Brassica oleracea var italica and Their By-Products as Source of Bioactive Compounds and Food Applications in Bakery Products
Abstract
:1. Introduction
2. Materials and Methods
3. Nutritional Composition
3.1. Macronutrients
3.1.1. Proteins
3.1.2. Sugars
3.1.3. Dietary Fiber
3.1.4. Fat Content
3.2. Micronutrients
Composition | Unit | Florets | Stalks | Leaves | Sprouts | Ref. |
---|---|---|---|---|---|---|
Minerals | ||||||
Macro-element | ||||||
Calcium | (mg/g DW) | 4.65 | 7.10 | 28.99 | - | [10] |
(mg/g FW) | - | - | - | 0.88 | [56] | |
Magnesium | (mg/g DW) | 1.78 | 1.67 | 1.33 | - | [10] |
(mg/g FW) | - | - | - | 0.51 | [56] | |
Phosphorus | (mg/g DW) | 7.01 | 5.07 | 3.42 | - | [10] |
(mg/g FW) | - | - | - | 0.69 | [56] | |
Potassium | (mg/g DW) | 145.00 | 182.00 | 136.00 | - | [10] |
(mg/g FW) | - | - | - | 3.26 | [56] | |
Sodium | (mg/g DW) | 0.39 | 6.43 | 2.63 | - | [10] |
(mg/g FW) | - | - | - | 0.52 | [56] | |
Micro-element | ||||||
Copper | (μg/g DW) | 0.29 | 0.24 | 0.21 | - | [10] |
(μg/g FW) | - | - | - | 0.9 | [56] | |
Iron | (μg/g DW) | 45.83 | 15.83 | 40.50 | - | [10] |
(μg/g FW) | - | - | - | 6.70 | [56] | |
Manganese | (μg/g DW) | 18.83 | 7.00 | 26.17 | - | [10] |
(μg/g FW) | - | - | - | 3.70 | [56] | |
Selenium | (μg/100 g FW) | 2.50 | - | - | - | [57] |
Zinc | (μg/g DW) | 54.00 | 22.67 | 23.33 | - | [10] |
(μg/g FW) | - | - | - | 3.70 | [56] | |
Vitamins | ||||||
Vitamin A | (μg/g FW) | 0.08 | - | - | - | [58] |
Vitamin B9 | (μg/g FW) | 0.65 | - | - | - | [58] |
Vitamin C | (mg/g DW) | 2.54 | - | 2.92 | 0.51 | [59,60] |
(mg/g FW) | 0.91 | - | - | 12.41 | [30,58] | |
Vitamin E | (μg/g DW) | 1.57 | 1.97 | 155.00 | - | [10] |
(μg/g FW) | 1.50 | - | - | - | [58] | |
Vitamin K | (μg/g DW) | 8.84 | 2.21 | 24.30 | - | [10] |
(μg/g FW) | 1.02 | - | - | - | [58] |
3.3. Bioactive Compounds
3.3.1. Organosulfur Compounds
3.3.2. Carotenoids
3.3.3. Phenolic Compounds
Composition | Unit | Florets | Stalks | Leaves | Sprouts | Ref. |
---|---|---|---|---|---|---|
Organosulfur compounds | ||||||
Total GSLs | (µmol/g DW) | 5.86–24.95 | 7.45 | 10.08 | 0.95–162.19 | [10,70,71] |
(µmol/g FW) | - | - | - | 4.02–45.60 | [70] | |
Aliphatic GSLs | ||||||
Glucoalyssin | (µmol/g DW) | - | - | - | 0.07 | [70] |
Glucobrassicanapin | (µmol/g DW) | - | - | - | 0–0.11 | [70] |
(µmol/g FW) | - | - | - | 0–1.44 | [70] | |
Glucoerucin | (µmol/g DW) | 0.01–6.27 | 0.89 | 0.04 | 0.02–123.67 | [10,70,71] |
(µmol/g FW) | - | - | - | 0–6.09 | [70] | |
Glucoiberin | (µmol/g DW) | 0–0.88 | 0.97 | 0.65 | 0–13.90 | [10,70,71] |
(µmol/g FW) | - | - | - | 0–0.60 | [70] | |
Glucoiberverin | (µmol/g DW) | - | - | - | 0.14–6.26 | [70] |
Glucoibervirin | (µmol/g DW) | - | - | - | 1.59 | [70] |
Gluconapin | (µmol/g DW) | 0–2.73 | 0.03 | 0.04 | 0.04–2.00 | [10,70,71] |
(µmol/g FW) | - | - | - | 0.02–3.44 | [70] | |
Glucoraphanin | (µmol/g DW) | 0.14–14.97 | 3.79 | 2.77 | 0.05–43.60 | [10,70,71] |
(µmol/g FW) | - | - | - | 0–33.88 | [70] | |
Progoitrin | (µmol/g DW) | 0–4.54 | 0.24 | 0.02 | 0–28.45 | [10,70,71] |
(µmol/g FW) | - | - | - | 0.11–0.19 | [70] | |
Sinigrin | (µmol/g DW) | 0–3.16 | <0.1 | <0.1 | 0–15.00 | [10,70,71] |
(µmol/g FW) | - | - | - | 0–0.04 | [70] | |
Aromatic GSLs | ||||||
Gluconasturtiin | (µmol/g DW) | 0–0.44 | 0.02 | 0.11 | 0.13–14.90 | [10,70,71] |
Glucotropaeolin | (µmol/g DW) | 0–0.04 | - | - | - | [71] |
Indolic GSLs | ||||||
4-Hydroxyglucobrassicin | (µmol/g DW) | 0.01–3.29 | 0.07 | 0.26 | 1.10–5.30 | [10,70,71] |
(µmol/g FW) | - | - | - | 0–1.92 | [70] | |
4-Methoxyglucobrassicin | (µmol/g DW) | 0.01–3.92 | 0.16 | 0.17 | 0.80 | [10,70,71] |
(µmol/g FW) | - | - | - | 0.55 | [87] | |
Glucobrassicin | (µmol/g DW) | 0.10–27.69 | 0.10 | 0.24 | 0.04–3.20 | [10,70,71] |
(µmol/g FW) | - | - | - | 0–0.58 | [70] | |
Neoglucobrassicin | (µmol/g DW) | 0.02–45.95 | 1.11 | 5.78 | 1.50–10.71 | [10,70,71] |
(µmol/g FW) | - | - | - | 0.05–0.79 | [70] | |
ITCs | ||||||
Erucin | (µmol/100 g DW) | 2.85 | - | - | - | [88] |
Sulforaphane | (µg/g DW) | 310.00–454.00 | 461.00–506.00 | 18.00–64.00 | 336.32–1483.76 | [33,74,89] |
(µmol/100 g DW) | 56.74 | - | - | - | [88] | |
(µmol/100 g FW) | - | - | - | 57.00–58.00 | [90] | |
Other GSL degradation products | ||||||
3,3-Diindolymethane | (mmol/100 g FW) | 3.78 | - | - | - | [91] |
Indole-3-cabinol | (µmol/100 g FW) | - | - | - | 1.00–2.00 | [90] |
(mmol/100 g FW) | 27.83 | - | - | - | [91] | |
Carotenoids | ||||||
Total carotenoids | (μg/g DW) | 181.00 | 15.60 | 1095.00 | 451.70 | [10,79] |
(α + β)-Carotene | (μg/g DW) | - | - | - | 23.30 | [79] |
β-Carotene | (μg/g DW) | 30.60 | 0.00 | 248.40 | - | [10] |
Lutein | (μg/g DW) | 85.50 | 10.80 | 484.10 | 193.20 | [10,79] |
Neochrome | (μg/g DW) | - | - | - | 10.60 | [79] |
Neoxanthin | (μg/g DW) | 30.20 | 4.80 | 156.20 | 56.40 | [10,79] |
Violaxanthin | (μg/g DW) | 34.70 | 0.00 | 206.30 | 37.20 | [10,79] |
Zeoxanthin | (μg/g DW) | - | - | - | 23.50 | [79] |
Other carotenoids | (μg/g DW) | - | - | - | 107.60 | [79] |
Phenolic compounds | ||||||
PAs | ||||||
Caffeic acid | (mg/100 g DW) | 1.55 | - | - | nd | [84] |
Chlorogenic acid | (mg/100 g DW) | nd | - | - | 37.26 | [84] |
Ferulic acid | (mg/100 g DW) | nd | - | - | 73.85 | [84] |
Gentisid acid | (mg/100 g DW) | nd | - | - | 80.80 | [84] |
Iso-chlorogenic acid | (mg/100 g DW) | 59.85 | - | - | nd | [84] |
p-Coumaric acid | (mg/100 g DW) | nd | - | - | 27.75 | [84] |
Sinapic acid | (mg/100 g DW) | 3.43 | - | - | 140.53 | [84] |
Caffeoyl derivatives | ||||||
5-caffeoylquinic acid | (mg/g DW) | - | 4.30 | - | - | [85] |
Caffeoyl derivative | (mg/g DW) | - | 1.73 | - | - | [85] |
Caffeoyl-hexose derivative | (mg/g DW) | - | 1.87 | - | - | [85] |
Di-caffeoylquinic acid derivative | (mg/g DW) | - | 1.76 | - | - | [85] |
Feruloyl derivatives | ||||||
3-O-feruloylquinic acid | (mg/g DW) | - | 0.82 | - | - | [85] |
Feruloyl-caffeoyl derivative | (mg/g DW) | - | 6.45 | - | - | [85] |
Coumaroyl derivatives | ||||||
p-coumaroylquinic acid | (mg/g DW) | - | 0.55 | - | - | [85] |
Sinapoyl derivatives | ||||||
1-Di-sinapoyl-2-feruloyl-gentiobioside | (mg/g DW) | - | 0.70 | - | - | [85] |
1-Di-sinapoyl-2-feruloyl-gentiobioside (isomer) | (mg/g DW) | - | 1.25 | - | - | [85] |
1,2′-Di-sinapoyl-2-feruloyl-gentiobioside | (mg/g DW) | - | 1.94 | - | - | [85] |
1,2,2′-Tri-sinapoyl-gentiobioside | (mg/g DW) | - | 12.70 | - | - | [85] |
Di-sinapoyl-diglucose | (mg/g DW) | - | 2.26 | - | - | [85] |
Di-sinapoyl-gentiobioside I | (mg/g DW) | - | 0.70 | - | - | [85] |
Di-sinapoyl-gentiobioside II | (mg/g DW) | - | 4.69 | - | - | [85] |
Sinapoyl-gentibioside | (mg/g DW) | - | 0.85 | - | - | [85] |
Sinapoyl hexoside | (mg/g DW) | - | 0.59 | - | - | [85] |
Flavonoids | ||||||
Total flavonoids | (mg QE/g DW) | - | 2.20–8.10 | - | 75.52–117.26 | [33,89] |
(mg CE/g DW) | 2.84–6.33 | - | 7.84–9.93 | 3.18 | [59,92] | |
Flavonols | ||||||
Total flavonols | (mg CE/g DW) | - | - | - | 0.19 | [92] |
Kaempferol | (µg/g FW) | 0.80–87.70 | - | 108.00–274.30 | - | [54] |
Quercetin | (µg/g FW) | 1.80–29.00 | - | 8.00–32.20 | - | [54] |
Polyphenols | ||||||
Total Polyphenols | (mg GAE/g DW) | 10.74 | 9.39 | 24.35 | 35.90–77.19 | [33,82] |
4. Biological Properties and Beneficial Effects on Health
4.1. Anti-Cancer Activity
4.2. Anti-Inflammatory Activity
4.3. Antioxidant Activity
4.4. Antimicrobial Activity
4.5. Other Biological Activities
Botanical Part | Type Experiment | Experiment Details | Results | Ref. |
---|---|---|---|---|
Anti-cancer activity | ||||
Florets, leaves, and seeds (ethanol, methanol, and hot water extracts) | In vitro: HepG2, Caco-2, and A549 cells | Cytotoxic assay, cell cycle analysis, and MMP | Seed extracts with the strongest cytotoxicity | [59] |
↑ Apoptosis, subG1 phase | ||||
↓ G0//G1 phase, G2/M phase | ||||
↓ MMP level significantly | ||||
Florets (encapsulated ethanol/water extracts) | In vitro: GL261 mouse cell line | Cell viability analysis | Selective activity against tumor cells since they did not alter the viability of astrocytes | [107] |
Antiglioma effect at all concentrations tested | ||||
Edible parts (BEVs) | In vitro: HT-29 cells | Viability assay, cell apoptosis analysis, analysis of the synergistic effect of the combination of BEVs and 5-FU, cell cycle analysis, plate colony formation assay, cell scratch assay, ROS detection, MMP detection, | BEVs cytotoxic to colorectal cells | [108] |
↑ Inhibition of HT-29 cell viability | ||||
S-phase arrest and proliferation inhibition | ||||
↑ Pro-apoptotic Bax and Caspase-3 mRNA | ||||
↓ Anti-apoptotic Bcl-2 levels | ||||
↑ Intracellular ROS levels | ||||
Reversion of 5-FU resistance by modulating the PI3K/Akt/mTOR pathway | ||||
Sprouts (diets containing them) | In vivo: Her2/neu mammary tumor female mouse model | Cell viability assay, histone acetyltransferase activity assay, global DNA methylation, and hydroxymethylation analysis | ↓ Mammary cancer formation in the nontreated mouse offspring | [109] |
Suppressive effects on mammary cancer in adult mice, not as profound as the maternal broccoli sprout diet preventive effects | ||||
↑ Transcription levels of p16 and p53, tumor suppressor genes | ||||
↓ Bmi 1 (tumor-promoting gene), methyltransferases, histone deacetylases | ||||
Not specified (broccoli diet) | In vivo: Balb/c mice, colorectal cancer model | Broccoli diet with engineered commensal E. coli | ↑ Tumor regression | [110] |
75% tumor reduction in the colorectal region | ||||
↑ Conversion of GSLs to SFN | ||||
Sprouts (gel capsules with extracts) | In vivo: Clinical trial with melanoma patients | Three dosage groups received 50, 100, and 200 μmol of oral broccoli sprout extract once daily for 28 days. | Dose–response relationship in SFN levels | [111] |
↓ Plasma levels of pro-inflammatory cytokines | ||||
↑ Decorin, tumor suppressor | ||||
Not specifies (broccoli soup) | In vivo: Clinical trial with men with low- or intermediate-risk prostate cancer. | Consumption of a 300 mL portion of broccoli soup per week for 12 months | ↓ Gene expression changes and associated oncogenic pathways | [112] |
Inverse association between consumption of cruciferous vegetables and cancer progression | ||||
Anti-inflammatory activity | ||||
Sprouts (juice) | In vitro: TNF-α-stimulated Caco-2 cells | Measure of monolayer integrity and experimental intestinal cell model | ↓ Trans-epithelial electrical resistance | [120] |
Intestinal cell protection is positively correlated with procyanidin B2, cryptochlorogenic acid, neochlorogenic acid, quercetin-3-glucoside, cinnamic acid, and five different cyanidine-3-glucosides | ||||
Not specified (SFN from broccoli) | In vitro: HepG2 cell line | Measuring IL-6 cytokine protein secretion and gene expression, hepcidin protein secretion, and cell viability assay | ↓ IL-6 gene expression, hepcidin secretion | [121] |
No toxic effect in the treatment of HepG2 cells with SFN | ||||
Not specified (SFN from broccoli) | In vivo: Male C57/BL6 wild-type mice and transgenic ARE-luc mice | Fluid resuscitation performed via intraperitoneal administration of SFN | Hemorrhagic shock/resuscitation associated with pulmonary Nrf2 activation | [122] |
↑ Pulmonary Nrf2 activity, alveolar macrophage activation | ||||
↓ Lung damage, systemic pro-inflammatory mediators | ||||
Florets (raw and lightly cooked broccoli) | In vivo: Male C57BL/6 mice with dextran sulfate sodium-induced colitis | Three groups with control, raw broccoli, or lightly cooked broccoli diet for 14 days | Alleviated the clinical symptoms of colitis | [123] |
↓ Weight loss, stool formation, fecal bleeding, combined disease activity index, colon lesions | ||||
↑ Colon length | ||||
↓ IL-6, CCR2, VCAM-1 | ||||
Sprouts (included in the diet) | In vivo: Clinical trial with overweight subjects | Daily consumption of 30 g of raw or fresh broccoli sprouts for 10 weeks | ↓ IL-6 and CRP significantly | [124] |
No significant changes in weight or body mass index | ||||
Antioxidant activity | ||||
Sprouts (rehydrated freeze-dried samples) | In vitro | In vitro gastrointestinal digestion, BACs, and antioxidant capacity assays performed | ↓ ORAC and TEAC levels after simulated digestion | [60] |
Antioxidant capacity retained bioaccessible fraction | ||||
Seeds and sprouts (methanol extracts) | In vitro | Measurement of total phenolic and flavonoid contents in sprouts on different germination stages | Maximum SFN, TP, and TF contents in sprouts on day 3 | [126] |
Higher antioxidant activity in broccoli sprouts than in seeds | ||||
After in vitro digestion, higher values of DPPH and FRAP in sprouts than in seeds | ||||
Not specified (SFN from broccoli) | In vitro: HeLa, HepG2, 1321N1, HEK293, and human fibroblast cells | Autophagic flux and lysosome biogenesis studies, ROS and Ca2+ imaging | Induction of a TFEB nuclear translocation via a Ca2+-dependent but mTOR-independent mechanism through a moderate increase in ROS | [127] |
↑ Expression of autophagosome and lysosome biogenesis genes | ||||
Unknown (commercial broccoli extract capsules) | In vivo: Female Wistar rats subjected to exhaustive exercise | Four diverse groups were fed a standard diet with or without broccoli extract for 45 days | Exhaustive exercise was responsible for tissue damage | [128] |
↓ LDH and oxysterols | ||||
↑ GST, GR, CAT | ||||
Florets and seeds | In vivo: HFD-fed C57BL/6 mice | Mice with HFD containing 18.77 g/kg body weight freeze-dried broccoli powder or 150 μmol/kg body weight glucoraphanin | ↓ Liver weights and adipose tissue masses, concentrations of serum inflammatory factors | [129] |
Alleviated HFD-induced oxidative stress, ↓ MDA | ||||
↓ SOD and CAT activity | ||||
Antimicrobial activity | ||||
Florets, leaves, and seeds (ethanol, methanol, and hot water extracts) | In vitro: Gram-negative and Gram-positive pathogenic bacteria | Bacterial inhibitory activity was analyzed using the agar well diffusion and the broth microdilution techniques | Leaves and floret extracts presented stronger inhibitory activities against tested bacteria than seed extracts | [59] |
High inhibitory effects on Bacillus subtilis, Salmonella typhimurium, and moderate effects on Staphylococcus aureus and Escherichia coli | ||||
Bacillus subtilis was the most susceptive | ||||
Leaf extracts exhibited inhibitory activity with the lowest minimum inhibitory concentrations | ||||
Florets and stalks (water extracts) | In vitro: Gram-negative and Gram-positive pathogenic bacteria, and phytopathogenic fungi and yeasts | Bacterial inhibitory activity was determined using the well diffusion assay | Inhibitory effects against Gram-positive and Gram-negative pathogenic bacteria (Bacillus cereus, Staphylococcus xylosus, Staphylococcus aureus, Shigella flexneri, Shigella sonnei, Proteus vulgaris), phytopathogenic fungi (Colletotrichum gloeosporioides, Asperigillus niger), and yeasts (Candida albicans, Rhodotorula sp.) | [133] |
Staph. xylosus was the most susceptible | ||||
Antibacterial activity proteinaceous in nature | ||||
Sprouts (aqueous extracts) | In vitro: Five bacterial strains | Antimicrobial activity by broth microdilution method | Notable antimicrobial activity against Escherichia coli O 157: H7 ATCC 35150, Salmonella typhimurium ATCC 14028, Listeria monocytogenes ATCC 35152, Bacillus cereus ATCC 11778, and Staphylococus aureus ATCC | [134] |
Antimicrobial activity of broccoli extracts is like that of red cabbage and higher than that of Galega kale and Penca cabbage | ||||
Florets (SFN extracts) | In vitro: Strains of the genera Salmonella, Escherichia, Staphylococcus, Listeria, and Bacillus) | Antimicrobial activity was tested using the disk diffusion method | Raw broccoli has antimicrobial activity only against B. cereus | [135] |
Cooked broccoli extracts showed considerable antimicrobial activity against the tested strains, being higher in those with added mustard seeds | ||||
Organosulfur compounds related to the antimicrobial activity | ||||
B cereus was the most susceptible | ||||
Lower antimicrobial activities for the Gram-positive bacteria compared to the Gram-negative ones | ||||
Effect comparable to that of some antibiotics | ||||
Sprouts (powder) | In vivo: Clinical trial with Helicobacter pylori-infected patients | Consumption of broccoli sprout powder (22.5 µmol SFN/g) for 28 days | ↓ serum nitric oxide (NO) metabolites | [136] |
Other biological activities | ||||
Not specified (sinigrin from broccoli) | In vitro: 3T3-L1 mouse preadipocytes | Analysis of the effects of sinigrin on adipogenesis and its underlying mechanisms | ↓ Expression of C/EBPα, PPARγ, leptin, and aP2 | [138] |
Cell arrest in the G0/G1 phase | ||||
↑ Expression of p21 and p27, phosphorylation of AMPK, MAPK, and ACC | ||||
Suppression of production of CDK2, pro-inflammatory cytokines | ||||
Not specified (juice) | In vivo: Male C57BL/6 J mice, type 2 T2DM | Administration of broccoli juice via gavage for 18 weeks | ↓ Fasting blood glucose, insulin resistance, levels of TC, TG, LDL-c, and MDA | [139] |
Regulate lipid metabolism | ||||
↓ Relative abundance of genus Allobaculum and families Odoribacteraceae, Rikenellaceae, and S24-7 | ||||
↑ Relative abundance of the genera Odoribacter and Oscillospira and the families Erysipelotrichaceae and Rikenellaceae | ||||
Not specified (ethanolic broccoli extract) | In vivo: Caenorhabditis elegans, HFD-induced male Wistar rats | Supplementation of broccoli extract for 10 weeks | ↓ Fat content, body weight gain, food efficiency, atherogenic index of plasma | [140] |
↓ Adipogenesis-related transcription factors (Cebpa, Srebf1, Pparg) and lipogenic genes (Fasn, Adipoq) | ||||
↑ Oxidative enzyme-encoding genes (Acox1, Acot8) | ||||
↓ Fatty acid transport and synthesis-related genes (Fasn, Fatp4, and Srebf1) | ||||
Improvement of glucose tolerance | ||||
Sprouts (extracts with 150 µmol SFN per dose) | In vivo: Clinical trial with obese patients with dysregulated T2DM | Ingestion of SFN-rich broccoli sprout extract for 12 weeks | ↓ Fasting glucose, HbA1c, gluconeogenesis-related enzymes | [141] |
Unknown (SFN extracts) | In vitro: C6 astrocyte cell line | Analysis of the potential mechanisms involved in the glioprotective effects of SFN | Activation of NF-κB and hypoxia-inducible factor-1α | [143] |
Modulation of the expression of the Toll-like and adenosine receptors | ||||
↑ Nrf2 and HO1 | ||||
Modulation of superoxide dismutase activity and glutathione metabolism | ||||
Unknown (SFN extracts) | In vitro: Monocytes of children with ASD | Evaluation of Nrf2 expression/activity along with parameters of inflammation and nitrative stress | ↓ NF-κB signaling, LPS-induced effects on nitrative stress | [144] |
↓ Oxidative stress and inflammation | ||||
SFN protects against nitrative stress and inflammation | ||||
Leaves (chloroform fraction) | In vitro: PC12 cells In vivo: Aβ-induced mice | Examination of the antiamnesic effects of broccoli leaves in vitro and in vivo tests on Aβ-induced neurotoxicity | Inhibition against AChE | [145] |
↑ Cognitive function | ||||
↓ Oxidative stress and AChE activity | ||||
Natural resource for ameliorating Aβ1–42-induced learning and memory impairment | ||||
Unknown (I3C extracts) | In vivo: Male Wistar rats | Chronic administration of I3C for 21 days | Improvement in motor functions, coordination, learning, and memory | [146] |
↓ Inflammatory cytokines (TNF-α and IL-6), MDA | ||||
Inhibition of NF-κB | ||||
↑ Reduced glutathione, superoxide dismutase, and catalase | ||||
Neuroprotective effect of I3C via amelioration of LPS-induced behavioral alterations, oxidative damage, and neuroinflammation |
5. Novel Extraction Techniques of Bioactive Compounds
6. Food Application
Botanical Part | Food Product | Formulation | Outcomes | References |
---|---|---|---|---|
Leaves | GF mini sponge cakes | Replacement of potato and corn starch with freeze-dried broccoli powder (0, 2.5, 5, 7.5%) | Increased GSLs and derivatives, TPC, and antioxidant capacity | [173,174,175] |
Dark green color, intense broccoli aroma, and flavor | ||||
Higher concentrations of free amino acids (FAAs), including EAAs | ||||
Increased instrumental firmness, maintenance of elasticity, mastication, and adhesiveness | ||||
Florets and leaves | Cake | Replacement of wheat flour with florets flour (0, 1.5, 3 and 4.5%) or leaves powder (0, 1, 2 and 3%) | Increased protein, lipids, ash, DF content, TPC, and antioxidant activity | [177] |
Visible effects on color, reducing L* and a* | ||||
Lower microbial count with increasing level of substitution | ||||
Decreased energy value and carbohydrate content | ||||
Leaves | GF bread | 5% substitution of the original corn starch with broccoli leaf powder (freeze-dried) | Increased protein and mineral content | [178] |
Improved specific volume and bake loss | ||||
Enhancement of the TPC | ||||
Improved inhibiting activity against AGEs | ||||
Leaves and stalks | Bread | Replacement of 3 g of wheat flour with broccoli leave or stalk powder | Increased green hue and a higher crust and crumb color intensity | [179] |
Higher TPC and antioxidant capacity | ||||
Overall acceptance, texture, and appearance were not affected | ||||
Florets | Bread | Replacement of 0, 1, 3, 5, and 7% of wheat flour with broccoli floret powder | Increased DF, protein, and TPC | [180] |
Darker color, reducing lightness by increasing the broccoli powder concentration | ||||
Harder texture, decreasing viscoelastic parameters | ||||
Acceptable sensory evaluation at 1 and 3% bread | ||||
Stalks | Biscuits | Substitution of wheat flour with broccoli powder (hot air-drying) at various levels (5, 10, 15%) | Improved texture with increased cohesiveness and reduced brittleness | [182] |
Enhancement of the sensory attributes and overall acceptability | ||||
Enhanced nutritional quality in terms of the glucosinolate, carotenoid, and phenolic content. | ||||
Florets and stalks | Biscuits | Replacement of 10% of wheat flour with broccoli flour (freeze-dried) | Increased levels of GSLs, carotenoids, and TPC | [183] |
Obtaining a more cohesive and easier to work dough | ||||
Protection of BACs from thermal degradation by the food matrix | ||||
Stalks | Crackers | 12.5 and 15% substitution of the original wheat flour with broccoli stalk powder (freeze-dried) | Increased DF | [185] |
Enhancement of the GSLs content, TPC, and antioxidant capacity | ||||
Maintenance of the overall acceptance | ||||
Higher green color and color intensity | ||||
Leaves | Durum wheat pasta | Addition of 2.5 and 5% of broccoli leaf powder (freeze-dried) to the pasta formulation | Improvement of the content of FAAs, FAs, minerals, and dimethyl sulfide | [184,186] |
Decreased optimal cooking time and water absorption | ||||
Greener color without compromising overall acceptance | ||||
Firmness and total shearing force decreased | ||||
Sprouts | Durum wheat pasta | Replacement of durum wheat flour with 0, 5, 10, or 15 g/100 g of broccoli sprouts powder (freeze-dried) | Enhancement of the content of protein, lipids, and minerals | [187] |
Higher levels of GSLs, synaptic acid derivatives, TPC, and antioxidant activity | ||||
Visible effects on color, reducing L* and b*, and increasing a* | ||||
Increased bitterness in flavor, without affecting the overall quality of the pasta |
7. Conclusions and Future Trends
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nagraj, G.S.; Chouksey, A.; Jaiswal, S.; Jaiswal, A.K. Broccoli. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Academic Press: Cambridge, MA, USA, 2020; pp. 5–17. [Google Scholar] [CrossRef]
- Franzke, A.; Lysak, M.A.; Al-Shehbaz, I.A.; Koch, M.A.; Mummenhoff, K. Cabbage Family Affairs: The Evolutionary History of Brassicaceae. Trends Plant Sci. 2011, 16, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M. The Plant Family Brassicaceae: Biology and Physiological Responses to Environmental Stresses. In The Plant Family Brassicaceae: Biology and Physiological Responses to Environmental Stresses; Springer: Singapore, 2020; pp. 1–531. [Google Scholar] [CrossRef]
- Lettre, S.M.-D.P. Broccoli (Brassica oleracea Var. Italica): Potential Candidate in the Health Management. Der Pharm. Lett. 2016, 8, 61–65. [Google Scholar]
- Mabry, M.E.; Turner-Hissong, S.D.; Gallagher, E.Y.; McAlvay, A.C.; An, H.; Edger, P.P.; Moore, J.D.; Pink, D.A.C.; Teakle, G.R.; Stevens, C.J.; et al. The Evolutionary History of Wild, Domesticated, and Feral Brassica oleracea (Brassicaceae). Mol. Biol. Evol. 2021, 38, 4419–4434. [Google Scholar] [CrossRef] [PubMed]
- Ciancaleoni, S.; Chiarenza, G.L.; Raggi, L.; Branca, F.; Negri, V. Diversity Characterisation of Broccoli (Brassica oleracea L. var. italica Plenck) Landraces for Their on-Farm (in Situ) Safeguard and Use in Breeding Programs. Genet. Resour. Crop. Evol. 2013, 61, 451–464. [Google Scholar] [CrossRef]
- Han, F.; Liu, Y.; Fang, Z.; Yang, L.; Zhuang, M.; Zhang, Y.; Lv, H.; Ji, J.; Li, Z.; Wang, Y. Advances in Genetics and Molecular Breeding of Broccoli. Horticulturae 2021, 7, 280. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations). Crops Data FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 11 September 2024).
- Ministerio de Agricultura, Pesca y Alimentación (MAPA). Surfaces and Annual Crop Productions. Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/superficies-producciones-anuales-cultivos/ (accessed on 11 September 2024).
- Liu, M.; Zhang, L.; Ser, S.L.; Cumming, J.R.; Ku, K.M. Comparative Phytonutrient Analysis of Broccoli By-Products: The Potentials for Broccoli By-Product Utilization. Molecules 2018, 23, 900. [Google Scholar] [CrossRef]
- Dominguez-Perles, R.; Moreno, D.A.; Carvajal, M.; Garcia-Viguera, C. Composition and Antioxidant Capacity of a Novel Beverage Produced with Green Tea and Minimally-Processed Byproducts of Broccoli. Innov. Food Sci. Emerg. Technol. 2011, 12, 361–368. [Google Scholar] [CrossRef]
- Coman, V.; Teleky, B.E.; Mitrea, L.; Martău, G.A.; Szabo, K.; Călinoiu, L.F.; Vodnar, D.C. Bioactive Potential of Fruit and Vegetable Wastes. Adv. Food Nutr. Res. 2020, 91, 157–225. [Google Scholar] [CrossRef]
- Borja-Martínez, M.; Lozano-Sánchez, J.; Borrás-Linares, I.; Pedreño, M.A.; Sabater-Jara, A.B. Revalorization of Broccoli By-Products for Cosmetic Uses Using Supercritical Fluid Extraction. Antioxidants 2020, 9, 1195. [Google Scholar] [CrossRef]
- Bahadoran, Z.; Tohidi, M.; Nazeri, P.; Mehran, M.; Azizi, F.; Mirmiran, P. Effect of Broccoli Sprouts on Insulin Resistance in Type 2 Diabetic Patients: A Randomized Double-Blind Clinical Trial. Int. J. Food Sci. Nutr. 2012, 63, 767–771. [Google Scholar] [CrossRef]
- Dang, Y.; Zhou, T.; Hao, L.; Cao, J.; Sun, Y.; Pan, D. In Vitro and in Vivo Studies on the Angiotensin-Converting Enzyme Inhibitory Activity Peptides Isolated from Broccoli Protein Hydrolysate. J. Agric. Food Chem. 2019, 67, 6757–6764. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.W.; Moon, J.K.; Shibamoto, T. Analysis and Antioxidant Activity of Extracts from Broccoli (Brassica oleracea L.) Sprouts. J. Agric. Food Chem. 2015, 63, 1169–1174. [Google Scholar] [CrossRef] [PubMed]
- Ares, A.M.; Nozal, M.J.; Bernal, J. Extraction, Chemical Characterization and Biological Activity Determination of Broccoli Health Promoting Compounds. J. Chromatogr. A 2013, 1313, 78–95. [Google Scholar] [CrossRef] [PubMed]
- Owis, A.I. Broccoli; The Green Beauty: A Review. J. Pharm. Sci. Res. 2015, 7, 696–703. [Google Scholar]
- Food Loss and Waste Prevention—European Commission. Available online: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy/food-loss-and-waste-prevention_en (accessed on 11 September 2024).
- De Munekata, P.E.S.; Pateiro, M.; Domínguez, R.; Nieto, G.; Kumar, M.; Dhama, K.; Lorenzo, J.M. Bioactive Compounds from Fruits as Preservatives. Foods 2023, 12, 343. [Google Scholar] [CrossRef]
- UNEP Food Waste Index Report 2021|UNEP—UN Environment Programme. Available online: https://www.unep.org/resources/report/unep-food-waste-index-report-2021 (accessed on 11 September 2024).
- Stojanovic, N. European Green Deal and” Farm-to-Fork” Strategy for a Fair, Healthy and Environmentally-Friendly Food System. In HeinOnlineN Stojanovic Collection Papers from Conf. Org. on Occasion Day Fac. L.; HeinOnline: Getzville, NY, USA, 2021. [Google Scholar]
- Borja Martínez, M. Aprovechamiento de Los. Subproductos Del. Brócoli Como Fuente de Compuestos Bioactivos. Doctoral Dissertation, Universidad de Murcia, Murcia, Spain, 2023. [Google Scholar]
- Trigo, J.P.; Alexandre, E.M.C.; Saraiva, J.A.; Pintado, M.E. High Value-Added Compounds from Fruit and Vegetable by-Products—Characterization, Bioactivities, and Application in the Development of Novel Food Products. Crit. Rev. Food Sci. Nutr. 2022, 60, 1388–1416. [Google Scholar] [CrossRef]
- de los Rosell, M.Á.; Quizhpe, J.; Ayuso, P.; Peñalver, R.; Nieto, G. Proximate Composition, Health Benefits, and Food Applications in Bakery Products of Purple-Fleshed Sweet Potato (Ipomoea batatas L.) and Its By-Products: A Comprehensive Review. Antioxidants 2024, 13, 954. [Google Scholar] [CrossRef] [PubMed]
- Ayuso, P.; Quizhpe, J.; de los Rosell, M.Á.; Peñalver, R.; Nieto, G. Bioactive Compounds, Health Benefits and Food Applications of Artichoke (Cynara scolymus L.) and Artichoke By-Products: A Review. Appl. Sci. 2024, 14, 4940. [Google Scholar] [CrossRef]
- Rodríguez-Palleres, X.; Rojas-González, F.; Rodríguez-Palleres, X.; Rojas-González, F. Valor Nutricional de Hojas y Tallos de Brócoli, Apio y Betarraga Disponibles En Un Mercado Mayorista de Santiago de Chile. Mem. Del Inst. De Investig. En Cienc. De La Salud 2022, 20, 97–107. [Google Scholar] [CrossRef]
- Dereje, B.; Jacquier, J.C.; Elliott-Kingston, C.; Harty, M.; Harbourne, N. Brassicaceae Microgreens: Phytochemical Compositions, Influences of Growing Practices, Postharvest Technology, Health, and Food Applications. ACS Food Sci. Technol. 2023, 3, 981–998. [Google Scholar] [CrossRef]
- Campas-Baypoli, O.N.; Snchez-Machado, D.I.; Bueno-Solano, C.; Núñez-Gastélum, J.A.; Reyes-Moreno, C.; López-Cervantes, J. Biochemical Composition and Physicochemical Properties of Broccoli Flours. Int. J. Food Sci. Nutr. 2009, 60, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Marchioni, I.; Martinelli, M.; Ascrizzi, R.; Gabbrielli, C.; Flamini, G.; Pistelli, L.; Pistelli, L. Small Functional Foods: Comparative Phytochemical and Nutritional Analyses of Five Microgreens of the Brassicaceae Family. Foods 2021, 10, 427. [Google Scholar] [CrossRef] [PubMed]
- Dufoo-Hurtado, M.D.; Vazquez-Barrios, M.E.; Ramirez-Gonzalez, E.; Vazquez-Celestino, D.; Rivera-Pastrana, D.M.; Mercado-Silva, E. Nutritional, Nutraceutical and Functional Properties of Flours Obtained from Broccoli Waste Material Dried at Different Temperatures. Acta Hortic. 2020, 1292, 137–144. [Google Scholar] [CrossRef]
- Gunjal, M.; Singh, J.; Kaur, J.; Kaur, S.; Nanda, V.; Mehta, C.M.; Bhadariya, V.; Rasane, P. Comparative Analysis of Morphological, Nutritional, and Bioactive Properties of Selected Microgreens in Alternative Growing Medium. S. Afr. J. Bot. 2024, 165, 188–201. [Google Scholar] [CrossRef]
- López-Cervantes, J.; Tirado-Noriega, L.G.; Sánchez-Machado, D.I.; Campas-Baypoli, O.N.; Cantú-Soto, E.U.; Núñez-Gastélum, J.A. Biochemical Composition of Broccoli Seeds and Sprouts at Different Stages of Seedling Development. Int. J. Food Sci. Technol. 2013, 48, 2267–2275. [Google Scholar] [CrossRef]
- Manchali, S.; Chidambara Murthy, K.N.; Patil, B.S. Crucial Facts about Health Benefits of Popular Cruciferous Vegetables. J. Funct. Foods 2012, 4, 94–106. [Google Scholar] [CrossRef]
- Rivas, M.Á.; Benito, M.J.; Martín, A.; Córdoba, M.d.G.; Ruíz-Moyano, S.; Casquete, R. Improve the Functional Properties of Dietary Fibre Isolated from Broccoli By-Products by Using Different Technologies. Innov. Food Sci. Emerg. Technol. 2022, 80, 103075. [Google Scholar] [CrossRef]
- Yanaka, A. Daily Intake of Broccoli Sprouts Normalizes Bowel Habits in Human Healthy Subjects. J. Clin. Biochem. Nutr. 2018, 62, 75–82. [Google Scholar] [CrossRef]
- Li, H.; Xia, Y.; Liu, H.Y.; Guo, H.; He, X.Q.; Liu, Y.; Wu, D.T.; Mai, Y.H.; Li, H.B.; Zou, L.; et al. Nutritional Values, Beneficial Effects, and Food Applications of Broccoli (Brassica oleracea var. italica Plenck). Trends Food Sci. Technol. 2022, 119, 288–308. [Google Scholar] [CrossRef]
- Ferreira, S.S.; Passos, C.P.; Cardoso, S.M.; Wessel, D.F.; Coimbra, M.A. Microwave Assisted Dehydration of Broccoli By-Products and Simultaneous Extraction of Bioactive Compounds. Food Chem. 2018, 246, 386–393. [Google Scholar] [CrossRef]
- Bhandari, S.R.; Kwak, J.H. Seasonal Variation in Contents of Sugars in Different Parts of Broccoli. Hortic. Sci. Technol. 2015, 33, 276–282. [Google Scholar] [CrossRef]
- Femenia, A.; Bestard, M.J.; Sanjuan, N.; Rosselló, C.; Mulet, A. Effect of Rehydration Temperature on the Cell Wall Components of Broccoli (Brassica oleracea L. var. italica). Plant Tissues. J. Food Eng. 2000, 46, 157–163. [Google Scholar] [CrossRef]
- Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S.; Blecker, C.; Attia, H. Dietary Fibre and Fibre-Rich by-Products of Food Processing: Characterisation, Technological Functionality and Commercial Applications: A Review. Food Chem. 2011, 124, 411–421. [Google Scholar] [CrossRef]
- Fleming, S.E. Handbook of Dietary Fiber: Edited by Susan S Cho and Mark L Dreher, 2001, 868 Pages, Hardcover. Marcel Dekker, New York. Am. J. Clin. Nutr. 2002, 76, 493. [Google Scholar] [CrossRef]
- Kalala, G.; Kambashi, B.; Everaert, N.; Beckers, Y.; Richel, A.; Pachikian, B.; Neyrinck, A.M.; Delzenne, N.M.; Bindelle, J. Characterization of Fructans and Dietary Fibre Profiles in Raw and Steamed Vegetables. Int. J. Food Sci. Nutr. 2018, 69, 682–689. [Google Scholar] [CrossRef]
- Schäfer, J.; Stanojlovic, L.; Trierweiler, B.; Bunzel, M. Storage Related Changes of Cell Wall Based Dietary Fiber Components of Broccoli (Brassica oleracea var. italica) Stems. Food Res. Int. 2017, 93, 43–51. [Google Scholar] [CrossRef]
- Berndtsson, E.; Andersson, R.; Johansson, E.; Olsson, M.E. Side Streams of Broccoli Leaves: A Climate Smart and Healthy Food Ingredient. Int. J. Environ. Res. Public. Health 2020, 17, 2406. [Google Scholar] [CrossRef]
- Mariamenatu, A.H.; Abdu, E.M. Overconsumption of Omega-6 Polyunsaturated Fatty Acids (PUFAs) versus Deficiency of Omega-3 PUFAs in Modern-Day Diets: The Disturbing Factor for Their “Balanced Antagonistic Metabolic Functions” in the Human Body. J. Lipids 2021, 2021, 8848161. [Google Scholar] [CrossRef]
- Konopka, I.; Tańska, M.; Dąbrowski, G.; Ogrodowska, D.; Czaplicki, S. Edible Oils from Selected Unconventional Sources—A Comprehensive Review of Fatty Acid Composition and Phytochemicals Content. Appl. Sci. 2023, 13, 12829. [Google Scholar] [CrossRef]
- Vasanthi, H.R.; Mukherjee, S.; Das, D.K. Potential Health Benefits of Broccoli- A Chemico-Biological Overview. Mini-Rev. Med. Chem. 2009, 9, 749–759. [Google Scholar] [CrossRef]
- Pasricha, S.R.; Tye-Din, J.; Muckenthaler, M.U.; Swinkels, D.W. Iron Deficiency. Lancet 2021, 397, 233–248. [Google Scholar] [CrossRef] [PubMed]
- Puranik, S.; Kam, J.; Sahu, P.P.; Yadav, R.; Srivastava, R.K.; Ojulong, H.; Yadav, R. Harnessing Finger Millet to Combat Calcium Deficiency in Humans: Challenges and Prospects. Front. Plant Sci. 2017, 8, 281391. [Google Scholar] [CrossRef] [PubMed]
- He, F.J.; MacGregor, G.A. Beneficial Effects of Potassium on Human Health. Physiol. Plant 2008, 133, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Tuerk, M.J.; Fazel, N. Zinc Deficiency. Curr. Opin. Gastroenterol. 2009, 25, 136–143. [Google Scholar] [CrossRef]
- Revelou, P.K.; Xagoraris, M.; Kokotou, M.G.; Constantinou-Kokotou, V. Cruciferous Vegetables as Functional Foods: Effects of Selenium Biofortification. Int. J. Veg. Sci. 2022, 28, 191–210. [Google Scholar] [CrossRef]
- Duan, Y.; Eduardo Melo Santiago, F.; Rodrigues dos Reis, A.; de Figueiredo, M.A.; Zhou, S.; Thannhauser, T.W.; Li, L. Genotypic Variation of Flavonols and Antioxidant Capacity in Broccoli. Food Chem. 2021, 338, 127997. [Google Scholar] [CrossRef]
- Kosewski, G.; Kowalówka, M.; Drzymała-Czyż, S.; Przysławski, J. The Impact of Culinary Processing, Including Sous-Vide, on Polyphenols, Vitamin C Content and Antioxidant Status in Selected Vegetables—Methods and Results: A Critical Review. Foods 2023, 12, 2121. [Google Scholar] [CrossRef]
- Xiao, Z.; Codling, E.E.; Luo, Y.; Nou, X.; Lester, G.E.; Wang, Q. Microgreens of Brassicaceae: Mineral Composition and Content of 30 Varieties. J. Food Compos. Anal. 2016, 49, 87–93. [Google Scholar] [CrossRef]
- FoodData Central. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/170379/nutrients (accessed on 9 July 2024).
- Aǧagündüz, D.; Şahin, T.Ö.; Yilmaz, B.; Ekenci, K.D.; Duyar Özer, Ş.; Capasso, R. Cruciferous Vegetables and Their Bioactive Metabolites: From Prevention to Novel Therapies of Colorectal Cancer. Evid. Based Complement. Altern. Med. 2022, 2022, 1534083. [Google Scholar] [CrossRef]
- Le, T.N.; Sakulsataporn, N.; Chiu, C.H.; Hsieh, P.C. Polyphenolic Profile and Varied Bioactivities of Processed Taiwanese Grown Broccoli: A Comparative Study of Edible and Non-Edible Parts. Pharmaceuticals 2020, 13, 82. [Google Scholar] [CrossRef]
- De la Fuente, B.; López-García, G.; Máñez, V.; Alegría, A.; Barberá, R.; Cilla, A. Evaluation of the Bioaccessibility of Antioxidant Bioactive Compounds and Minerals of Four Genotypes of Brassicaceae Microgreens. Foods 2019, 8, 250. [Google Scholar] [CrossRef] [PubMed]
- Thinh Nguyen, V.P.; Stewart, J.; Lopez, M.; Ioannou, I.; Allais, F. Glucosinolates: Natural Occurrence, Biosynthesis, Accessibility, Isolation, Structures, and Biological Activities. Molecules 2020, 25, 4537. [Google Scholar] [CrossRef] [PubMed]
- Fimognari, C.; Turrini, E.; Ferruzzi, L.; Lenzi, M.; Hrelia, P. Natural Isothiocyanates: Genotoxic Potential versus Chemoprevention. Mutat. Res./Rev. Mutat. Res. 2012, 750, 107–131. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Sangerman, F.; Gómez-Merino, F.C.; Peralta-Sánchez, M.G.; Alcántar-González, G.; Trejo-Téllez, L.I. Glucosinolates: Structure, Classification, Biosynthesis and Functions in Higher Plants. Agro Product. 2023, 16, 107–114. [Google Scholar] [CrossRef]
- Sikorska-Zimny, K.; Beneduce, L. The Glucosinolates and Their Bioactive Derivatives in Brassica: A Review on Classification, Biosynthesis and Content in Plant Tissues, Fate during and after Processing, Effect on the Human Organism and Interaction with the Gut Microbiota. Crit. Rev. Food Sci. Nutr. 2021, 61, 2544–2571. [Google Scholar] [CrossRef]
- Wu, X.; Huang, H.; Childs, H.; Wu, Y.; Yu, L.; Pehrsson, P.R. Glucosinolates in Brassica Vegetables: Characterization and Factors That Influence Distribution, Content, and Intake. Annu. Rev. Food Sci. Technol. 2021, 12, 485–511. [Google Scholar] [CrossRef]
- Castro-Torres, I.G.; Castro-Torres, V.A.; Hernández-Lozano, M.; Naranjo-Rodríguez, E.B.; Domínguez-Ortiz, M.Á. Glucosinolates and Metabolism. In Glucosinolates: Properties, Recovery, and Applications; Academic Press: Cambridge, MA, USA, 2020; pp. 107–141. [Google Scholar] [CrossRef]
- Wittstock, U.; Kurzbach, E.; Herfurth, A.M.; Stauber, E.J. Glucosinolate Breakdown. Adv. Bot. Res. 2016, 80, 125–169. [Google Scholar] [CrossRef]
- Prieto, M.A.; López, C.J.; Simal-Gandara, J. Glucosinolates: Molecular Structure, Breakdown, Genetic, Bioavailability, Properties and Healthy and Adverse Effects. Adv. Food Nutr. Res. 2019, 90, 305–350. [Google Scholar] [CrossRef]
- Feng, X.; Ma, J.; Liu, Z.; Li, X.; Wu, Y.; Hou, L.; Li, M. Analysis of Glucosinolate Content and Metabolism Related Genes in Different Parts of Chinese Flowering Cabbage. Front. Plant Sci. 2022, 12, 767898. [Google Scholar] [CrossRef]
- Zeng, W.; Yang, J.; He, Y.; Zhu, Z. Bioactive Compounds in Cruciferous Sprouts and Microgreens and the Effects of Sulfur Nutrition. J. Sci. Food Agric. 2023, 103, 7323–7332. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, S.; Liu, Y.; Fang, Z.; Yang, L.; Zhuang, M.; Zhang, Y.; Lv, H.; Wang, Y.; Xu, D. Characterization of Glucosinolates in 80 Broccoli Genotypes and Different Organs Using UHPLC-Triple-TOF-MS Method. Food Chem. 2021, 334, 127519. [Google Scholar] [CrossRef] [PubMed]
- Ilahy, R.; Tlili, I.; Pék, Z.; Montefusco, A.; Siddiqui, M.W.; Homa, F.; Hdider, C.; R’Him, T.; Lajos, H.; Lenucci, M.S. Pre- and Post-Harvest Factors Affecting Glucosinolate Content in Broccoli. Front. Nutr. 2020, 7, 556811. [Google Scholar] [CrossRef] [PubMed]
- Soares, A.; Carrascosa, C.; Raposo, A. Influence of Different Cooking Methods on the Concentration of Glucosinolates and Vitamin C in Broccoli. Food Bioprocess Technol. 2017, 10, 1387–1411. [Google Scholar] [CrossRef]
- Campas-Baypoli, O.N.; Sánchez-Machado, D.I.; Bueno-Solano, C.; Ramírez-Wong, B.; López-Cervantes, J. HPLC Method Validation for Measurement of Sulforaphane Level in Broccoli By-Products. Biomed. Chromatogr. 2010, 24, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Cramer, J.M.; Jeffery, E.H. Sulforaphane Absorption and Excretion Following Ingestion of a Semi-Purified Broccoli Powder Rich in Glucoraphanin and Broccoli Sprouts in Healthy Men. Nutr. Cancer 2011, 63, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Nile, S.H.; Park, S.W. Carotenoids from Fruits and Vegetables: Chemistry, Analysis, Occurrence, Bioavailability and Biological Activities. Food Res. Int. 2015, 76, 735–750. [Google Scholar] [CrossRef]
- Eggersdorfer, M.; Wyss, A. Carotenoids in Human Nutrition and Health. Arch. Biochem. Biophys. 2018, 652, 18–26. [Google Scholar] [CrossRef]
- Cooperstone, J.L.; Schwartz, S.J. Recent Insights Into Health Benefits of Carotenoids. In Handbook on Natural Pigments in Food and Beverages: Industrial Applications for Improving Food Color; Woodhead Publishing: Sawston, UK, 2016; pp. 473–497. [Google Scholar] [CrossRef]
- Wojdyło, A.; Nowicka, P.; Tkacz, K.; Turkiewicz, I.P. Sprouts vs. Microgreens as Novel Functional Foods: Variation of Nutritional and Phytochemical Profiles and Their In Vitro Bioactive Properties. Molecules 2020, 25, 4648. [Google Scholar] [CrossRef]
- dos Reis, L.C.R.; de Oliveira, V.R.; Hagen, M.E.K.; Jablonski, A.; FlÔres, S.H.; de Oliveira Rios, A. Carotenoids, Flavonoids, Chlorophylls, Phenolic Compounds and Antioxidant Activity in Fresh and Cooked Broccoli (Brassica oleracea var. Avenger) and Cauliflower (Brassica oleracea var. Alphina F1). LWT Food Sci. Technol. 2015, 63, 177–183. [Google Scholar] [CrossRef]
- Sauceda, A.E.Q.; Sáyago-Ayerdi, S.G.; Ayala-Zavala, J.F.; Wall-Medrano, A.; de la Rosa, L.A.; González-Aguilar, G.A.; Álvarez-Parrilla, E. Biological Actions of Phenolic Compounds. Fruit. Veg. Phytochem. Chem. Human. Health: Second. Ed. 2017, 1, 125–138. [Google Scholar] [CrossRef]
- Gudiño, I.; Martín, A.; Casquete, R.; Prieto, M.H.; Ayuso, M.C.; Córdoba, M.G. Evaluation of Broccoli (Brassica oleracea var. italica) Crop by-Products as Sources of Bioactive Compounds. Sci. Hortic. 2022, 304, 111284. [Google Scholar] [CrossRef]
- Zhan, L.; Pang, L.; Ma, Y.; Zhang, C. Thermal Processing Affecting Phytochemical Contents and Total Antioxidant Capacity in Broccoli (Brassica oleracea L.). J. Food Process Preserv. 2018, 42, e13548. [Google Scholar] [CrossRef]
- Paśko, P.; Tyszka-Czochara, M.; Galanty, A.; Gdula-Argasińska, J.; Żmudzki, P.; Bartoń, H.; Zagrodzki, P.; Gorinstein, S. Comparative Study of Predominant Phytochemical Compounds and Proapoptotic Potential of Broccoli Sprouts and Florets. Plant Foods Human. Nutr. 2018, 73, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Costa-Pérez, A.; Moreno, D.A.; Periago, P.M.; García-Viguera, C.; Domínguez-Perles, R. A New Food Ingredient Rich in Bioaccessible (Poly)Phenols (and Glucosinolates) Obtained from Stabilized Broccoli Stalks. Foods 2022, 11, 1734. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhao, Y.; Haytowitz, D.B.; Chen, P.; Pehrsson, P.R. Effects of Domestic Cooking on Flavonoids in Broccoli and Calculation of Retention Factors. Heliyon 2019, 5, 1310. [Google Scholar] [CrossRef]
- Tian, Q.; Rosselot, R.A.; Schwartz, S.J. Quantitative Determination of Intact Glucosinolates in Broccoli, Broccoli Sprouts, Brussels Sprouts, and Cauliflower by High-Performance Liquid Chromatography–Electrospray Ionization–Tandem Mass Spectrometry. Anal. Biochem. 2005, 343, 93–99. [Google Scholar] [CrossRef]
- Zhang, Y.; Makaza, N.; Jiang, C.; Wu, Y.; Nishanbaev, S.Z.; Zou, L.; Sun, J.; Song, X.; Wu, Y. Supplementation of Cooked Broccoli with Exogenous Moringa Myrosinase Enhanced Isothiocyanate Formation. Food Chem. 2022, 395, 133651. [Google Scholar] [CrossRef]
- Bas-Bellver, C.; Barrera, C.; Betoret, N.; Seguí, L. Impact of Disruption and Drying Conditions on Physicochemical, Functional and Antioxidant Properties of Powdered Ingredients Obtained from Brassica Vegetable By-Products. Foods 2022, 11, 3663. [Google Scholar] [CrossRef]
- Baenas, N.; Suárez-Martínez, C.; García-Viguera, C.; Moreno, D.A. Bioavailability and New Biomarkers of Cruciferous Sprouts Consumption. Food Res. Int. 2017, 100, 497–503. [Google Scholar] [CrossRef]
- Radošević, K.; Srček, V.G.; Bubalo, M.C.; Rimac Brnčić, S.; Takács, K.; Redovniković, I.R. Assessment of Glucosinolates, Antioxidative and Antiproliferative Activity of Broccoli and Collard Extracts. J. Food Compos. Anal. 2017, 61, 59–66. [Google Scholar] [CrossRef]
- Šamec, D.; Pavlović, I.; Radojčić Redovniković, I.; Salopek-Sondi, B. Comparative Analysis of Phytochemicals and Activity of Endogenous Enzymes Associated with Their Stability, Bioavailability and Food Quality in Five Brassicaceae Sprouts. Food Chem. 2018, 269, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 30 August 2024).
- Gasmi, A.; Mujawdiya, P.K.; Noor, S.; Lysiuk, R.; Darmohray, R.; Piscopo, S.; Lenchyk, L.; Antonyak, H.; Dehtiarova, K.; Shanaida, M.; et al. Polyphenols in Metabolic Diseases. Molecules 2022, 27, 6280. [Google Scholar] [CrossRef] [PubMed]
- Mandrich, L.; Caputo, E. Brassicaceae-Derived Anticancer Agents: Towards a Green Approach to Beat Cancer. Nutrients 2020, 12, 868. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Oliveira, P.; Otero, P.; Pereira, A.G.; Chamorro, F.; Carpena, M.; Echave, J.; Fraga-Corral, M.; Simal-Gandara, J.; Prieto, M.A. Status and Challenges of Plant-Anticancer Compounds in Cancer Treatment. Pharmaceuticals 2021, 14, 157. [Google Scholar] [CrossRef] [PubMed]
- Janczewski, Ł. Sulforaphane and Its Bifunctional Analogs: Synthesis and Biological Activity. Molecules 2022, 27, 1750. [Google Scholar] [CrossRef]
- Williams, D.E. Indoles Derived from Glucobrassicin: Cancer Chemoprevention by Indole-3-Carbinol and 3,3’-Diindolylmethane. Front. Nutr. 2021, 8, 734334. [Google Scholar] [CrossRef]
- Baenas, N.; Silván, J.M.; Medina, S.; de Pascual-Teresa, S.; García-Viguera, C.; Moreno, D.A. Metabolism and Antiproliferative Effects of Sulforaphane and Broccoli Sprouts in Human Intestinal (Caco-2) and Hepatic (HepG2) Cells. Phytochem. Rev. 2015, 14, 1035–1044. [Google Scholar] [CrossRef]
- Syed, R.U.; Moni, S.S.; Khaled Bin Break, M.; Khojali, W.M.A.; Jafar, M.; Alshammari, M.D.; Abdelsalam, K.; Taymour, S.; Saad, K.; Alreshidi, M.; et al. Broccoli: A Multi-Faceted Vegetable for Health: An In-Depth Review of Its Nutritional Attributes, Antimicrobial Abilities, and Anti-Inflammatory Properties. Antibiotics 2023, 12, 1157. [Google Scholar] [CrossRef]
- El-Daly, S.M.; Gamal-Eldeen, A.M.; Gouhar, S.A.; Abo-elfadl, M.T.; El-Saeed, G. Modulatory Effect of Indoles on the Expression of MiRNAs Regulating G1/S Cell Cycle Phase in Breast Cancer Cells. Appl. Biochem. Biotechnol. 2020, 192, 1208–1223. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, H.; Dong, N.; Su, X.; Duan, M.; Wei, Y.; Wei, J.; Liu, G.; Peng, Q.; Zhao, Y. Sulforaphane Induces S-Phase Arrest and Apoptosis via P53-Dependent Manner in Gastric Cancer Cells. Sci. Rep. 2021, 11, 2504. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, Q.; Li, N.; Xu, M.; Miyamoto, T.; Liu, J. Sulforaphane Suppresses Metastasis of Triple-Negative Breast Cancer Cells by Targeting the RAF/MEK/ERK Pathway. NPJ Breast Cancer 2022, 8, 40. [Google Scholar] [CrossRef] [PubMed]
- Baladia, E.; Moñino, M.; Pleguezuelos, E.; Russolillo, G.; Garnacho-Castaño, M.V. Broccoli Consumption and Risk of Cancer: An Updated Systematic Review and Meta-Analysis of Observational Studies. Nutrients 2024, 16, 1583. [Google Scholar] [CrossRef] [PubMed]
- Gasmi, A.; Gasmi Benahmed, A.; Shanaida, M.; Chirumbolo, S.; Menzel, A.; Anzar, W.; Arshad, M.; Cruz-Martins, N.; Lysiuk, R.; Beley, N.; et al. Anticancer Activity of Broccoli, Its Organosulfur and Polyphenolic Compounds. Crit. Rev. Food Sci. Nutr. 2023, 64, 8054–8072. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Sun, J.; Hu, Z.; Cheng, C.; Lin, S.; Zou, H.; Yan, X. Variation in Glucosinolate Accumulation among Different Sprout and Seedling Stages of Broccoli (Brassica oleracea var. italica). Plants 2022, 11, 1563. [Google Scholar] [CrossRef] [PubMed]
- Radünz, M.; Hackbart, H.C.D.S.; Bona, N.P.; Pedra, N.S.; Hoffmann, J.F.; Stefanello, F.M.; Da Rosa Zavareze, E. Glucosinolates and Phenolic Compounds Rich Broccoli Extract: Encapsulation by Electrospraying and Antitumor Activity against Glial Tumor Cells. Colloids Surf. B Biointerfaces 2020, 192, 111020. [Google Scholar] [CrossRef]
- Cao, Y.; Hou, L.; Li, M.; Zhang, J.; Wang, L.; Liu, C.; Luo, T.; Yan, L.; Zheng, L. Broccoli Extracellular Vesicles Enhance the Therapeutic Effects and Restore the Chemosensitivity of 5-Fluorouracil on Colon Cancer. Food Chem. Toxicol. 2024, 186, 114563. [Google Scholar] [CrossRef]
- Li, S.; Chen, M.; Wu, H.; Li, Y.; Tollefsbol, T.O. Maternal Epigenetic Regulation Contributes to Prevention of Estrogen Receptor–Negative Mammary Cancer with Broccoli Sprout Consumption. Cancer Prev. Res. 2020, 13, 449–462. [Google Scholar] [CrossRef]
- Ho, C.L.; Tan, H.Q.; Chua, K.J.; Kang, A.; Lim, K.H.; Ling, K.L.; Yew, W.S.; Lee, Y.S.; Thiery, J.P.; Chang, M.W. Engineered Commensal Microbes for Diet-Mediated Colorectal-Cancer Chemoprevention. Nat. Biomed. Eng. 2018, 2, 27–37. [Google Scholar] [CrossRef]
- Tahata, S.; Singh, S.V.; Lin, Y.; Hahm, E.R.; Beumer, J.H.; Christner, S.M.; Rao, U.N.; Sander, C.; Tarhini, A.A.; Tawbi, H.; et al. Evaluation of Biodistribution of Sulforaphane after Administration of Oral Broccoli Sprout Extract in Melanoma Patients with Multiple Atypical Nevi. Cancer Prev. Res. 2018, 11, 429–437. [Google Scholar] [CrossRef]
- Traka, M.H.; Melchini, A.; Coode-Bate, J.; Al Kadhi, O.; Saha, S.; Defernez, M.; Troncoso-Rey, P.; Kibblewhite, H.; O’Neill, C.M.; Bernuzzi, F.; et al. Transcriptional Changes in Prostate of Men on Active Surveillance after a 12-Mo Glucoraphanin-Rich Broccoli Intervention—Results from the Effect of Sulforaphane on Prostate CAncer PrEvention (ESCAPE) Randomized Controlled Trial. Am. J. Clin. Nutr. 2019, 109, 1133–1144. [Google Scholar] [CrossRef]
- Gusev, E.; Zhuravleva, Y. Inflammation: A New Look at an Old Problem. Int. J. Mol. Sci. 2022, 23, 4596. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.H.; Lim, S. Bin Antioxidant and Anti-Inflammatory Activities of Broccoli Florets in LPS-Stimulated RAW 264.7 Cells. Prev. Nutr. Food Sci. 2014, 19, 89. [Google Scholar] [CrossRef] [PubMed]
- Zuo, L.; Prather, E.R.; Stetskiv, M.; Garrison, D.E.; Meade, J.R.; Peace, T.I.; Zhou, T. Inflammaging and Oxidative Stress in Human Diseases: From Molecular Mechanisms to Novel Treatments. Int. J. Mol. Sci. 2019, 20, 4472. [Google Scholar] [CrossRef] [PubMed]
- Nandini, D.B.; Rao, R.S.; Deepak, B.S.; Reddy, P.B. Sulforaphane in Broccoli: The Green Chemoprevention!! Role in Cancer Prevention and Therapy. J. Oral. Maxillofac. Pathol. 2020, 24, 405. [Google Scholar] [CrossRef] [PubMed]
- Santín-Márquez, R.; Alarcón-Aguilar, A.; López-Diazguerrero, N.E.; Chondrogianni, N.; Königsberg, M. Sulforaphane—Role in Aging and Neurodegeneration. GeroScience 2019, 41, 655–670. [Google Scholar] [CrossRef]
- Liang, W.; Greven, J.; Qin, K.; Fragoulis, A.; Horst, K.; Bläsius, F.; Wruck, C.; Pufe, T.; Kobbe, P.; Hildebrand, F.; et al. Sulforaphane Exerts Beneficial Immunomodulatory Effects on Liver Tissue via a Nrf2 Pathway-Related Mechanism in a Murine Model of Hemorrhagic Shock and Resuscitation. Front. Immunol. 2022, 13, 822895. [Google Scholar] [CrossRef]
- Schieber, M.; Chandel, N.S. ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef]
- Ferruzza, S.; Natella, F.; Ranaldi, G.; Murgia, C.; Rossi, C.; Trošt, K.; Mattivi, F.; Nardini, M.; Maldini, M.; Giusti, A.M.; et al. Nutraceutical Improvement Increases the Protective Activity of Broccoli Sprout Juice in a Human Intestinal Cell Model of Gut Inflammation. Pharmaceuticals 2016, 9, 48. [Google Scholar] [CrossRef]
- Al-Bakheit, A.; Abu-Qatouseh, L. Sulforaphane from Broccoli Attenuates Inflammatory Hepcidin by Reducing IL-6 Secretion in Human HepG2 Cells. J. Funct. Foods 2020, 75, 104210. [Google Scholar] [CrossRef]
- Liang, W.; Greven, J.; Fragoulis, A.; Horst, K.; Bläsius, F.; Wruck, C.; Pufe, T.; Kobbe, P.; Hildebrand, F.; Lichte, P. Sulforaphane-dependent up-regulation of nrf2 activity alleviates both systemic inflammatory response and lung injury after hemorrhagic shock/resuscitation in mice. Shock 2022, 57, 221–229. [Google Scholar] [CrossRef]
- Wang, Y.; Jeffery, E.H.; Miller, M.J.; Wallig, M.A.; Wu, Y. Lightly Cooked Broccoli Is as Effective as Raw Broccoli in Mitigating Dextran Sulfate Sodium-Induced Colitis in Mice. Nutrients 2018, 10, 748. [Google Scholar] [CrossRef] [PubMed]
- López-Chillón, M.T.; Carazo-Díaz, C.; Prieto-Merino, D.; Zafrilla, P.; Moreno, D.A.; Villaño, D. Effects of Long-Term Consumption of Broccoli Sprouts on Inflammatory Markers in Overweight Subjects. Clin. Nutr. 2019, 38, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Endale, M.; Park, S.C.; Kim, S.; Kim, S.H.; Yang, Y.; Cho, J.Y.; Rhee, M.H. Quercetin Disrupts Tyrosine-Phosphorylated Phosphatidylinositol 3-Kinase and Myeloid Differentiation Factor-88 Association, and Inhibits MAPK/AP-1 and IKK/NF-ΚB-Induced Inflammatory Mediators Production in RAW 264.7 Cells. Immunobiology 2013, 218, 1452–1467. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Meng, G.; Li, W.; Fan, D.; Wang, X.; Espinoza-Pinochet, C.A.; Cespedes-Acuña, C.L. Sulforaphane and Its Antioxidative Effects in Broccoli Seeds and Sprouts of Different Cultivars. Food Chem. 2020, 316, 126216. [Google Scholar] [CrossRef]
- Li, D.; Shao, R.; Wang, N.; Zhou, N.; Du, K.; Shi, J.; Wang, Y.; Zhao, Z.; Ye, X.; Zhang, X.; et al. Sulforaphane Activates a Lysosome-Dependent Transcriptional Program to Mitigate Oxidative Stress. Autophagy 2021, 17, 872. [Google Scholar] [CrossRef]
- Cardenia, V.; Rodriguez-Estrada, M.T.; Lorenzini, A.; Bandini, E.; Angeloni, C.; Hrelia, S.; Malaguti, M. Effect of Broccoli Extract Enriched Diet on Liver Cholesterol Oxidation in Rats Subjected to Exhaustive Exercise. J. Steroid Biochem. Mol. Biol. 2017, 169, 137–144. [Google Scholar] [CrossRef]
- Xu, X.; Dai, M.; Lao, F.; Chen, F.; Hu, X.; Liu, Y.; Wu, J. Effect of Glucoraphanin from Broccoli Seeds on Lipid Levels and Gut Microbiota in High-Fat Diet-Fed Mice. J. Funct. Foods 2020, 68, 103858. [Google Scholar] [CrossRef]
- Yadav, K.; Dhankhar, J. Preeti Isothiocyanates—A Review of Their Health Benefits AnPotential Food Applications. Curr. Res. Nutr. Food Sci. 2022, 10, 476–502. [Google Scholar] [CrossRef]
- Johansson, N.L.; Pavia, C.S.; Jen, W.C. Growth Inhibition of a Spectrum of Bacterial and Fungal Pathogens by Sulforaphane, an Isothiocyanate Product Found in Broccoli and Other Cruciferous Vegetables. Planta Med. 2008, 74, 747–750. [Google Scholar] [CrossRef]
- Golberg, K.; Markus, V.; EI Kagan, B.; Barzanizan, S.; Yaniv, K.; Teralı, K.; Kramarsky-Winter, E.; Marks, R.S.; Kushmaro, A. Anti-Virulence Activity of 3,3′-Diindolylmethane (DIM): A Bioactive Cruciferous Phytochemical with Accelerated Wound Healing Benefits. Pharmaceutics 2022, 14, 967. [Google Scholar] [CrossRef]
- Pacheco-Cano, R.D.; Salcedo-Hernández, R.; López-Meza, J.E.; Bideshi, D.K.; Barboza-Corona, J.E. Antimicrobial Activity of Broccoli (Brassica oleracea var. italica) Cultivar Avenger against Pathogenic Bacteria, Phytopathogenic Filamentous Fungi and Yeast. J. Appl. Microbiol. 2018, 124, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Vale, A.P.; Santos, J.; Melia, N.; Peixoto, V.; Brito, N.V.; Oliveira, M.B.P.P. Phytochemical Composition and Antimicrobial Properties of Four Varieties of Brassica oleracea Sprouts. Food Control. 2015, 55, 248–256. [Google Scholar] [CrossRef]
- Abukhabta, S.; Khalil Ghawi, S.; Karatzas, K.A.; Charalampopoulos, D.; McDougall, G.; Allwood, J.W.; Verrall, S.; Lavery, S.; Latimer, C.; Pourshahidi, L.K.; et al. Sulforaphane-Enriched Extracts from Glucoraphanin-Rich Broccoli Exert Antimicrobial Activity against Gut Pathogens in Vitro and Innovative Cooking Methods Increase in Vivo Intestinal Delivery of Sulforaphane. Eur. J. Nutr. 2021, 60, 1263–1276. [Google Scholar] [CrossRef] [PubMed]
- Mirmiran, P.; Bahadoran, Z.; Ghasemi, A.; Jeddi, S.; Azizi, F. High-Sulforaphane Broccoli Sprout Powder Reduces Serum Nitric Oxide Metabolites in Helicobacter Pylori Infected Patients. J. Funct. Foods 2017, 34, 356–358. [Google Scholar] [CrossRef]
- Fahed, G.; Aoun, L.; Zerdan, M.B.; Allam, S.; Zerdan, M.B.; Bouferraa, Y.; Assi, H.I. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int. J. Mol. Sci. 2022, 23, 786. [Google Scholar] [CrossRef]
- Lee, H.W.; Rhee, D.K.; Kim, B.O.; Pyo, S. Inhibitory Effect of Sinigrin on Adipocyte Differentiation in 3T3-L1 Cells: Involvement of AMPK and MAPK Pathways. Biomed. Pharmacother. 2018, 102, 670–680. [Google Scholar] [CrossRef]
- Li, X.; Cai, Z.; Yang, F.; Wang, Y.; Pang, X.; Sun, J.; Li, X.; Lu, Y. Broccoli Improves Lipid Metabolism and Intestinal Flora in Mice with Type 2 Diabetes Induced by HFD and STZ Diet. Foods 2024, 13, 273. [Google Scholar] [CrossRef]
- Aranaz, P.; Navarro-Herrera, D.; Romo-Hualde, A.; Zabala, M.; López-Yoldi, M.; González-Ferrero, C.; Gil, A.G.; Alfredo Martinez, J.; Vizmanos, J.L.; Milagro, F.I.; et al. Broccoli Extract Improves High Fat Diet-Induced Obesity, Hepatic Steatosis and Glucose Intolerance in Wistar Rats. J. Funct. Foods 2019, 59, 319–328. [Google Scholar] [CrossRef]
- Axelsson, A.S.; Tubbs, E.; Mecham, B.; Chacko, S.; Nenonen, H.A.; Tang, Y.; Fahey, J.W.; Derry, J.M.J.; Wollheim, C.B.; Wierup, N.; et al. Sulforaphane Reduces Hepatic Glucose Production and Improves Glucose Control in Patients with Type 2 Diabetes. Sci. Transl. Med. 2017, 9, eaah4477. [Google Scholar] [CrossRef]
- Zaib, S.; Javed, H.; Khan, I.; Jaber, F.; Sohail, A.; Zaib, Z.; Mehboob, T.; Tabassam, N.; Ogaly, H.A. Neurodegenerative Diseases: Their Onset, Epidemiology, Causes and Treatment. ChemistrySelect 2023, 8, e202300225. [Google Scholar] [CrossRef]
- Bobermin, L.D.; Weber, F.B.; dos Santos, T.M.; Belló-Klein, A.; Wyse, A.T.S.; Gonçalves, C.A.; Quincozes-Santos, A. Sulforaphane Induces Glioprotection After LPS Challenge. Cell Mol. Neurobiol. 2022, 42, 829–846. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, A.; Ahmad, S.F.; AL-Ayadhi, L.Y.; Attia, S.M.; Al-Harbi, N.O.; Alzahrani, K.S.; Bakheet, S.A. Differential Regulation of Nrf2 Is Linked to Elevated Inflammation and Nitrative Stress in Monocytes of Children with Autism. Psychoneuroendocrinology 2020, 113, 104554. [Google Scholar] [CrossRef] [PubMed]
- Park, S.K.; Ha, J.S.; Kim, J.M.; Kang, J.Y.; Lee, D.S.; Guo, T.J.; Lee, U.; Kim, D.O.; Heo, H.J. Antiamnesic Effect of Broccoli (Brassica oleracea var. italica) Leaves on Amyloid Beta (Aβ)1-42-Induced Learning and Memory Impairment. J. Agric. Food Chem. 2016, 64, 3353–3361. [Google Scholar] [CrossRef] [PubMed]
- Saini, N.; Akhtar, A.; Chauhan, M.; Dhingra, N.; Pilkhwal Sah, S. Protective Effect of Indole-3-Carbinol, an NF-ΚB Inhibitor in Experimental Paradigm of Parkinson’s Disease: In Silico and in Vivo Studies. Brain Behav. Immun. 2020, 90, 108–137. [Google Scholar] [CrossRef] [PubMed]
- Houshialsadat, Z.; Mirmiran, P.; Zare-Javid, A.; Bahadoran, Z.; Houghton, C. Beneficial Effects of Sulforaphane-Yielding Broccoli Sprout on Cardiometabolic Health: A Systematic Review and Meta-Analysis. Jundishapur J. Nat. Pharm. Prod. 2022, 17, 129402. [Google Scholar] [CrossRef]
- Gil, K.A.; Tuberoso, C.I.G. Crucial Challenges in the Development of Green Extraction Technologies to Obtain Antioxidant Bioactive Compounds from Agro-Industrial by-Products. Chem. Biochem. Eng. Q. 2021, 35, 105–138. [Google Scholar] [CrossRef]
- Artés-Hernández, F.; Martínez-Zamora, L.; Cano-Lamadrid, M.; Hashemi, S.; Castillejo, N. Genus Brassica By-Products Revalorization with Green Technologies to Fortify Innovative Foods: A Scoping Review. Foods 2023, 12, 561. [Google Scholar] [CrossRef]
- Caldeira, C.; Vlysidis, A.; Fiore, G.; De Laurentiis, V.; Vignali, G.; Sala, S. Sustainability of Food Waste Biorefinery: A Review on Valorisation Pathways, Techno-Economic Constraints, and Environmental Assessment. Bioresour. Technol. 2020, 312, 123575. [Google Scholar] [CrossRef]
- Fernandes, F.A.; Heleno, S.A.; Pinela, J.; Carocho, M.; Prieto, M.A.; Ferreira, I.C.F.R.; Barros, L. Recovery of Citric Acid from Citrus Peels: Ultrasound-Assisted Extraction Optimized by Response Surface Methodology. Chemosensors 2022, 10, 257. [Google Scholar] [CrossRef]
- García, S.L.R.; Raghavan, V. Microwave-Assisted Extraction of Phenolic Compounds from Broccoli (Brassica oleracea) Stems, Leaves, and Florets: Optimization, Characterization, and Comparison with Maceration Extraction. Recent. Progress. Nutr. 2022, 2, 011. [Google Scholar] [CrossRef]
- Pellicanò, T.M.; Sicari, V.; Loizzo, M.R.; Leporini, M.; Falco, T.; Poiana, M. Optimizing the Supercritical Fluid Extraction Process of Bioactive Compounds from Processed Tomato Skin By-Products. Food Sci. Technol. 2019, 40, 692–697. [Google Scholar] [CrossRef]
- García, P.; Fredes, C.; Cea, I.; Lozano-Sánchez, J.; Leyva-Jiménez, F.J.; Robert, P.; Vergara, C.; Jimenez, P. Recovery of Bioactive Compounds from Pomegranate (Punica granatum L.) peel using pressurized liquid extraction. Foods 2021, 10, 203. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Reinoso, B.; Domínguez, H. Challenges in the Extraction of Antiinflammatory and Antioxidant Compounds from New Plant Sources. Curr. Adv. Dev. Funct. Foods Modul. Inflamm. Oxidative Stress 2022, 427–446. [Google Scholar] [CrossRef]
- Angiolillo, L.; Spinelli, S.; Marinelli, V.; Conte, A.; Nobile, M.A. Del Extract from Broccoli By-Products to Extend the Shelf Life of Fish Burgers. J. Food Res. 2019, 8, 56. [Google Scholar] [CrossRef]
- Mahn, A.; Quintero, J.; Castillo, N.; Catalysts, R.C. Effect of Ultrasound-Assisted Blanching on Myrosinase Activity and Sulforaphane Content in Broccoli Florets. Catalysts 2020, 10, 616. [Google Scholar] [CrossRef]
- Pezeshkpour, V.; Khosravani, S.A.; Ghaedi, M.; Dashtian, K.; Zare, F.; Sharifi, A.; Jannesar, R.; Zoladl, M. Ultrasound Assisted Extraction of Phenolic Acids from Broccoli Vegetable and Using Sonochemistry for Preparation of MOF-5 Nanocubes: Comparative Study Based on Micro-Dilution Broth and Plate Count Method for Synergism Antibacterial Effect. Ultrason. Sonochem 2018, 40, 1031–1038. [Google Scholar] [CrossRef]
- Marinelli, V.; Spinelli, S.; Angiolillo, L.; Del Nobile, M.A.; Conte, A. Emerging Techniques Applied to By-Products for Food Fortification. J. Food Sci. Technol. 2020, 57, 905–914. [Google Scholar] [CrossRef]
- Martínez-Zamora, L.; Hashemi, S.; Cano-Lamadrid, M.; Bueso, M.C.; Aguayo, E.; Kessler, M.; Artés-Hernández, F. Ultrasound-Assisted Extraction of Bioactive Compounds from Broccoli By-Products. Foods 2024, 13, 1441. [Google Scholar] [CrossRef]
- Destandau, E.; Michel, T. Microwave-Assisted Extraction; Royal Society of Chemistry: London, UK, 2022; pp. 144–201. [Google Scholar] [CrossRef]
- da Silva, R.P.F.F.; Rocha-Santos, T.A.P.; Duarte, A.C. Supercritical Fluid Extraction of Bioactive Compounds. TrAC Trends Anal. Chem. 2016, 76, 40–51. [Google Scholar] [CrossRef]
- Baker, M.T.; Lu, P.; Parrella, J.A.; Leggette, H.R. Consumer Acceptance toward Functional Foods: A Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 1217. [Google Scholar] [CrossRef]
- Gómez-García, R.; Campos, D.A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M. Valorisation of Food Agro-Industrial by-Products: From the Past to the Present and Perspectives. J. Environ. Manag. 2021, 299, 113571. [Google Scholar] [CrossRef]
- Comunian, T.A.; Silva, M.P.; Souza, C.J.F. The Use of Food By-Products as a Novel for Functional Foods: Their Use as Ingredients and for the Encapsulation Process. Trends Food Sci. Technol. 2021, 108, 269–280. [Google Scholar] [CrossRef]
- Castelão-Baptista, J.P.; Barros, A.; Martins, T.; Rosa, E.; Sardão, V.A. Three in One: The Potential of Brassica By-Products against Economic Waste, Environmental Hazard, and Metabolic Disruption in Obesity. Nutrients 2021, 13, 4194. [Google Scholar] [CrossRef] [PubMed]
- Abellán, Á.; Domínguez-Perles, R.; Giménez, M.J.; Zapata, P.J.; Valero, D.; García-Viguera, C. The Development of a Broccoli Supplemented Beer Allows Obtaining a Valuable Dietary Source of Sulforaphane. Food Biosci. 2021, 39, 100814. [Google Scholar] [CrossRef]
- Sadeghi, A.R.; Pourahmad, R.; Mokhtare, M. Enrichment of Probiotic Yogurt with Broccoli Sprout Extract and Its Effect on Helicobacter Pylori. Appl. Food Biotechnol. 2017, 4, 55–59. [Google Scholar] [CrossRef]
- Fatmah, F.; Utomo, S.W.; Lestari, F. Broccoli-Soybean-Mangrove Food Bar as an Emergency Food for Older People during Natural Disaster. Int. J. Environ. Res. Public Health 2021, 18, 3686. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Mahmud, M.M.C.; Abdi, G.; Wanich, U.; Farooqi, M.Q.U.; Settapramote, N.; Khan, S.; Wani, S.A. New Alternatives from Sustainable Sources to Wheat in Bakery Foods: Science, Technology, and Challenges. J. Food Biochem. 2022, 46, e14185. [Google Scholar] [CrossRef]
- Bijlwan, M.; Naik, B.; Sharma, D.; Singh, A.; Kumar, V. Recent Developments in Dough Based Bakery Products: A Mini Review. Pharma Innov. J. 2019, 8, 654–658. [Google Scholar]
- Villaño, D.; Fernández-Pan, I.; Arozarena, Í.; Ibañez, F.C.; Vírseda, P.; Beriain, M.J. Revalorisation of Broccoli Crop Surpluses and Field Residues: Novel Ingredients for Food Industry Uses. Eur. Food Res. Technol. 2023, 249, 3227–3237. [Google Scholar] [CrossRef]
- Drabińska, N.; Ciska, E.; Szmatowicz, B.; Krupa-Kozak, U. Broccoli By-Products Improve the Nutraceutical Potential of Gluten-Free Mini Sponge Cakes. Food Chem. 2018, 267, 170–177. [Google Scholar] [CrossRef]
- Drabińska, N. The Evaluation of Amino Acid Profiles in Gluten-Free Mini Sponge Cakes Fortified with Broccoli By-Product. Separations 2022, 9, 81. [Google Scholar] [CrossRef]
- Krupa-Kozak, U.; Drabińska, N.; Rosell, C.M.; Fadda, C.; Anders, A.; Jeliński, T.; Ostaszyk, A. Broccoli Leaf Powder as an Attractive By-Product Ingredient: Effect on Batter Behaviour, Technological Properties and Sensory Quality of Gluten-Free Mini Sponge Cake. Int. J. Food Sci. Technol. 2019, 54, 1121–1129. [Google Scholar] [CrossRef]
- El Khoury, D.; Balfour-Ducharme, S.; Joye, I.J. A Review on the Gluten-Free Diet: Technological and Nutritional Challenges. Nutrients 2018, 10, 1410. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, H.H.A.; El Saadani, R.M.A.; Anwar, M.M.; Aly, H. Physico-Chemical and Organolyptical Characteristics of Cake Fortified by Irradiated Broccoli (Brassica oleracea L.Var Italica) Powder. J. Nucl. Technol. Appl. Sci. (Online) 2018, 6, 13–29. [Google Scholar]
- Krupa-Kozak, U.; Drabińska, N.; Baczek, N.; Šimková, K.; Starowicz, M.; Jeliński, T. Application of Broccoli Leaf Powder in Gluten-Free Bread: An Innovative Approach to Improve Its Bioactive Potential and Technological Quality. Foods 2021, 10, 819. [Google Scholar] [CrossRef]
- Lafarga, T.; Gallagher, E.; Bademunt, A.; Viñas, I.; Bobo, G.; Villaró, S.; Aguiló-Aguayo, I. Bioaccessibility, Physicochemical, Sensorial, and Nutritional Characteristics of Bread Containing Broccoli Co-Products. J. Food Process. Preserv. 2019, 43, e13861. [Google Scholar] [CrossRef]
- Baqar, R.; Anwar, A.; Rakha, M.; Mahmood, I.; Batool, M.; Sohail, S. Rashid Enrichment of Wheat Flour Bread to Enhance Physicochemical and Sensory Attributes Using Broccoli Powder. Pak. J. Food Sci. 2017, 27, 39–45. [Google Scholar]
- Prasad, C.; Davis, K.E.; Imrhan, V.; Juma, S.; Vijayagopal, P. Advanced Glycation End Products and Risks for Chronic Diseases: Intervening Through Lifestyle Modification. Am. J. Lifestyle Med. 2019, 13, 384. [Google Scholar] [CrossRef]
- Sayem, A.S.M.; Talukder, S.; Akter, S.S.; Alam, M.; Rana, M.R.; Alam, M.M. Utilization of Fruits and Vegetables Wastes for the Dietary Fiber Enrichment of Biscuits and Its Quality Attributes. J. Agric. Food Res. 2024, 15, 101077. [Google Scholar] [CrossRef]
- Fanesi, B.; Ismaiel, L.; Nartea, A.; Orhotohwo, O.L.; Kuhalskaya, A.; Pacetti, D.; Lucci, P.; Falcone, P.M. Bioactives and Technological Quality of Functional Biscuits Containing Flour and Liquid Extracts from Broccoli By-Products. Antioxidants 2023, 12, 2115. [Google Scholar] [CrossRef]
- Lafarga, T.; Gallagher, E.; Bademunt, A.; Bobo, G.; Echeverria, G.; Viñas, I.; Aguiló-Aguayo, I. Physiochemical and Nutritional Characteristics, Bioaccessibility and Sensory Acceptance of Baked Crackers Containing Broccoli Co-Products. Int. J. Food Sci. Technol. 2019, 54, 634–640. [Google Scholar] [CrossRef]
- Drabińska, N.; Nogueira, M.; Szmatowicz, B. Valorisation of Broccoli By-Products: Technological, Sensory and Flavour Properties of Durum Pasta Fortified with Broccoli Leaf Powder. Molecules 2022, 27, 4672. [Google Scholar] [CrossRef] [PubMed]
- Drabińska, N.; Nogueira, M.; Ciska, E.; Jeleń, H. Effect of Drying and Broccoli Leaves Incorporation on the Nutritional Quality of Durum Wheat Pasta. Pol. J. Food Nutr. Sci. 2022, 72, 273–285. [Google Scholar] [CrossRef]
- Bokić, J.; Škrobot, D.; Tomić, J.; Šeregelj, V.; Abellán-Victorio, Á.; Moreno, D.A.; Ilić, N. Broccoli Sprouts as a Novel Food Ingredient: Nutritional, Functional and Sensory Aspects of Sprouts Enriched Pasta. LWT 2022, 172, 114203. [Google Scholar] [CrossRef]
- Saavedra-Leos, M.Z.; Leyva-Porras, C.; Toxqui-Terán, A.; Espinosa-Solis, V. Physicochemical Properties and Antioxidant Activity of Spray-Dry Broccoli (Brassica oleracea var italica) Stalk and Floret Juice Powders. Molecules 2021, 26, 1973. [Google Scholar] [CrossRef]
Composition | Unit | Florets | Stalks | Leaves | Sprouts | References |
---|---|---|---|---|---|---|
Energy | (kcal/100 g FW) | 31.00 | 29.80 | 50.90 | 24.13 | [1,27,28] |
Moisture | (g/100 g FW) | 87.00 | 85.00 | 90.00 | 91.06 | [29,30] |
Ash | (g/100 g DW) | 7.62–8.11 | 10.34–12.37 | 14.41–18.62 | 7.38–11.17 | [31,32] |
Protein | (g/100 g DW) | 26.44–31.28 | 13.73–18.14 | 21.65–27.49 | 31.94–43.16 | [31,33] |
(g/100 g FW) | 2.57 | 1.00 | 2.50 | 2.23–3.00 | [1,27,28] | |
Carbohydrate | (g/100 g DW) | 65.13 | 75.42 | 66.48 | 46.70–54.40 | [29,33] |
(g/100 g FW) | 6.67 | 4.10 | 2.30 | 2.70 | [27,28,34] | |
TSS | (g/100 g DW) | 24.61 | 18.58 | 25.39 | - | [35] |
(mg Glu/g FW) | - | - | - | 16.48 | [30] | |
RS | (g/100 g DW) | 4.07 | 2.72 | 7.07 | - | [35] |
(mg Glu/g FW) | - | - | - | 4.66 | [30] | |
TDF | (g/100 g DW) | 64.42 | 77.28 | 62.22 | 2.10 | [35,36] |
(g/100 g FW) | 2.40 | 8.30 | 10.40 | 0.36 | [1,27,28] | |
IDF | (g/100 g DW) | 58.36 | 66.18 | 56.27 | 1.80 | [35,36] |
SDF | (g/100 g DW) | 6.06 | 11.10 | 5.94 | 0.30 | [35,36] |
Lipids | (g/100 g DW) | 4.59 | 6.58 | 6.72 | 3.16–8.67 | [29,33] |
(g/100 g FW) | 0.37 | 0.10 | 0.50 | 0.40–0.49 | [27,28,34] | |
SFAs | (%) | 28.50 | 34.30 | 32.7 | 12.59–17.72 | [29,33] |
MUFAs | (%) | 9.90 | 12.70 | 6.43 | 14.54–16.05 | [29,33] |
PUFAs | (%) | 62.00 | 55.10 | 60.20 | 68.70–71.61 | [29,33] |
Extraction Technique | Basis of the Technique | Outcomes | Ref |
---|---|---|---|
UAE | Ultrasound energy to cause fragmentation of the cellular structure | High antioxidant capacity and phenolics and GSLs content | [82] |
Antimicrobial efficiency against Pseudomonas spp. and Candida krusei | [156] | ||
Higher myrosinase inactivation and SFN content | [157] | ||
Antimicrobial activity against Pseudomonas aeruginosa | [158] | ||
MAE | Selective heating of polar molecules with microwave energy | Phenolic yield increased up to 65.30, 45.70, and 133.60% for stems, leaves, and florets, respectively | [152] |
SFE | Supercritical solvents with low viscosity and high diffusivity facilitate the transport | Antimicrobial efficiency against Pseudomonas spp. and Candida krusei | [156] |
High yield of β-carotene, PCs, and antioxidant capacity | [13] | ||
Higher content of non-extractable phenolics and antioxidant capacity | [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quizhpe, J.; Ayuso, P.; Rosell, M.d.l.Á.; Peñalver, R.; Nieto, G. Brassica oleracea var italica and Their By-Products as Source of Bioactive Compounds and Food Applications in Bakery Products. Foods 2024, 13, 3513. https://doi.org/10.3390/foods13213513
Quizhpe J, Ayuso P, Rosell MdlÁ, Peñalver R, Nieto G. Brassica oleracea var italica and Their By-Products as Source of Bioactive Compounds and Food Applications in Bakery Products. Foods. 2024; 13(21):3513. https://doi.org/10.3390/foods13213513
Chicago/Turabian StyleQuizhpe, Jhazmin, Pablo Ayuso, María de los Ángeles Rosell, Rocío Peñalver, and Gema Nieto. 2024. "Brassica oleracea var italica and Their By-Products as Source of Bioactive Compounds and Food Applications in Bakery Products" Foods 13, no. 21: 3513. https://doi.org/10.3390/foods13213513
APA StyleQuizhpe, J., Ayuso, P., Rosell, M. d. l. Á., Peñalver, R., & Nieto, G. (2024). Brassica oleracea var italica and Their By-Products as Source of Bioactive Compounds and Food Applications in Bakery Products. Foods, 13(21), 3513. https://doi.org/10.3390/foods13213513