Optimization of Ferimzone and Tricyclazole Analysis in Rice Straw Using QuEChERS Method and Its Application in UAV-Sprayed Residue Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of Standard Solutions and Matrix-Matched Standards
2.3. LC-MS/MS Analytical Conditions
2.4. Optimization of Water and Solvent Volumes Before Extraction
2.5. Comparison of Extraction and Partitioning Methods
2.6. Comparative Analysis of Various Cleanup Methods
2.7. Statistics
2.8. Established Preparation Method
2.9. Method Validation
2.9.1. Limit of Quantitation (LOQ) and Linearity of Calibration Curve
2.9.2. Recovery and Storage Stability
2.9.3. Matrix Effect
2.10. Field Trial
3. Results and Discussion
3.1. Optimization of MRM Transitions for LC-MS/MS
3.2. Sample Amount Selection and Moistening Water-Extraction Solvent Volume and Layer Separation
3.3. Optimizing Extraction–Partitioning Methods
3.4. Determination of the Optimal Cleanup Method
3.5. Method Validation of the Established Method
3.5.1. LOQ and Linearity
3.5.2. Recovery and Storage Stability
3.5.3. Matrix Effect
3.6. Assessment of Pesticide Residue Levels in Rice Paddies Following UAV Spraying
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yun, D.Y.; Bae, J.Y.; Kang, Y.J.; Lim, C.U.; Jang, G.H.; Eom, M.O.; Choe, W.J. Simultaneous analysis of 272 Pesticides in agricultural products by the QuEChERS method and gas chromatography with tandem mass spectrometry. Molecules 2024, 29, 2114. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Jan, R.; Asif, S.; Zhao, D.D.; Khan, Z.; Park, J.R.; Kim, K.M. Enhancing rice crop resistance against brown plant hopper infestation through the foliar application of sodium nitroprusside. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Giri, D.; Dhital, M.; Chaudhary, B.; Pandey, R.; Bastakoti, B.; Shrestha, S. Effect of different nitrogen levels on yield and yield attributes of different rice varieties in DDSR condition at Kanchanpur, Nepal. Arch. Agric. Environ. Sci. 2022, 7, 310–317. [Google Scholar] [CrossRef]
- Bandumula, N. Rice production in Asia: Key to global food security. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2018, 88, 1323–1328. [Google Scholar] [CrossRef]
- Hossain, M.; Fischer, K.S. Rice research for food security and sustainable agricultural development in Asia: Achievements and future challenges. GeoJournal 1995, 35, 286–298. [Google Scholar] [CrossRef]
- Khush, G. Productivity improvements in rice. Nutr. Rev. 2003, 61, S114–S116. [Google Scholar] [CrossRef]
- Lim, J.S.; Manan, Z.A.; Alwi, S.R.W.; Hashim, H. A review on utilisation of biomass from rice industry as a source of renewable energy. Renew. Sustain. Energy Rev. 2012, 16, 3084–3094. [Google Scholar] [CrossRef]
- Pütün, A.E.; Apaydın, E.; Pütün, E. Rice straw as a bio-oil source via pyrolysis and steam pyrolysis. Energy 2004, 29, 2171–2180. [Google Scholar] [CrossRef]
- Sarnklong, C.; Cone, J.W.; Pellikaan, W.; Hendriks, W.H. Utilization of rice straw and different treatments to improve its feed value for ruminants: A review. Asian-Australas. J. Anim. Sci. 2010, 23, 680–692. [Google Scholar] [CrossRef]
- Yakout, S.M. Physicochemical characteristics of biochar produced from rice straw at different pyrolysis temperature for soil amendment and removal of organics. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2017, 87, 207–214. [Google Scholar] [CrossRef]
- Rajput, A.; Gupta, S.; Bansal, A. A review on recent eco-friendly strategies to utilize rice straw in construction industry: Pathways from bane to boon. Environ. Sci. Pollut. Res. 2022, 30, 11272–11301. [Google Scholar] [CrossRef] [PubMed]
- Lechenet, M.; Dessaint, F.; Py, G.; Makowski, D.; Munier-Jolain, N. Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nat. Plants 2017, 3, 17008. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Chima, C.D. Determinants of pesticide use in food crop production in Southeastern Nigeria. Agriculture 2018, 8, 35. [Google Scholar] [CrossRef]
- Hotchkiss, J.H. Pesticide residue controls to ensure food safety. Crit. Rev. Food Sci. Nutr. 1992, 31, 191–203. [Google Scholar] [CrossRef]
- Oh, B.Y. Assessment of pesticide residue for food safety and environment protection. Korean J. Pestic. Sci. 2000, 4, 1–11. [Google Scholar]
- Picó, Y.; Font, G.; José Ruiz, M.; Fernández, M. Control of pesticide residues by liquid chromatography-mass spectrometry to ensure food safety. Mass Spectrom. Rev. 2006, 25, 917–960. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Trivedi, P.; Srivastava, M.K.; Lohani, M.; Srivastava, L.P. Monitoring of pesticide residues in market basket samples of vegetable from Lucknow City, India: QuEChERS method. Environ. Monit. Assess. 2011, 176, 465–472. [Google Scholar] [CrossRef]
- Gil, G.H.; Kim, J.B.; Kim, C.S.; Son, G.; Gwon, H.Y.; Park, J.E.; Lee, K.S. Analysis of pesticide residues in rice straw for livestock feed. Korean J. Pestic. Sci. 2012, 16, 273–281. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Suganthi, A.; Bhuvaneswari, K.; Kennedy, J.S. Validation and quantification of neonicotinoid insecticide residues in rice whole grain and rice straw using LC-MS/MS. Food Addit. Contam. Part A 2019, 36, 270–277. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Food, and Rural Affairs (MAFRA), The Standards and Specifications for Feed. Available online: https://law.go.kr/%ed%96%89%ec%a0%95%ea%b7%9c%ec%b9%99/%ec%82%ac%eb%a3%8c%20%eb%93%b1%ec%9d%98%20%ea%b8%b0%ec%a4%80%20%eb%b0%8f%20%ea%b7%9c%ea%b2%a9 (accessed on 25 October 2024).
- Nagai, T. Sensitivity differences among five species of aquatic fungi and fungus-like organisms for seven fungicides with various modes of action. J. Pestic. Sci. 2020, 45, 223–229. [Google Scholar] [CrossRef]
- Otake, T.; Aoyagi, Y.; Yarita, T. Multiresidue analysis and monitoring of pesticides in rice by pressurized liquid extraction. J. Environ. Sci. Health B 2009, 44, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Mohiddin, F.A.; Bhat, N.A.; Wani, S.H.; Bhat, A.H.; Ahanger, M.A.; Shikari, A.B.; Sofi, N.R.; Parveen, S.; Khan, G.H.; Bashir, Z.; et al. Combination of strobilurin and triazole chemicals for the management of blast disease in mushk budji-aromatic rice. J. Fungi 2021, 7, 1060. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.H.; Ahn, K.G.; Kim, G.P.; Hwang, Y.S.; Chang, M.I.; Kang, I.K.; Lee, Y.D.; Choung, M.G. Development of an official method for measurement of fluazinam residues for quarantine of imported and exported horticultural products. Hortic. Sci. Technol. 2016, 34, 183–194. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, Y.H.; Jeong, M.J.; Gwon, D.Y.; Lee, J.H.; Shin, Y.; Choi, H. LC-MS/MS method minimizing matrix effect for the analysis of bifenthrin and butachlor in chinese chives and its application for residual study. Foods 2023, 12, 1683. [Google Scholar] [CrossRef]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef]
- Ly, T.K.; Ho, T.D.; Behra, P.; Nhu-Trang, T.T. Determination of 400 pesticide residues in green tea leaves by UPLC-MS/MS and GC-MS/MS combined with QuEChERS extraction and mixed-mode SPE clean-up method. Food Chem. 2020, 326, 126928. [Google Scholar] [CrossRef]
- Yang, S.H.; Shin, Y.; Choi, H. Simultaneous analytical method for 296 pesticide multiresidues in root and rhizome based herbal medicines with GC-MS/MS. PLoS ONE 2023, 18, e028198. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Madireddy, H.; Bhusarapu, S.C.; Kumar, R.M.; Sundaram, R.M. Drone application in rice cultivation: Experiences from ICAR-IIRR trails. Indian Farm. 2022, 72, 3–6. [Google Scholar]
- Kuster, C.J.; Kohler, M.; Hovinga, S.; Timmermann, C.; Hamacher, G.; Buerling, K.; Chen, L.; Hewitt, N.J.; Anft, T. Pesticide exposure of operators from drone application: A field study with comparative analysis to handheld data from exposure models. ACS Agric. Sci. Technol. 2023, 3, 1125–1130. [Google Scholar] [CrossRef]
- Panjaitan, S.D.; Dewi, Y.S.K.; Hendri, M.I.; Wicaksono, R.A.; Priyatman, H. A drone technology implementation approach to conventional paddy fields application. IEEE Access 2022, 10, 120650–120658. [Google Scholar] [CrossRef]
- Rural Development Administration (RDA). Safety Usage Strandards. Available online: https://psis.rda.go.kr/psis/index.ps (accessed on 4 September 2024).
- Lee, S.W.; Choi, J.H.; Cho, S.K.; Yu, H.A.; Abd El-Aty, A.M.; Shim, J.H. Development of a new QuEChERS method based on dry ice for the determination of 168 pesticides in paprika using tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 4366–4377. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.; Lee, J.; Lee, J.; Lee, J.; Kim, E.; Liu, K.H.; Lee, H.S.; Kim, J.H. Validation of a multiresidue analysis method for 379 pesticides in human serum using liquid chromatography–tandem mass spectrometry. J. Agric. Food Chem. 2018, 66, 3550–3560. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.M.; Park, S.S.; Lim, M.S.; Lee, H.S.; Park, H.J.; Hwang, H.S.; Park, S.Y.; Cho, D.H. Multiresidue analysis of pesticides in agricultural products by a liquid chromatography/tandem mass spectrometry based method. Food Sci. Biotechnol. 2013, 22, 1–12. [Google Scholar] [CrossRef]
- Cho, H.R.; Park, J.S.; Kim, J.; Han, S.B.; Choi, Y.S. Multiresidue method for the quantitation of 20 pesticides in aquatic products. Anal. Bioanal. Chem. 2015, 407, 9043–9052. [Google Scholar] [CrossRef]
- Shin, Y.; Lee, J.; Park, E.; Lee, J.; Lee, H.S.; Kim, J.H. A quantitative tandem mass spectrometry and scaled-down QuEChERS approach for simultaneous analysis of pesticide multiresidues in human urine. Molecules 2019, 24, 1330. [Google Scholar] [CrossRef]
- Shim, Y.E.; Jeong, J.Y.; Myung, S.W. Analysis of residual neomycin in honey by LC-MS/MS. Anal. Sci. Technol. 2009, 22, 319–325. [Google Scholar]
- Gröer, C.; Brück, S.; Lai, Y.; Paulick, A.; Busemann, A.; Heidecke, C.D.; Siegmund, W.; Oswald, S. LC–MS/MS-based quantification of clinically relevant intestinal uptake and efflux transporter proteins. J. Pharm. Biomed. Anal. 2013, 85, 253–261. [Google Scholar] [CrossRef]
- Jeong, M.J.; Kim, S.H.; Eun, H.R.; Lee, Y.J.; Kim, S.M.; Baek, J.W.; Lee, Y.H.; Shin, Y. Column comparison for the separation of ferimzone Z and E stereoisomers and development of trace residue analysis method in brown rice using HPLC-MS/MS. Korean J. Environ. Agric. 2023, 42, 203–210. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Y.; Jia, H.; Zhou, W.; Li, B.; Huang, H. Residue analysis of tetraniliprole in rice and related environmental samples by HPLC/MS. Microchem. J. 2019, 150, 104168. [Google Scholar] [CrossRef]
- Lee, Y.J.; Kim, S.H.; Eun, H.R.; Kim, S.M.; Jeong, M.J.; Baek, J.W.; Lee, Y.H.; Noh, H.H.; Shin, Y. Enhancement of tricyclazole analysis efficiency in rice samples using an improved QuEChERS and its application in residue: A study from unmanned arial spraying. Appl. Sci. 2024, 14, 5607. [Google Scholar] [CrossRef]
- Aysal, P.; Ambrus, Á.; Lehotay, S.J.; Cannavan, A. Validation of an efficient method for the determination of pesticide residues in fruits and vegetables using ethyl acetate for extraction. J. Environ. Sci. Health B 2007, 42, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Hanot, V.; Goscinny, S.; Deridder, M. A simple multi-residue method for the determination of pesticides in fruits and vegetables using a methanolic extraction and ultra-high-performance liquid chromatography-tandem mass spectrometry: Optimization and extension of scope. J. Chromatogr. A 2015, 1384, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Pizzutti, I.R.; de Kok, A.; Hiemstra, M.; Wickert, C.; Prestes, O.D. Method validation and comparison of acetonitrile and acetone extraction for the analysis of 169 pesticides in soya grain by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2009, 1216, 4539–4552. [Google Scholar] [CrossRef] [PubMed]
- Hepperle, J.; Dörk, D.; Barth, A.; Taşdelen, B.; Anastassiades, M. Studies to improve the extraction yields of incurred pesticide residues from crops using the QuEChERS method. J. AOAC Int. 2015, 98, 450–463. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed (SANTE/11312/2021). Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/SANTE_11312_2021.pdf (accessed on 4 September 2024).
- Min, Z.W.; Hong, S.M.; Yang, I.C.; Kwon, H.Y.; Kim, T.K.; Kim, D.H. Analysis of pesticide residues in brown rice using modified QuEChERS multiresidue method combined with electrospray ionization-liquid chromatography-tandem mass spectrometric detection. J. Korean Soc. Appl. Biol. Chem. 2012, 55, 769–775. [Google Scholar] [CrossRef]
- Koesukwiwat, U.; Sanguankaew, K.; Leepipatpiboon, N. Rapid determination of phenoxy acid residues in rice by modified QuEChERS extraction and liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta 2008, 626, 10–20. [Google Scholar] [CrossRef]
- Bedassa, T.; Gure, A.; Megersa, N. Low density solvent based dispersive liquid-liquid microextraction and preconcentration of multiresidue pesticides in environmental waters for liquid chromatographic analysis. J. Anal. Chem. 2015, 70, 1199–1206. [Google Scholar] [CrossRef]
- Yuan, X.; Lee, J.; Han, H.; Ju, B.; Park, E.; Shin, Y.; Lee, J.H.; Kim, J.H. Translocation of residual ethoprophos and tricyclazole from soil to spinach. Appl. Biol. Chem. 2021, 64, 47. [Google Scholar] [CrossRef]
- Xie, G.; Zhou, W.; Jin, M.; Yu, A.; Rao, L.; Jia, H.; Luo, J.; He, Y.; Li, B. Residues analysis and dissipation dynamics of broflanilide in rice and its related environmental samples. Int. J. Anal. Chem. 2020, 2020, 8845387. [Google Scholar] [CrossRef]
- Lu, P.; Hsieh, Y.L. Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr. Polym. 2012, 87, 564–573. [Google Scholar] [CrossRef]
- Ramos, M.; Laveriano, E.; San Sebastián, L.; Perez, M.; Jiménez, A.; Lamuela-Raventos, R.M.; Garrigós, M.C.; Vallverdú-Queralt, A. Rice straw as a valuable source of cellulose and polyphenols: Applications in the food industry. Trends Food Sci. Technol. 2023, 131, 14–27. [Google Scholar] [CrossRef]
- Georgakopoulos, P.; Zachari, R.; Mataragas, M.; Athanasopoulos, P.; Drosinos, E.H.; Skandamis, P.N. Optimisation of octadecyl (C18) sorbent amount in QuEChERS analytical method for the accurate organophosphorus pesticide residues determination in low-fatty baby foods with response surface methodology. Food Chem. 2011, 128, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Im, S.J.; Abd El-Aty, A.M.; Lee, Y.J.; Rahman, M.M.; Kim, S.W.; Choi, J.H.; Shim, J.H. Analysis of benzobicyclon and its metabolite in brown rice and rice straw after field application using liquid chromatography–tandem mass spectrometry. Food Chem. 2015, 168, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Choi, J.H.; Abd El-Aty, A.M.; Im, S.J.; Rahman, M.M.; Kim, S.W.; Shim, J.H. Residue analysis of orthosulfamuron herbicide in fatty rice using liquid chromatography–tandem mass spectrometry. J. Adv. Res. 2015, 6, 511–516. [Google Scholar] [CrossRef]
- Yuan, X.; Kim, C.J.; Jeong, W.T.; Kyung, K.S.; Noh, H.H. Factors Affecting Incurred Pesticide Extraction in Cereals. Molecules 2023, 28, 5774. [Google Scholar] [CrossRef]
- Park, J.H.; Iqbal Rouf Mamun, M.; Abd El-Aty, A.M.; Na, T.W.; Choi, J.H.; Ghafar, M.W.; Kim, K.S.; Kim, S.D.; Shim, J.H. Development and validation of a multiresidue method for determination of 37 pesticides in soil using GC-NPD. Biomed. Chromatogr. 2011, 25, 1003–1009. [Google Scholar] [CrossRef]
- Tsochatzis, E.D.; Menkissoglu-Spiroudi, U.; Karpouza, D.G.; Tzimou-Tsitouridou, R. A multi-residue method for pesticide residue analysis in rice grains using matrix solid-phase dispersion extraction and high-performance liquid chromatography–diode array detection. Anal. Bioanal. Chem. 2010, 397, 2181–2190. [Google Scholar] [CrossRef]
- Zhao, J.; Li, P.; Hu, J. Multi-residue monitoring and dietary risk assessment of 17 pesticides and 3 related metabolites in rice and rice flour from markets in China. Environ. Sci. Pollut. Res. 2024, 31, 5275–5288. [Google Scholar] [CrossRef]
- Pizzutti, I.R.; Dias, J.V.; Kok, A.D.; Cardoso, C.D.; Vela, G.M. Pesticide residues method validation by UPLC-MS/MS for accreditation purposes. J. Braz. Chem. Soc. 2016, 27, 1165–1176. [Google Scholar] [CrossRef]
- He, Z.; Wang, L.; Peng, Y.; Luo, M.; Wang, W.; Liu, X. Multiresidue analysis of over 200 pesticides in cereals using a QuEChERS and gas chromatography–tandem mass spectrometry-based method. Food Chem. 2015, 169, 372–380. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, X.; He, Z.; Wang, L.; Luo, M.; Peng, Y.; Zhou, Q. Development of a multi-residue method for 58 pesticides in soil using QuEChERS and gas chromatography-tandem mass spectrometry. Anal. Methods 2016, 8, 2463–2470. [Google Scholar] [CrossRef]
- Karedla, A.K.; Raj, R.S.; Krishnamoorthy, S.V.; Suganthi, A.; Bhuvaneswari, K.; Karthikeyan, S.; Geetha, P.; Senthilkumar, M.; Nelson, S.J. Validation, dissipation kinetics and monitoring of flonicamid and dinotefuran residues in paddy grain, straw, its processed produces and bran oil using LC-MS/MS. Food Chem. 2024, 435, 137589. [Google Scholar] [CrossRef] [PubMed]
- Damale, R.D.; Dutta, A.; Shaikh, N.; Pardeshi, A.; Shinde, R.; Babu, K.D.; Gaikwad, N.N.; Banerjee, K. Multiresidue analysis of pesticides in four different pomegranate cultivars: Investigating matrix effect variability by GC-MS/MS and LC-MS/MS. Food Chem. 2023, 407, 135179. [Google Scholar] [CrossRef]
- Khanal, D.; Dhital, A.; Neupane, A.; Paudel, K.; Shrestha, M.; Upadhyaya, N.; Bhandari, R.; Pandey, P. Insecticide residue analysis on vegetable crops through Rapid Bioassay of Pesticide Residue (RBPR) technique in Nepal. J. King Saud Univ. Sci. 2023, 35, 102671. [Google Scholar] [CrossRef]
- Taylor, M.; Lyons, S.M.; Davie-Martin, C.L.; Geoghegan, T.S.; Hageman, K.J. Understanding trends in pesticide volatilization from agricultural fields using the pesticide loss via volatilization model. Environ. Sci. Technol. 2019, 54, 2202–2209. [Google Scholar] [CrossRef]
- Holloway, P.J.; Western, N.M. Tank-mix adjuvants and pesticide residues: Some regulatory and quantitative aspects. Pest Manag. Sci. 2003, 59, 1237–1244. [Google Scholar] [CrossRef]
- Yi, P.H.; Hyun, J.W.; Hwang, R.Y.; Kim, K.S. Improvement of control efficacy of mancozeb wettable powder against citrus melanose by mixing with paraffin oil. Res. Plant Dis. 2014, 20, 196–200. [Google Scholar] [CrossRef]
- Wang, D.; Du, X.; He, L. Investigation of the impact of a pesticide adjuvant on dimethoate persistence, penetration, and stability on apples using surface-enhanced Raman spectroscopy. ACS Agric. Sci. Technol. 2022, 2, 788–795. [Google Scholar] [CrossRef]
- Zhao, R.; Yu, M.; Sun, Z.; Li, L.J.; Shang, H.Y.; Xi, W.J.; Li, B.; Xu, Y.; Wu, X.M. Using tank-mix adjuvant improves the physicochemical properties and dosage delivery to reduce the use of pesticides in unmanned aerial vehicles for plant protection in wheat. Pest Manag. Sci. 2022, 78, 2512–2522. [Google Scholar] [CrossRef]
Pesticide | tR (min) | Monoisotopic Mass | Ionization Type of Precursor Ion | Precursor Ion > Product Ion (CE, V) | |
---|---|---|---|---|---|
Quantifier | Qualifier | ||||
Ferimzone Z | 2.66 | 254.2 | [M+H]+ | 255.2 > 132.2 (20) | 255.2 > 91.1 (31) |
Ferimzone E | 2.05 | 254.2 | [M+H]+ | 255.2 > 132.2 (20) | 255.2 > 91.1 (31) |
Tricyclazole | 2.00 | 189.0 | [M+H]+ | 190.2 > 163.1 (21) | 190.2 > 136.1 (27) |
Method | Extraction Solvent | Partitoning Salt | Recovery ± SD 1 (%, n = 3) | ||
---|---|---|---|---|---|
Ferimzone Z | Ferimzone E | Tricyclazole | |||
M1 | MeCN | Unbuffered 3 | 90.7 ± 2.0 bc 6 | 93.8 ± 1.7 ab | 84.4 ± 0.7 a |
M2 | MeCN | Citrate buffer 4 | 94.6 ± 1.4 ab | 82.4 ± 0.9 c | 84.6 ± 3.9 a |
M3 | EtOAc/MeCN 2 | Unbuffered | 97.9 ± 1.6 a | 95.4 ± 1.5 a | 88.1 ± 5.1 a |
M4 | EtOAc/MeCN | Citrate buffer | 94.0 ± 2.4 ab | 87.1 ± 3.8 c | 73.0 ± 1.8 b |
M5 | EtOAc | Unbuffered | 87.6 ± 0.3 c | 88.0 ± 2.8 bc | 60.5 ± 1.0 c |
M6 | EtOAc | Citrate buffer | 88.4 ± 1.9 c | 87.3 ± 0.7 c | 58.1 ± 1.7 c |
M7 | 1% HOAc in MeCN | Acetate buffer 5 | 88.1 ± 0.6 c | 83.3 ± 1.2 c | 83.1 ± 2.2 a |
Method | Cleanup Method | Recovery ± SD 1 (%, n = 3) | %ME ± SD (%, n = 3) | ||||
---|---|---|---|---|---|---|---|
Ferimzone Z | Ferimzone E | Tricyclazole | Ferimzone Z | Ferimzone E | Tricyclazole | ||
(A) | HLB 2 | 97.4 ± 1.7 ab 8 | 95.3 ± 1.2 b | 79.3 ± 1.0 b | −12.3 ± 0.7 d | −22.6 ± 0.5 d | −42.2 ± 3.6 c |
(B) | PSA (25 mg) 3 | 95.1 ± 0.6 ab | 100.2 ± 0.7 a | 78.0 ± 1.7 b | 5.4 ± 1.5 a | −8.3 ± 1.1 ab | −16.3 ± 3.3 a |
(C) | C18 (25 mg) 4 | 94.2 ± 0.3 b | 96.1 ± 1.8 b | 78.5 ± 1.6 b | −5.2 ± 1.6 c | −19.1 ± 0.9 c | −35.9 ± 1.4 c |
(D) | PSA (25 mg) + C18 (25 mg) 5 | 99.7 ± 2.1 a | 99.8 ± 0.5 a | 84.3 ± 1.8 a | 1.5 ± 1.8 ab | −8.4 ± 1.6 ab | −15.8 ± 1.0 a |
(E) | PSA (50 mg) + C18 (50 mg) 6 | 98.3 ± 0.9 ab | 100.1 ± 0.6 a | 77.6 ± 2.2 b | 1.0 ± 0.2 b | −7.0 ± 1.5 a | −18.2 ± 1.4 ab |
(F) | PSA (25 mg) + GCB (2.5 mg) 7 | 96.4 ± 3.4 ab | 98.5 ± 2.3 ab | 79.1 ± 1.6 b | 1.1 ± 2.5 b | −10.6 ± 0.9 b | −24.1 ± 2.1 b |
Pesticide | LOQ (mg/kg) | Linearity (r2) | %ME | Accuracy and Precision Study | Treated Level (mg/kg) | Storage Period (Days) | Accuracy (%) | RSD 1 (n = 3) (%) |
---|---|---|---|---|---|---|---|---|
Ferimzone Z | 0.005 | 0.9997 | −0.3 | Recovery | 0.01 | - | 98.9 | 2.6 |
Recovery | 0.1 | - | 97.8 | 1.4 | ||||
Recovery | 2 | - | 96.7 | 1.1 | ||||
Storage stability | 0.1 | 43 | 114.0 | 8.3 | ||||
Ferimzone E | 0.005 | 0.9999 | −7.1 | Recovery | 0.01 | - | 98.7 | 5.2 |
Recovery | 0.1 | - | 95.8 | 0.9 | ||||
Recovery | 2 | - | 93.3 | 0.8 | ||||
Storage stability | 0.1 | 43 | 106.5 | 4.1 | ||||
Tricyclazole | 0.005 | 0.9993 | −17.6 | Recovery | 0.01 | - | 87.7 | 4.3 |
Recovery | 0.1 | - | 85.5 | 1.9 | ||||
Recovery | 2 | - | 82.3 | 1.4 | ||||
Storage stability | 0.1 | 43 | 80.2 | 5.9 |
Pesticide | Field | Group | Adjuvant | Concentration (mg/kg) | MRL 2 (mg/kg) | ||||
---|---|---|---|---|---|---|---|---|---|
Trial 1 | Trial 2 | Trial 3 | Max | Mean ± SD 1 | |||||
Ferimzone 3 | 1 (Buan) | A | - | 0.79 | 0.77 | 0.91 | 0.91 | 0.82 ± 0.08 a 4 | 5 |
B | Cares | 0.34 | 0.34 | 0.43 | 0.43 | 0.37 ± 0.05 b | |||
C | Gondor | 0.56 | 0.79 | 0.74 | 0.79 | 0.70 ± 0.12 a | |||
2 (Gunsan) | A | - | 0.34 | 0.42 | 0.51 | 0.51 | 0.42 ± 0.09 a | ||
B | Cares | 0.40 | 0.48 | 0.31 | 0.48 | 0.40 ± 0.09 a | |||
C | Gondor | 0.26 | 0.19 | 0.29 | 0.29 | 0.25 ± 0.05 a | |||
Tricyclazole | 1 (Buan) | A | - | 0.58 | 0.68 | 0.73 | 0.73 | 0.66 ± 0.08 a | 15 |
B | Cares | 0.31 | 0.35 | 0.34 | 0.35 | 0.33 ± 0.02 b | |||
C | Gondor | 0.52 | 0.77 | 0.68 | 0.77 | 0.66 ± 0.13 a | |||
2 (Gunsan) | A | - | 0.19 | 0.18 | 0.23 | 0.23 | 0.20 ± 0.03 a | ||
B | Cares | 0.11 | 0.16 | 0.14 | 0.16 | 0.14 ± 0.03 b | |||
C | Gondor | 0.10 | 0.09 | 0.11 | 0.11 | 0.10 ± 0.01 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-H.; Baek, J.-W.; Eun, H.-R.; Lee, Y.-J.; Kim, S.-M.; Jeong, M.-J.; Lee, Y.-H.; Noh, H.H.; Shin, Y. Optimization of Ferimzone and Tricyclazole Analysis in Rice Straw Using QuEChERS Method and Its Application in UAV-Sprayed Residue Study. Foods 2024, 13, 3517. https://doi.org/10.3390/foods13213517
Kim S-H, Baek J-W, Eun H-R, Lee Y-J, Kim S-M, Jeong M-J, Lee Y-H, Noh HH, Shin Y. Optimization of Ferimzone and Tricyclazole Analysis in Rice Straw Using QuEChERS Method and Its Application in UAV-Sprayed Residue Study. Foods. 2024; 13(21):3517. https://doi.org/10.3390/foods13213517
Chicago/Turabian StyleKim, So-Hee, Jae-Woon Baek, Hye-Ran Eun, Ye-Jin Lee, Su-Min Kim, Mun-Ju Jeong, Yoon-Hee Lee, Hyun Ho Noh, and Yongho Shin. 2024. "Optimization of Ferimzone and Tricyclazole Analysis in Rice Straw Using QuEChERS Method and Its Application in UAV-Sprayed Residue Study" Foods 13, no. 21: 3517. https://doi.org/10.3390/foods13213517
APA StyleKim, S. -H., Baek, J. -W., Eun, H. -R., Lee, Y. -J., Kim, S. -M., Jeong, M. -J., Lee, Y. -H., Noh, H. H., & Shin, Y. (2024). Optimization of Ferimzone and Tricyclazole Analysis in Rice Straw Using QuEChERS Method and Its Application in UAV-Sprayed Residue Study. Foods, 13(21), 3517. https://doi.org/10.3390/foods13213517