Activity of Bambara Groundnut Seed Coat Extract Against Shewanella Species: Efficacy and Mechanisms of Action
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Microbial Media
2.2. Preparation of Seed Coat
2.3. Preparation of Seed Coat Extract
2.4. Analyses
2.4.1. Extraction Yield
2.4.2. Measurement of Total Phenolic Content (TPC)
2.4.3. Analysis of Chemical Compounds Using Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (LC-Q-TOF/MS)
2.5. Determination of Antimicrobial Activity
2.5.1. Bacterial Strains and Preparation
2.5.2. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of Seed Coat Extracts of Bambara Groundnut
2.5.3. Time–Kill Kinetics of Seed Coat Extracts of Bambara Groundnut
2.5.4. Scanning Electron Microscopy (SEM)
2.5.5. Protein Leakages of Shewanella Species Cells Treated with Red Seed Coat Extract from Bambara Groundnut
2.5.6. Confocal Laser Scanning Microscopy (CLSM) Analysis of Biofilms
2.5.7. Anti-Swimming and Swarming Motilities
2.5.8. Extracellular Protease Activity
2.6. Statistical Analysis
3. Results and Discussion
3.1. Extraction Yield, Total Phenolic Content, and Antimicrobial Activity of Seed Coat Extracts from Bambara Groundnut Prepared Using Ultrasound-Assisted Extraction Process
3.2. Chemical Compositions of Seed Coat Extract from Bambara Groundnut Analyzed by Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (LC-Q-TOF/MS)
3.3. Time–Kill Kinetics of Red Seed Coat Extracts from Bambara Groundnut Against Shewanella Species
3.4. Effect of Red Seed Coat Extract from Bambara Groundnut on Morphology of Shewanella Species Cells
3.5. Changes in Biofilms as Affected by Red Seed Coat Extract from Bambara Groundnut
3.6. Protein Leakage as Affected by Red Seed Coat Extract from Bambara Groundnut
3.7. Inhibition of Swimming and Swarming Motilities by Red Seed Coat Extract from Bambara Groundnut
3.8. Extracellular Protease Activity as Affected by Red Seed Coat Extract from Bambara Groundnut
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, J.; Zhao, Z.; Wang, X.; Xie, J. Hydrogen Sulfide in Seafood: Formation, Hazards, and Control. Trends Food Sci. Technol. 2024, 148, 104512. [Google Scholar] [CrossRef]
- Feng, L.; Bi, W.; Chen, S.; Zhu, J.; Liu, X. Regulatory Function of Sigma Factors RpoS/RpoN in Adaptation and Spoilage Potential of Shewanella baltica. Food Microbiol. 2021, 97, 103755. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Mei, J.; Xie, J. Carbon Dioxide Can Inhibit Biofilms Formation and Cellular Properties of Shewanella putrefaciens at Both 30 °C and 4 °C. Food Res. Int. 2022, 161, 111781. [Google Scholar] [CrossRef]
- Gram, L.; Dalgaard, P. Fish Spoilage Bacteria—Problems and Solutions. Curr. Opin. Biotechnol. 2002, 13, 262–266. [Google Scholar] [CrossRef]
- Palamae, S.; Temdee, W.; Buatong, J.; Zhang, B.; Hong, H.; Benjakul, S. Enhancement of Safety and Quality of Ready-to-Cook Asian Green Mussel Using Acidic Electrolyzed Water Depuration in Combination with Sous Vide Cooking. Innov. Food Sci. Emerg. Technol. 2023, 87, 103391. [Google Scholar] [CrossRef]
- Yan, F.; Dang, Q.; Liu, C.; Yan, J.; Wang, T.; Fan, B.; Cha, D.; Li, X.; Liang, S.; Zhang, Z. 3,6-O-[N-(2-Aminoethyl)-Acetamide-Yl]-Chitosan Exerts Antibacterial Activity by a Membrane Damage Mechanism. Carbohydr. Polym. 2016, 149, 102–111. [Google Scholar] [CrossRef]
- Lan, W.; Zhao, X.; Chen, M.; Xie, J. Antimicrobial Activity and Mechanism of Oregano Essential Oil against Shewanella putrefaciens. J. Food Saf. 2022, 42, e12952. [Google Scholar] [CrossRef]
- Vadivel, V.; Biesalski, H.K. Contribution of Phenolic Compounds to the Antioxidant Potential and Type II Diabetes Related Enzyme Inhibition Properties of Pongamia pinnata L. Pierre Seeds. Process Biochem. 2011, 46, 1973–1980. [Google Scholar] [CrossRef]
- Kamath, V.; Rajini, P.S. The Efficacy of Cashew Nut (Anacardium occidentale L.) Skin Extract as a Free Radical Scavenger. Food Chem. 2007, 103, 428–433. [Google Scholar] [CrossRef]
- Yu, J.; Ahmedna, M.; Goktepe, I. Effects of Processing Methods and Extraction Solvents on Concentration and Antioxidant Activity of Peanut Skin Phenolics. Food Chem. 2005, 90, 199–206. [Google Scholar] [CrossRef]
- Kanatt, S.R.; Arjun, K.; Sharma, A. Antioxidant and Antimicrobial Activity of Legume Hulls. Food Res. Int. 2011, 44, 3182–3187. [Google Scholar] [CrossRef]
- Pathiraja, D.; Wanasundara, J.P.D.; Elessawy, F.M.; Purves, R.W.; Vandenberg, A.; Shand, P.J. Water-Soluble Phenolic Compounds and Their Putative Antioxidant Activities in the Seed Coats from Different Lentil (Lens culinaris) Genotypes. Food Chem. 2023, 407, 135145. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.M.; Ha, T.J.; Lee, Y.B.; Seo, W.D.; Kim, J.Y.; Ryu, H.W.; Jeong, S.H.; Kang, Y.M.; Lee, J.H. Soluble Phenolics and Antioxidant Properties of Soybean (Glycine max L.) Cultivars with Varying Seed Coat Colours. J. Funct. Foods 2013, 5, 1065–1076. [Google Scholar]
- Yang, J.; Liu, R.H.; Halim, L. Antioxidant and Antiproliferative Activities of Common Edible Nut Seeds. LWT—Food Sci. Technol. 2009, 42, 1–8. [Google Scholar] [CrossRef]
- Wu, C.; Ma, B.; McClements, D.J.; Lai, Z.; Hou, J.; Wang, S.; Wang, X.; Qiu, Y.; Wu, F.; Fang, G.; et al. Fractionation of Phenolic Compounds from Hickory By-Products Using Solid Phase Extraction-Sonication: Chemical Composition, Antioxidant and Antimicrobial Activity. Food Chem. 2024, 460, 140633. [Google Scholar] [CrossRef] [PubMed]
- Karunaratne, A.S.; Azam-Ali, S.N.; Al-Shareef, I.; Sesay, A.; Jørgensen, S.T.; Crout, N.M.J. Modelling the Canopy Development of Bambara Groundnut. Agric. For. Meteorol. 2010, 150, 1007–1015. [Google Scholar] [CrossRef]
- Klompong, V.; Benjakul, S. Antioxidative and Antimicrobial Activities of the Extracts from the Seed Coat of Bambara Groundnut (Voandzeia subterranea). RSC Adv. 2015, 5, 9973–9985. [Google Scholar]
- Udeh, E.L.; Nyila, M.A.; Kanu, S.A. Nutraceutical and Antimicrobial Potentials of Bambara Groundnut (Vigna subterranean): A Review. Heliyon 2020, 6, e05205. [Google Scholar] [CrossRef]
- Tsamo, A.T.; Ndibewu, P.P.; Dakora, F.D. Phytochemical Profile of Seeds from 21 Bambara Groundnut Landraces via UPLC-qTOF-MS. Food Res. Int. 2018, 112, 160–168. [Google Scholar]
- Sinlapapanya, P.; Sumpavapol, P.; Nirmal, N.; Zhang, B.; Hong, H.; Benjakul, S. Ethanolic Cashew Leaf Extract: Antimicrobial Activity, Mode of Action, and Retardation of Spoilage Bacteria in Refrigerated Nile Tilapia Slices. Foods 2022, 11, 3461. [Google Scholar] [CrossRef]
- Benjakul, S.; Kittiphattanabawon, P.; Sumpavapol, P.; Maqsood, S. Antioxidant Activities of Lead (Leucaena leucocephala) Seed as Affected by Extraction Solvent, Prior Dechlorophyllisation and Drying Methods. J. Food. Sci. Technol. 2014, 51, 3026–3037. [Google Scholar] [PubMed]
- Boukaew, S.; Prasertsan, P.; Mahasawat, P.; Sriyatep, T.; Petlamul, W. Efficacy of the Antifungal Metabolites of Streptomyces philanthi RL-1-178 on Aflatoxin Degradation with Its Application to Prevent Aflatoxigenic Fungi in Stored Maize Grains and Identification of the Bioactive Compound. World J. Microbiol. Biotechnol. 2022, 39, 24. [Google Scholar]
- Palamae, S.; Mittal, A.; Buatong, J.; Zhang, B.; Hong, H.; Benjakul, S. Chitooligosaccharide-catechin conjugate: Antimicrobial Mechanisms Toward Vibrio parahaemolyticus and Its Use in Shucked Asian Green Mussel. Food Control 2023, 151, 109794. [Google Scholar]
- Shi, Y.; Bian, L.; Zhu, Y.; Zhang, R.; Shao, S.; Wu, Y.; Chen, Y.; Dang, Y.; Ding, Y.; Sun, H. Multifunctional Alkyl Ferulate Esters as Potential Food Additives: Antibacterial Activity and Mode of Action against Listeria monocytogenes and Its Application on American Sturgeon Caviar Preservation. Food Control 2019, 96, 390–402. [Google Scholar]
- Ajiboye, A.A.; Oyejobi, G.K. In Vitro Antimicrobial Activities of Vigna subterranea. J. Antimicrob. Agents 2017, 3, 1000132. [Google Scholar]
- Lv, F.; Liang, H.; Yuan, Q.; Li, C. In Vitro Antimicrobial Effects and Mechanism of Action of Selected Plant Essential Oil Combinations against Four Food-Related Microorganisms. Food Res. Int. 2011, 44, 3057–3064. [Google Scholar]
- Weerakkody, N.S.; Caffin, N.; Turner, M.S.; Dykes, G.A. In Vitro Antimicrobial Activity of Less-Utilized Spice and Herb Extracts against Selected Food-Borne Bacteria. Food Control 2010, 21, 1408–1414. [Google Scholar]
- Stanisavljević, N.S.; Ilić, M.D.; Matić, I.Z.; Jovanović, Ž.S.; Čupić, T.; Dabić, D.Č.; Natić, M.M.; Tešić, Ž.L. Identification of Phenolic Compounds from Seed Coats of Differently Colored European Varieties of Pea (Pisum sativum L.) and Characterization of Their Antioxidant and In Vitro Anticancer Activities. Nutr. Cancer 2016, 68, 988–1000. [Google Scholar]
- Yousfi, K.; Bekal, S.; Usongo, V.; Touati, A. Current Trends of Human Infections and Antibiotic Resistance of the Genus Shewanella. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 1353–1362. [Google Scholar]
- Korber, D.R.; Mangalappalli-Illathu, A.K.; Vidović, S. 6—Biofilm Formation by Food Spoilage Microorganisms in Food Processing Environments. In Biofilms in the Food and Beverage Industries; Fratamico, P.M., Annous, B.A., Gunther, N.W., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2009; pp. 169–199. ISBN 978-1-84569-477-7. [Google Scholar]
- Janda, J.M.; Abbott, S.L. The Genus Shewanella: From the Briny Depths below to Human Pathogen. Crit. Rev. Microbiol. 2014, 40, 293–312. [Google Scholar]
- Khashe, S.; Janda, J.M. Biochemical and Pathogenic Properties of Shewanella alga and Shewanella putrefaciens. J. Clin. Microbiol. 1998, 36, 783–787. [Google Scholar] [PubMed]
- Santajit, S.; Tunyong, W.; Horpet, D.; Binmut, A.; Kong-Ngoen, T.; Wisessaowapak, C.; Thavorasak, T.; Pumirat, P.; Indrawattana, N. Unveiling the Antimicrobial, Anti-Biofilm, and Anti-Quorum-Sensing Potential of Paederia foetida Linn. Leaf Extract against Staphylococcus aureus: An Integrated In Vitro–In Silico Investigation. Antibiotics 2024, 13, 613. [Google Scholar] [CrossRef] [PubMed]
- Sathiya Deepika, M.; Thangam, R.; Sakthidhasan, P.; Arun, S.; Sivasubramanian, S.; Thirumurugan, R. Combined Effect of a Natural Flavonoid Rutin from Citrus sinensis and Conventional Antibiotic Gentamicin on Pseudomonas aeruginosa Biofilm Formation. Food Control 2018, 90, 282–294. [Google Scholar]
- Russell, A.D. Bacterial Outer Membrane and Cell Wall Penetration and Cell Destruction by Polluting Chemical Agents and Physical Conditions. Sci. Prog. 2003, 86, 283–312. [Google Scholar]
- Liao, J.-X.; Li, K.-H.; Wang, J.-P.; Deng, J.-R.; Liu, Q.-G.; Chang, C.-Q. RNA-Seq Analysis Provides Insights into Cold Stress Responses of Xanthomonas citri pv. citri. BMC Genom. 2019, 20, 807. [Google Scholar]
- Wang, G.; Li, Q.; Tang, W.; Ma, F.; Wang, H.; Xu, X.; Qiu, W. AprD Is Important for Extracellular Proteolytic Activity, Physicochemical Properties and Spoilage Potential in Meat-Borne Pseudomonas fragi. Food Control 2021, 124, 107868. [Google Scholar] [CrossRef]
- Wang, G.; Ma, F.; Zeng, L.; Bai, Y.; Wang, H.; Xu, X.; Zhou, G. Modified Atmosphere Packaging Decreased Pseudomonas fragi Cell Metabolism and Extracellular Proteolytic Activities on Meat. Food Microbiol. 2018, 76, 443–449. [Google Scholar]
Extracts/Food Preservative | Shewanella putrefaciens | Shewanella algae | ||
---|---|---|---|---|
MIC (mg/mL) | MBC (mg/mL) | MIC (mg/mL) | MBC (mg/mL) | |
RSC extract | 4 | 8 | 8 | 32 |
WSC extract | >32 | >32 | >32 | >32 |
Potassium sorbate | 4 | 8 | 16 | 64 |
Identified Compounds | Compound Types | Formula | Mass | Rt (min) | Abundance (×106) |
---|---|---|---|---|---|
Bambara groundnut red seed coat extract (RSC extract) | |||||
Quercetin 3-galactoside | Flavonoid | C21H20O12 | 464.095 | 13.009 | 9.045856 |
Rutin | Flavonoid | C27H30O16 | 610.153 | 11.919 | 6.252689 |
6,8-Di-C-glucopyranosyltricetin | Flavonoid | C27H30O17 | 626.148 | 11.117 | 2.112860 |
Telephioidin | Flavonoid | C21H20O13 | 480.090 | 12.269 | 2.111958 |
Isoscoparin 2″-O-glucoside | Flavonoid | C28H32O16 | 624.168 | 12.357 | 1.332209 |
Quercetin 3-glucosyl-(1->2)-[rhamnosyl-(1->6)-galactoside] | Flavonoid | C33H40O21 | 772.205 | 11.330 | 1.312073 |
Procyanidin B2 | Polyphenol | C30H26O12 | 578.142 | 9.651 | 1.296922 |
2,4-Dihydroxybenzoic acid | Polyphenol | C7H6O4 | 154.026 | 4.991 | 1.117104 |
Quercetin 3-methyl ether 3′-xyloside | Flavonoids | C21H20O11 | 448.100 | 15.013 | 1.084713 |
3,4-Dihydroxybenzaldehyde | Phenols | C7H6O3 | 138.031 | 9.325 | 0.915070 |
Bambara groundnut white seed coat extract (WSC extract) | |||||
Calendasaponin B | Triterpenoid saponin | C48H76O20 | 972.493 | 18.929 | 6.580920 |
Cinncassiol C3 | Sesquiterpenoid | C20H30O7 | 382.199 | 12.115 | 4.644700 |
Momordin IIa | Saponin | C48H76O18 | 940.503 | 19.129 | 3.632120 |
Elatoside H | Saponin | C42H66O15 | 810.440 | 19.931 | 3.256450 |
2,4-Dihydroxybenzoic acid | Benzoate | C7H6O4 | 154.027 | 4.899 | 2.697640 |
Piperonyl sulfoxide | Benzene derivative | C18H28O3S | 324.175 | 37.782 | 2.364110 |
Soyasaponin bg | Triterpenoid saponin | C54H84O21 | 1068.550 | 20.846 | 1.708810 |
Vinaginsenoside R12 | Triterpenoid | C36H64O11 | 672.446 | 29.452 | 1.610460 |
S-Japonin | Sesquiterpenoid | C19H28O3S | 336.176 | 35.716 | 1.487800 |
Methyl 2,4,6-trihydroxybenzoate | Phenol | C8H8O5 | 184.037 | 2.844 | 0.985210 |
Identified Compounds | Compound Types | Formula | Mass | Rt (min) | Abundance (×106) |
---|---|---|---|---|---|
Bambara groundnut red seed coat extract (RSC extract) | |||||
Foeniculoside VII | Terpenoid | C16H28O8 | 348.179 | 10.401 | 10.224960 |
Luteolin 6-C-glucoside 8-C-arabinoside | Flavonoid | C27H30O16 | 610.155 | 11.741 | 3.318217 |
Cardiogenol C | Aromatic amine | C13H16N4O2 | 260.127 | 8.309 | 1.530854 |
(−)-Euphomine | Terpenoid | C32H44O8 | 556.306 | 29.091 | 1.175419 |
7-aminoflunitrazepam | Benzodiazepine | C16H14FN3O | 283.111 | 29.543 | 1.061559 |
Betavulgarin glucoside | Isoflavone | C23H22O11 | 474.116 | 8.146 | 0.717766 |
Varenicline | Organic amino compound | C13H13N3 | 211.111 | 14.410 | 0.562498 |
Boviquinone 4 | Terpenoid | C26H36O4 | 412.262 | 37.873 | 0.506933 |
Bambara groundnut white seed coat extract (WSC extract) | |||||
Foeniculoside VII | Terpenoid | C16H28O8 | 348.180 | 10.412 | 7.438520 |
Soyasapogenol B 3-O-[a-L-rhamnosyl-(1->4)-b-D-galactosyl-(1->4)-b-D-glucuronide] | Triterpene saponin | C48H78O18 | 942.519 | 19.406 | 6.134970 |
24-Methylcycloart-23-en-3beta-yl acetate | Terpenoid | C33H54O2 | 482.411 | 36.368 | 1.783770 |
7-aminoflunitrazepam | Benzodiazepine | C16H14FN3O | 283.111 | 29.052 | 1.517290 |
Calendasaponin B | Terpenoid | C48H76O20 | 972.491 | 19.005 | 0.976930 |
[12]-Gingerdione | Phenol | C23H36O4 | 376.262 | 31.958 | 0.939150 |
Cardiogenol C | Aromatic amine | C13H16N4O2 | 260.128 | 8.257 | 0.753460 |
N-butyryl-L-Homocysteine thiolactone | Amide | C8H13NO2S | 187.067 | 8.420 | 0.73782 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palamae, S.; Suyapoh, W.; Boonrat, O.; Zhang, B.; Amin, M.; Buatong, J.; Benjakul, S. Activity of Bambara Groundnut Seed Coat Extract Against Shewanella Species: Efficacy and Mechanisms of Action. Foods 2024, 13, 3516. https://doi.org/10.3390/foods13213516
Palamae S, Suyapoh W, Boonrat O, Zhang B, Amin M, Buatong J, Benjakul S. Activity of Bambara Groundnut Seed Coat Extract Against Shewanella Species: Efficacy and Mechanisms of Action. Foods. 2024; 13(21):3516. https://doi.org/10.3390/foods13213516
Chicago/Turabian StylePalamae, Suriya, Watcharapol Suyapoh, Onpreeya Boonrat, Bin Zhang, Muhamad Amin, Jirayu Buatong, and Soottawat Benjakul. 2024. "Activity of Bambara Groundnut Seed Coat Extract Against Shewanella Species: Efficacy and Mechanisms of Action" Foods 13, no. 21: 3516. https://doi.org/10.3390/foods13213516
APA StylePalamae, S., Suyapoh, W., Boonrat, O., Zhang, B., Amin, M., Buatong, J., & Benjakul, S. (2024). Activity of Bambara Groundnut Seed Coat Extract Against Shewanella Species: Efficacy and Mechanisms of Action. Foods, 13(21), 3516. https://doi.org/10.3390/foods13213516