Non-Covalent Interactions of Lotus Root Polysaccharides and Polyphenols and their Regulatory Mechanism on Macrophage Functions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Purification of LRP
2.3. Preparation of PLRP-Polyphenol Complexes
2.4. Characterizations of PLRP-Polyphenol Complexes
2.5. Evaluation of Macrophages Immunomodulation
2.5.1. Measurement of Cell Proliferation Rates
2.5.2. Determination of NO Production by Macrophages
2.6. Evaluation of Macrophage Antioxidant Activity
2.6.1. Establishment of Macrophage Oxidative Damage Model
2.6.2. Determination of SOD, MDA, and T-AOC Levels in Cells
2.7. RNA-Seq Transcriptome Sequencing
2.8. Statistical Analysis
3. Results
3.1. Non-Covalent LRP-Polyphenol Interactions
3.2. Microstructural Characterization of PLRP-Polyphenol Complexes
3.3. Immunomodulatory Activity of PLRP-Polyphenol Complex In Vitro
3.4. Impact of PLRP-Polyphenol Complexes on the In Vitro Antioxidant Activity of Macrophages
3.5. RNA-Seq Analysis of Macrophages After PLRP-Polyphenol Complex Stimulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, Q.; Xiao, X.; Lu, L.; Ai, L.; Xu, M.; Liu, Y.; Goff, H.D. Polyphenol-Polysaccharide Complex: Preparation, Characterization, and Potential Utilization in Food and Health. Annu. Rev. Food Sci. 2022, 13, 59–87. [Google Scholar] [CrossRef]
- Liu, X.; Renard, C.M.G.C.; Rolland-Sabaté, A.; Le Bourvellec, C. Exploring interactions between pectins and procyanidins: Structure-function relationships. Food Hydrocoll. 2021, 113, 106498. [Google Scholar] [CrossRef]
- Zhou, P.; Feng, R.; Luo, Z.; Li, X.; Wang, L.; Gao, L. Synthesis, identification and bioavailability of Juglans regia L. polyphenols-Hohenbuehelia serotina polysaccharides nanoparticles. Food Chem. 2020, 329, 127158. [Google Scholar] [CrossRef]
- Mercado-Mercado, G.; de la Rosa, L.A.; Alvarez-Parrilla, E. Effect of pectin on the interactions among phenolic compounds determined by antioxidant capacity. J. Mol Struct. 2020, 1199, 126967. [Google Scholar] [CrossRef]
- Chen, D.; Hu, K.; Zhu, L.; Hendrickx, M.; Kyomugasho, C. Cell wall polysaccharide changes and involvement of phenolic compounds in ageing of red haricot beans (Phaseolus vulgaris) during postharvest storage. Food Res. Int. 2022, 162, 112021. [Google Scholar] [CrossRef]
- Han, M.; Huang, Z.; Peng, Y.; Dong, W.; Fan, J.; Wang, X. Multi-spectroscopic analysis and molecular simulations provide insights into the noncovalent interactions between the novel antimicrobial peptide Pup2 and Epigallocatechin-3-gallate (EGCG). Food Biosci. 2024, 61, 104707. [Google Scholar] [CrossRef]
- Wu, Z.; Ming, J.; Gao, R.; Wang, Y.; Liang, Q.; Yu, H.; Zhao, G. Characterization and Antioxidant Activity of the Complex of Tea Polyphenols and Oat β-Glucan. J. Agr. Food Chem. 2011, 59, 10737–10746. [Google Scholar] [CrossRef]
- Yi, Y.; Tang, H.-S.; Sun, Y.; Xu, W.; Min, T.; Wang, H.-X. Comprehensive characterization of lotus root polysaccharide-phenol complexes. Food Chem. 2022, 366, 130693. [Google Scholar] [CrossRef]
- Guo, Q.; Ma, Q.; Xue, Z.; Gao, X.; Chen, H. Studies on the binding characteristics of three polysaccharides with different molecular weight and flavonoids from corn silk. Carbohydr. Polym. 2018, 198, 581–588. [Google Scholar] [CrossRef]
- Houde, M.; Khodaei, N.; Karboune, S. Assessment of interaction of vanillin with barley, pea and whey proteins: Binding properties and sensory characteristics. LWT—Food Sci. Technol. 2018, 91, 133–142. [Google Scholar] [CrossRef]
- Renard, C.M.; Baron, A.; Guyot, S.; Drilleau, J.F. Interactions between apple cell walls and native apple polyphenols: Quantification and some consequences. Int. J. Biol. Macromol. 2001, 29, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Córdova-Dávalos, L.E.; Cervantes-García, D.; Ballona-Alba, M.F.; Santos-López, A.; Esquivel-Basaldúa, A.S.; Gallegos-Alcalá, P.; Jiménez, M.; Salinas, E. Protective Effect of Glycomacropeptide on the Inflammatory Response of U937 Macrophages. Foods 2023, 12, 1528. [Google Scholar] [CrossRef] [PubMed]
- Vidya, M.K.; Kumar, V.G.; Sejian, V.; Bagath, M.; Krishnan, G.; Bhatta, R. Toll-like receptors: Significance, ligands, signaling pathways, and functions in mammals. Int. Rev. Immunol. 2018, 37, 20–36. [Google Scholar] [CrossRef] [PubMed]
- Tao, W.; Fu, T.; He, Z.-J.; Zhou, H.-P.; Hong, Y. Immunomodulatory effects of Radix isatidis polysaccharides in vitro and in vivo. Exp. Ther. Med. 2021, 22, 1405. [Google Scholar] [CrossRef]
- Peng, K.; Li, Y.; Sun, Y.; Xu, W.; Wang, H.; Zhang, R.; Yi, Y. Lotus Root Polysaccharide-Phenol Complexes: Interaction, Structure, Antioxidant, and Anti-Inflammatory Activities. Foods 2023, 12, 577. [Google Scholar] [CrossRef]
- Liu, Q.; Zou, X.; Yi, Y.; Sun, Y.; Wang, H.; Jiang, X.; Peng, K. Physicochemical and Functional Changes in Lotus Root Polysaccharide Associated with Noncovalent Binding of Polyphenols. Foods 2023, 12, 1049. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Lamikanra, O.; Sun, J.; Wang, L.-M.; Min, T.; Wang, H.-X. Activity diversity structure-activity relationship of polysaccharides from lotus root varieties. Carbohydr. Polym. 2018, 190, 67–76. [Google Scholar] [CrossRef]
- Liu, X.; Le Bourvellec, C.; Renard, C.M.G.C. Interactions between cell wall polysaccharides and polyphenols: Effect of molecular internal structure. Compr. Rev. Food Sci. Saf. 2020, 19, 3574–3617. [Google Scholar] [CrossRef]
- Hu, T.-G.; Zhu, W.-L.; Yu, Y.-S.; Zou, B.; Xu, Y.-J.; Xiao, G.-S.; Wu, J.-J. The variation on structure and immunomodulatory activity of polysaccharide during the longan pulp fermentation. Int. J. Biol. Macromol. 2022, 222, 559–609. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Lin, Q.; Chen, Z.; Xiao, H. The interaction between tea polyphenols and rice starch during gelatinization. Food Sci. Technol. Int. 2011, 17, 569–577. [Google Scholar] [CrossRef]
- Singh, A.; Dutta, P.K.; Kumar, H.; Kureel, A.K.; Rai, A.K. Improved antibacterial and antioxidant activities of gallic acid grafted chitin-glucan complex. J. Polym. Res. 2019, 26, 234. [Google Scholar] [CrossRef]
- Dridi, W.; Bordenave, N. Influence of polysaccharide concentration on polyphenol-polysaccharide interactions. Carbohydr. Polym. 2021, 274, 118670. [Google Scholar] [CrossRef] [PubMed]
- Bermudez-Oria, A.; Rodriguez-Gutierrez, G.; Fernandez-Prior, A.; Knicker, H.; Fernandez-Bolanos, J. Confirmation by solid-state NMR spectroscopy of a strong complex phenol-dietary fiber with retention of antioxidant activity in vitro. Food Hydrocoll. 2020, 102, 105584. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Yong, H.; Kan, J.; Jin, C. Recent advances in flavonoid-grafted polysaccharides: Synthesis, structural characterization, bioactivities and potential applications. Int. J. Biol. Macromol. 2018, 116, 1011–1025. [Google Scholar] [CrossRef]
- Zhang, D.; Zhu, J.; Ye, F.; Zhao, G. Non-covalent interaction between ferulic acid and arabinan-rich pectic polysaccharide from rapeseed meal. Int. J. Biol. Macromol. 2017, 103, 307–315. [Google Scholar] [CrossRef]
- Li, S.; Li, J.; Zhu, Z.; Cheng, S.; He, J.; Lamikanra, O. Soluble dietary fiber and polyphenol complex in lotus root: Preparation, interaction and identification. Food Chem. 2020, 314, 126219. [Google Scholar] [CrossRef]
- Ding, Z.; Chang, X.; Fu, X.; Kong, H.; Yu, Y.; Xu, H.; Shan, Y.; Ding, S. Fabrication and characterization of pullulan-based composite films incorporated with bacterial cellulose and ferulic acid. Int. J. Biol. Macromol. 2022, 219, 121–137. [Google Scholar] [CrossRef]
- Man, P.; Sun, L.; Han, X.; Zhang, H.; Qin, L.; Ren, H. Effects of different tea polyphenols conjugated with β-lactoglobulin on antioxidant capacity and structural properties. LWT—Food Sci. Technol. 2024, 198, 115190. [Google Scholar] [CrossRef]
- Zou, H.; Ben, T.; Wu, P.; Waterhouse, G.I.N.; Chen, Y. Effective anti-inflammatory phenolic compounds from dandelion: Identification and mechanistic insights using UHPLC-ESI-MS/MS, fluorescence quenching and anisotropy, molecular docking and dynamics simulation. Food Sci. Hum. Wellness 2023, 12, 2184–2194. [Google Scholar] [CrossRef]
- Bedoya-Ramirez, D.; Cilla, A.; Contreras-Calderon, J.; Alegria-Toran, A. Evaluation of the antioxidant capacity, furan compounds and cytoprotective/cytotoxic effects upon Caco-2 cells of commercial Colombian coffee. Food Chem. 2017, 219, 364–372. [Google Scholar] [CrossRef]
- Wang, L.; Feng, Z.; Wang, X.; Wang, X.; Zhang, X. DEGseq: An R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 2010, 26, 136–138. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Zhou, Q.; Hu, Y.; Ding, Q.; Zhou, Z.; Wang, C.; Wang, X.; Li, H.; Tang, S. Prompting immunostimulatory activity of curdlan with grafting methoxypolyethylene glycol. Int. J. Biol. Macromol. 2022, 222, 1092–1100. [Google Scholar] [CrossRef] [PubMed]
- Lundová, T.; Zemanová, L.; Malčeková, B.; Skarka, A.; Štambergová, H.; Havránková, J.; Šafr, M.; Wsól, V. Molecular and biochemical characterisation of human short-chain dehydrogenase/reductase member 3 (DHRS3). Chem.-Biol. Interact. 2015, 234, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Medarde, A.; Santos, E. The RasGrf family of mammalian guanine nucleotide exchange factors. BBA-Rev. Cancer 2011, 1815, 170–188. [Google Scholar] [CrossRef] [PubMed]
- Tashiro, E.; Tsuchiya, A.; Imoto, M. Functions of cyclin D1 as an oncogene and regulation of cyclin D1 expression. Cancer Sci. 2007, 98, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Thorin-Trescases, N.; Thorin, E. Angiopoietin-like-2: A multifaceted protein with physiological and pathophysiological properties. Expert. Rev. Mol. 2014, 16, e17. [Google Scholar] [CrossRef]
- Ros, S.; Schulze, A. Balancing glycolytic flux: The role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism. Cancer Metab. 2013, 1, 8. [Google Scholar] [CrossRef]
- Guerra, C.; Molinari, M.J.C. Thioredoxin-related transmembrane proteins: TMX1 and little brothers TMX2, TMX3, TMX4 and TMX5. Cells 2020, 9, 2000. [Google Scholar] [CrossRef]
- Wang, X.; Jin, Y.; Li, Y.-X.; Yang, Y.J.O.R. Secretory leukocyte peptidase inhibitor expression and apoptosis effect in oral leukoplakia and oral squamous cell carcinoma. Oncolo. Rep. 2018, 39, 1793–1804. [Google Scholar] [CrossRef]
- Xu, Z.; Hu, Q.; Xie, M.; Liu, J.; Su, A.; Xu, H.; Yang, W. Protective effects of peptide KSPLY derived from Hericium erinaceus on H2O2-induced oxidative damage in HepG2 cells. Food Sci. Hum. Wellness 2023, 8, 102–105. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Huang, N.; Liu, Q.; Sun, Y.; Peng, K.; Jiang, X.; Yi, Y. Non-Covalent Interactions of Lotus Root Polysaccharides and Polyphenols and their Regulatory Mechanism on Macrophage Functions. Foods 2024, 13, 3543. https://doi.org/10.3390/foods13223543
Li Y, Huang N, Liu Q, Sun Y, Peng K, Jiang X, Yi Y. Non-Covalent Interactions of Lotus Root Polysaccharides and Polyphenols and their Regulatory Mechanism on Macrophage Functions. Foods. 2024; 13(22):3543. https://doi.org/10.3390/foods13223543
Chicago/Turabian StyleLi, Yajie, Nan Huang, Qiulan Liu, Ying Sun, Kaidi Peng, Xueyu Jiang, and Yang Yi. 2024. "Non-Covalent Interactions of Lotus Root Polysaccharides and Polyphenols and their Regulatory Mechanism on Macrophage Functions" Foods 13, no. 22: 3543. https://doi.org/10.3390/foods13223543
APA StyleLi, Y., Huang, N., Liu, Q., Sun, Y., Peng, K., Jiang, X., & Yi, Y. (2024). Non-Covalent Interactions of Lotus Root Polysaccharides and Polyphenols and their Regulatory Mechanism on Macrophage Functions. Foods, 13(22), 3543. https://doi.org/10.3390/foods13223543