food products. In one test, Walmart was able to trace the
origin of a package of mangoes in 2.2 s, a process that previously took nearly 7 days [121].
Feng et al. [9] reviewed the development methods, benefits, and challenges of applying
blockchain technology to improve agri-food traceability. Behnke and Janssen [11] inves-
tigated the boundary conditions for traceability in food supply chains using blockchain
technology, providing insights into its practical implementation.

However, the energy consumption of blockchain systems [122], the lack of industry
standards [123], and the complexity of integrating with existing supply chain tech-
nologies [93] are all issues that need to be addressed. Curriculum reform requires the
integration of blockchain technology modules into traditional supply chain management
courses, with a focus on its application in food traceability. Students should learn how to
design and implement blockchain based traceability systems, including the development
of smart contracts and the selection of consensus mechanisms. Meanwhile, the course
should also cover relevant topics, such as data privacy and security, system integration,
energy efficiency, etc., enabling students to fully understand the challenges and limita-
tions of blockchain technology in the food industry. In addition, considering the global
nature of the food supply chain, the curriculum should include content on international
standards and regulations, as well as how to design blockchain systems that meet the
needs of different regions.

4.4. IoT and Sensor Networks in Food Quality Monitoring

The Internet of Things (IoT) and sensor networks generate vast amounts of data on
food quality parameters throughout production and distribution. Zest Labs developed an
IoT-based solution that uses sensors to monitor the freshness of produce from harvest to
retail shelf. The system collects data on temperature, humidity, and other factors, using
BD analytics to predict shelf life and reduce food waste (https://www.zestlabs.com/zest-
fresh-for-produce/, accessed on 27 September 2024). The application of IoT in food quality
monitoring has been extensively studied in recent years. Tsang et al. [124] proposed
an intelligent model for assuring food quality in managing a multi-temperature food
distribution center, demonstrating the practical application of IoT and sensor networks in
food supply chain management.

However, the expensive cost of advanced sensors and the massive data generated by
IoT systems require complex data management and analysis capabilities [116], which may
exceed the capabilities of small food producers. These applications and challenges pose new
requirements for food science education. Curriculum reform requires the introduction of
IoT and sensor technology in the context of food quality monitoring. Students need to learn
how to design sensor networks, manage data streams, and develop algorithms for real-time
quality assessment [125]. The course should also cover data security and privacy protection,
enabling students to design IoT systems that are both efficient and secure. Considering
the trend of integration between IoT technology and other technologies, the course should
include case studies on the integration of IoT, blockchain, and AI technologies, such as
feeding IoT sensor data into a blockchain system in real-time and using AI algorithms
for predictive analysis [126]. In addition, the course should cultivate students’ system
integration skills, enabling them to seamlessly integrate IoT solutions with existing food
industry systems.

https://www.zestlabs.com/zest-fresh-for-produce/
https://www.zestlabs.com/zest-fresh-for-produce/
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4.5. AI-Driven Food Fraud Detection

AI and machine learning algorithms can analyze large datasets to detect patterns
indicative of food fraud. Advanced spectroscopic techniques combined with machine
learning, similar to those used by Bia Analytical, can rapidly analyze food samples
and compare them against a database of authentic products to identify adulterations
or mislabeling [127]. Recent research has further advanced the field of AI-driven food
fraud detection. Hassoun et al. [128] reviewed the advances in emerging spectroscopic
detection methods for food fraud over the past five years, highlighting the role of AI in
improving detection accuracy.

However, AI driven food fraud detection faces challenges, such as the need for
a large amount of high-quality datasets to train AI models, the interpretability of AI
decisions (especially in regulatory environments), and the adversarial attacks that AI
systems may face [129]. In addition, with the continuous evolution of food fraud tech-
nology, AI systems need to be continuously updated to detect new forms of adulteration.
Curriculum reform requires the introduction of AI and machine learning applications in
the context of food identification and authenticity verification. Students should learn
how to develop and train models for detecting food fraud, including processing var-
ious types of data, such as spectral and chromatographic data [130]. The curriculum
should also cover AI ethics and decision interpretability, enabling students to design
AI systems that are both effective and responsible. Considering the rapid development
of food fraud detection technology, the curriculum should cultivate students’ ability to
continue learning, so that they can keep up with the pace of technological development.
In addition, the course should include case studies on the integration of AI with other
technologies, such as blockchain and IoT, exploring how to build a comprehensive food
authenticity assurance system.

4.6. Other Applications of BD and Blockchain Technology in the Food Industry and the Combined
Impact on Curriculum Change

In addition to the many contributions in food testing mentioned above, the conver-
gence of BD and blockchain technologies with the food industry is transforming food safety
management, market development, supply chain management, and product innovation.
These technological advances are driving the need for significant educational reforms,
particularly in food science and related fields. Table 4 lists relevant case studies and impacts
on educational curricula.

Table 4. Application cases and educational implication of BD and Blockchain in the Food Industry.

Food Industry
Application Case Study Educational Implication

Collaborative Governance
and Consumer Insights

Danone’s flavor development using BD analytics
(https:

//www.danone.com/brands/dairy-plant-
based-products/research-and-innovation.html,

accessed on 28 September 2024)

Incorporate crowdsourcing and BD analysis
tools in food science curricula, teaching students
how to collect and analyze consumer feedback

for product development

Market Development
and Consumer

Behavior Analysis

Starbucks’ social media analysis for
product adjustments (https://d3.harvard.edu/

platform-digit/submission/starbucks-
leveraging-big-data-and-artificial-intelligence-

to-improve-experience-and-performance/,
accessed on 15 September 2024)

Introduce BD tools for clustering analysis and
consumer behavior analytics in marketing

strategy courses

Quantitative Production
and Precision Agriculture

John Deere’s precision agriculture solutions
(https://www.deere.com/en/technology-

products/precision-ag-technology/, accessed on
28 September 2024)

Include modules on BD in agricultural
decision-making, teaching students to analyze

real-world agricultural data for
production optimization

https://www.danone.com/brands/dairy-plant-based-products/research-and-innovation.html
https://www.danone.com/brands/dairy-plant-based-products/research-and-innovation.html
https://www.danone.com/brands/dairy-plant-based-products/research-and-innovation.html
https://d3.harvard.edu/platform-digit/submission/starbucks-leveraging-big-data-and-artificial-intelligence-to-improve-experience-and-performance/
https://d3.harvard.edu/platform-digit/submission/starbucks-leveraging-big-data-and-artificial-intelligence-to-improve-experience-and-performance/
https://d3.harvard.edu/platform-digit/submission/starbucks-leveraging-big-data-and-artificial-intelligence-to-improve-experience-and-performance/
https://d3.harvard.edu/platform-digit/submission/starbucks-leveraging-big-data-and-artificial-intelligence-to-improve-experience-and-performance/
https://www.deere.com/en/technology-products/precision-ag-technology/
https://www.deere.com/en/technology-products/precision-ag-technology/


Foods 2024, 13, 3391 16 of 22

Table 4. Cont.

Food Industry
Application Case Study Educational Implication

Food Innovation and
Flavor Design

McCormick and IBM’s AI-driven flavor
development (https:

//ir.mccormick.com/news-releases/news-
release-details/mccormick-company-and-ibm-

announce-collaboration-pioneering-use,
accessed on 29 September 2024)

Combine flavor design with BD analysis in food
science programs, allowing students to use AI

tools for new product development

Supply Chain
Management and Food
Delivery Optimization

Meituan’s BD-driven delivery time prediction
(https://about.meituan.com/en/report/csr-

report-2019.pdf, accessed on 29 September 2024)

Integrate BD analytics into supply chain
management courses, focusing on efficiency

improvement and risk management

Precision Nutrition and
Health Management

Nutrigenomix’s personalized nutrition
(https://www.nutrigenomix.com/, accessed on

30 September 2024)

Add the application module of personalized
nutrition and BD in dietary planning to the
course, learn how to interpret genetic and

metabolic data to develop personalized
nutrition strategies

Future educational curricula must focus on the following areas:

• Interdisciplinary learning: Courses should combine subjects, such as BD analytics,
blockchain technology, food science, agricultural management, and marketing, allow-
ing students to acquire a broad skill set applicable across the food industry [131].

• Case-driven practical learning: Universities should collaborate with food companies
and technology firms to incorporate real-world case studies into their curriculum,
allowing students to learn how to apply BD and blockchain technology to solve
real-world problems [132].

• Technological proficiency: Students must be proficient in the use of BD tools and
blockchain platforms, enabling them to handle complex datasets and ensure food
safety in modern supply chains [133].

By implementing these reforms, educational institutions can ensure that graduates are
well-equipped to navigate the technologically advanced landscape of modern food testing
and the broader food industry, contributing to enhanced food safety, quality control, and
innovation practices worldwide.

5. Conclusions

BD and blockchain technology are revolutionizing food safety, supply chain man-
agement, and product innovation in the food industry, offering enhanced transparency,
efficiency, and quality control. These advancements necessitate a comprehensive overhaul
of food science and food safety curricula. Integrating big data analytics and blockchain
technology into educational programs will equip students with the skills to navigate and
contribute to the future of the food industry. This study, while providing valuable insights,
has inherent limitations. The reliance on published scientific literature and case studies
may not fully capture all ongoing developments in this rapidly evolving field. Implemen-
tation of the proposed educational reforms may encounter challenges, such as resource
constraints, faculty expertise gaps, and varying regional regulations. Furthermore, the
long-term efficacy of suggested curriculum changes would require longitudinal studies
for validation. Future research should address these limitations through empirical studies
on big data and blockchain implementation in food testing, coupled with evaluations of
educational reform outcomes in this domain.

Notwithstanding these constraints, this study offers a comprehensive overview of
the current state and future directions of big data and blockchain applications in food
testing. It provides valuable guidance for industry practitioners and educational institutions
adapting to the technological revolution in the food industry. Moving forward, educational

https://ir.mccormick.com/news-releases/news-release-details/mccormick-company-and-ibm-announce-collaboration-pioneering-use
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institutions must continue to adapt their curricula to reflect technological changes in the
food industry, ensuring that students are well prepared to meet the complex challenges of
modern food safety, transparency, and efficiency.
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