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Abstract: The comparative analysis of homologous enzymes is a valuable approach for elucidating
enzymes’ structure–function relationships. Glutathione transferases (GSTs, EC. 2.5.1.18) are crucial
enzymes in maintaining the homeostatic stability of plant cells by performing various metabolic,
regulatory, and detoxifying functions. They are promiscuous enzymes that catalyze a broad range
of reactions that involve the nucleophilic attack of the activated thiolate of glutathione (GSH) to
electrophilic compounds. In the present work, three highly homologous (96–98%) GSTs from ryegrass
Lolium perenne (LpGSTs) were identified by in silico homology searches and their full-length cDNAs
were isolated, cloned, and expressed in E. coli cells. The recombinant enzymes were purified by
affinity chromatography and their substrate specificity and kinetic parameters were determined.
LpGSTs belong to the tau class of the GST superfamily, and despite their high sequence homology,
their substrate specificity displays remarkable differences. High catalytic activity was determined
towards hydroxyperoxides and alkenals, suggesting a detoxification role towards oxidative stress
metabolites. The prediction of the structure of the most active LpGST by molecular modeling allowed
the identification of a non-conserved residue (Phe215) with key structural and functional roles. Site-
saturation mutagenesis at position 215 and the characterization of eight mutant enzymes revealed
that this site plays pleiotropic roles, affecting the affinity of the enzyme for the substrates, catalytic
constant, and structural stability. The results of the work have improved our understanding of the
GST family in L. perenne, a significant threat to agriculture, sustainable food production, and safety
worldwide.

Keywords: abiotic stress; glutathione transferase; biotic stress; herbicide detoxification; Lolium perenne;
Lolium sp.

1. Introduction

Weeds pose an important threat to agriculture worldwide. Metabolism-based her-
bicide resistance is a significant concern as it can provide resistance to current, future,
and unknown herbicides [1–3]. Over the last twenty years, a significant rise in the num-
ber and variety of weeds that are resistant to herbicides has been observed [4–6]. This
poses a threat to the long-term viability of agriculture on both local and worldwide levels.
Metabolism-based herbicide resistance is linked to the increased expression of enzymes
that detoxify herbicides, such as cytochrome P450 mixed-function oxidases (CYPs), family
1 UDP-glucose-dependent glycosyltransferases (UGTs), and GSTs, along with membrane-
associated ATP-binding cassette (ABC) drug transporter proteins [1–3,7–10].

L. perenne is consistently included among the most serious weeds of winter cereal
and perennial crops such as orchards, olive groves, vineyards, and alfalfa [4–6]. Weed
competition in cultivated crops can reduce yield, making weed control a major concern
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in sustainable food production. L. perenne is especially troublesome because, if left uncon-
trolled, it grows quickly and competes aggressively for space, light, nutrients, and water.
It can contaminate the seed harvest with undesirable seed, affecting both food quality
and safety. The control of L. perenne relies mainly on herbicides that target the enzymes
acetolactate synthase (ALS) and acetyl-CoA carboxylase (ACCase) [8]. These herbicides
are linked with the highest risk of the rapid evolution of target-site resistance, which is
most commonly due to mutations in the ALS or ACCase genes or to the expression of
herbicide-detoxifying GSTs [2,7,8].

GSTs catalyze the addition of the sulfur atom of GSH (γ-L-Glu-L-Cys-Gly) to various
endogenous and xenobiotic electrophile compounds [11–13]. The primary function of GSTs
is their participation in the detoxification and the elimination of xenobiotic substrates in-
cluding pesticides. In addition to transferase activity, GSTs also perform other biosynthetic
roles [14] and noncatalytic activities such as ligand binding and transport [15–18].

Extensive studies have been conducted on the GSH-conjugating activities of GSTs to-
wards various pesticides, contributing a significant role in determining herbicide selectivity
in crops and weeds such as A. myosuroides and L. rigidum [19–22]. For example, a GST isoen-
zyme with high glutathione peroxidase activity has been proven to contribute to resistance
to certain herbicides in resistant populations of A. myosuroides and L. rigidum [19,20,23–27].
This GST contributes in herbicide resistance by alleviating the oxidative stress through the
breakdown of cytotoxic hydroperoxides that arise from herbicide-induced damage [23].
The enzyme from the black-grass A. myosuroides was found to have a limited capability to
directly detoxify herbicides; however, it is involved in the metabolic regulation of protective
flavonoids. The enzyme contributes indirectly to herbicide resistance by enhancing the
accumulation of protective antioxidant flavonoids [23].

The plant GSTs are classified into different classes based on their sequences and
structure relatedness [28,29]. The majority of plant GSTs are classified as tau (GSTU)
and phi (GSTF) [13,28,29]. GSTs typically function as dimers consisting of two 24–29
kDa subunits; however, GSTs that belong to the lambda class or to the dehydroascorbate
reductase class act as monomers. Experimentally determined crystal structures of all GSTs
have demonstrated that the xenobiotic compounds bind at a structurally varied C-terminal
hydro-phobic domain (named H-site) and a conserved N-terminal GSH binding domain
(named G-site) [13,30,31]. Unlike the G-site, the H-site is less specific in terms of substrate
types, allowing for the binding of substrates with diverse and different structures [13,30].

In the present work, we investigated the functional and catalytic features of three
isoenzymes of the tau-class GST family from ryegrass L. perenne. LpGSTs can contribute to
herbicide resistance, either directly through the GSH-dependent detoxification process of
herbicides or indirectly by playing a regulatory role in plant metabolism and antioxidant
stress control. The study of L. perenne GSTs can provide valuable information on weed
control and herbicide management strategies, impacting food security, sustainable food
production, and the environment. To the best of our knowledge, this was the first study on
the GST family of enzymes from L. perenne.

2. Materials and Methods
2.1. Molecular Cloning

Total mRNA from the leaves of L. perenne were isolated using the NucleoSpin RNA
kit from MACHEREY-NAGEL GmbH & Co (Düren, Germany). The mRNA was reverse-
transcribed (Thermo Fisher Scientific, Waltham, MA, USA) and the cDNA was used for the
PCR reactions for the amplification of the coding sequence of the three GST isoenzymes
(LpGSTU25, LpGSTU2, LpGSTU5) using the following primers:

GSTAF1: 5′ ATG GCG TCC GAG AAA AGC AGC 3′;
GSTAR1: 5′ CT ACT CGA TGC CGT ACT TTT 3′;
GSTAF2: 5′ ATG GCG TCC GAG AAG AGC AGC 3′;
GSTAR2: 5′ CT ACT CGA TGC CGT ACT TCT 3′.
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The PCRs (50 µL) for LpGSTU25 and LpGSTU5 clones were achieved using the AF1-
AR1, AF2-AR2 (8 pmole each), template cDNA (0.5 µg), dNTPs (50 mM), 5 µL 10× buffer,
and Taq DNA polymerase (1 unit). The PCR procedure comprised 30 cycles of 30 s at 94 ◦C,
30 s at 50 ◦C, and 1 min at 72 ◦C. The PCR for LpGSTU2 was carried out in a total volume
of 50 µL that contained the following: 8 pmole of each primer (AF2-AR2), 1 µg template
cDNA, 50 mM dNTPs, 5 µL 10× buffer, and 1 unit of Taq DNA polymerase. The PCR
procedure comprised 30 cycles of 30 s at 94 ◦C, 1 min at 44 ◦C, and 1 min at 72 ◦C. The
final extension at 72 ◦C for 10 min was performed after the 30th cycle. The PCR products
were ligated to the pCR®TOPO® plasmid. PCR and the same primers were used to amplify
the cloned ORFs. The PCR products were cloned into the pEXP5-CT/TOPO®TA plasmid,
sequenced, and used to transform competent E. coli BL21(DE3) cells.

2.2. Bioinformatics and Structural Analysis of LpGSTU25

Structure prediction of LpGSTU25 was achieved by AlphaFold [31]. Sequence align-
ments were carried out using the Clustal Omega program [32,33] and the sequences were
analyzed using ESPript and ENDscript [34]. Phylogenetic tree was produced employing
Geneious and iTOL 5 [35]. PDB files were inspected using UCSF Chimera 1.16 [36] and
PyMOL [37].

2.3. Expression and Purification

Expressions of LpGSTU25, LpGSTU2, and LpGSTU5 were achieved using E. coli
BL21(DE3) cells at 37 ◦C in 1L LB medium containing ampicillin (100 µg/mL) accord-
ing to [24]. Purification of the enzymes was accomplished according to [24].

2.4. Assay of Enzyme Activity, Kinetics Analysis, and Protein Determination

Enzyme assays and protein determination were performed according to published
method [24]. Steady-state kinetic measurements were performed according to published
methods [24,27] and analyzed using GraphPad Prism v5.

2.5. Site-Saturation Mutagenesis

Site-saturation mutagenesis was achieved according to [38] using, as templates, the
cloned wild-type gene LpGSTU25 and KAPA HiFi DNA polymerase (KapaBiosystems,
Wilmington, MA, USA). The pairs of oligonucleotide primers used in the PCR reactions
were as follows:

Mutant Forward primer: 5′- GTC TAC GAC NNN ATC GGC GTC C -3′; Mutant
Reverse primer: 5′- GAC GCC GAT NNN GTC GTA GAC C -3′. A library of mutant
enzymes was created and expressed in E. coli BL21(DE3) (20 mL LB medium containing
100 µg/mL ampicillin). Activity screening using, as substrates, CDNB/GSH allowed the
selection of eight clones with the highest activity. Sequence analysis of the mutant clones
revealed that the residue at position 215 was mutated to Ser, Val, His, Lys, Leu, Arg, Thr, and
Tyr. The resulting mutant enzymes were expressed in E.coli BL21(DE3) and purified using
affinity chromatography as described for the wild-type enzyme. The purified enzymes
were subjected to steady-state kinetic analysis using the CDNB and GSH as substrates.

2.6. Thermal Stability

The operational stability of LpGSTU25 and its mutants were determined in 0.1 M
potassium phosphate buffer, pH 7, after heating the enzymes (20 to 85 ◦C) for 10 min.
The Tm values (Tm is the temperature at which the enzyme loses 50% activity) were
calculated from the graph of remaining activity (%) against temperature (◦C) against
relative inactivation (%). The data were analyzed by GraFit 3.0 and GraphPad Prism v5.

The time course of thermal inactivation of LpGSTU25 and its mutants was studied
in 0.05 M potassium phosphate buffer, pH 7. The rate of inactivation was measured by
periodically removing samples for assay of enzymatic activity. Rate constants for a thermal
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inactivation were calculated from the graph of % remaining activity versus time (min)
using the following equation:

Remaining activity = (1 − F)e−k f astt + Fe−kslowt

Here, F represents the fractional residual activity of the partial active enzyme inter-
mediate. kfast and kslow, are the rate constants for the slow and fast phase of the reaction.
Analysis was achieved using GraphPad Prism v5.

2.7. Viscosity Dependence of Kinetic Parameters

The effect of viscosity on kcat was assayed at different glycerol concentrations (0–40%
v/v) in 0.1 M potassium phosphate buffer, pH 6.5. Viscosity values were measured based
on [39].

3. Results and Discussion
3.1. Cloning, Expression, and Substrate Specificity of LpGSTUs

In silico homology searches (BLASTp analysis) using the amino acid sequence of
the GST from Triticum aestivum (accession number XP_044393881.1) as a query sequence
revealed the presence of three homologous enzymes (96–98% homology) (Figure 1a). The
full-length cDNAs with complete open reading frames of the three putative GSTs were
isolated using RT-PCR. These isoenzymes (denoted LpGSTU25, LpGSTU2, and LpGSTU5)
display high amino acid sequence identity and therefore provide an excellent opportunity
for studying structure–function relationships. A phylogenetic analysis was carried out
to investigate the genetic connection between LpGSTUs and GSTs from all known classes
(Figure 1b). In plants, GSTs are divided into at least 14 classes [40], and our analysis
revealed that the deduced amino acid sequences of the LpGSTUs share a high degree of
similarity with GSTs that belong to the tau class (Figure 1b). The tau-class GSTs are known
to play a vital role in a wide range of catalytic and regulatory functions related to the
detoxification of xenobiotics and the response to oxidative stress [13,41].

BLAST search using, as a query, either of the LpGSTU sequences, revealed the pres-
ence of eight homologue GST sequences in Lolium species, with identities between 94.7
and 99.1%. Five sequences were from L. perenne (accession numbers: XP_051177894.1;
AMY26593.1, XP_051177895.1; AMY26592.1; XP_051177900.1), one from L. multiflorum (acces-
sion number KAK1643535.1), and two from L. rigidum (accession numbers: XP_047090606.1;
XP_047090605.1). The sequences with accession numbers AMY26592, AMY26593.1, and
XP_051177894 corresponded to LpGSTU25, LpGSTU2, and LpGSTU5, respectively. Multiple-
sequence alignment of eight LpGSTs is illustrated in Figure S1.

The coding sequences of LpGSTUs were cloned into the pEXP5-CT/TOPO®TA plasmid
to enable their expression in E. coli under the control of the T7 promotor. Following
expression, single-step column affinity chromatography on GSH-Sepharose was used for
the purification of the recombinant LpGSTs (see Figure S2).

To reveal possible catalytic activities related to their biological roles, we examined the
substrate specificity of the purified LpGSTUs using a wide range of electrophilic substrates.
The results (Table 1) showed that LpGSTUs exhibit diverse substrate specificities and
catalyze a broad spectrum of reactions. They showed appreciate catalytic activity with
17 out of the 20 diverse substrates tested. In general, LpGSTUs display high activity
towards halogenated compounds such as 1-chloro-2,4-dinitrobenzene (CDNB), 4-chloro-7-
nitrobenzofurazan (NBD-chloride), and p-nitrobenzyl-chloride (pNBD). The enzymes did
not show any activity using the herbicide fluorodifen as a substrate, in contrast to other
tau-class GSTs [42]. The GSH-dependent hydroperoxidase function of LpGSTUs was also
assessed using cumene hydroperoxide or tert-butyl hydroperoxide as substrates. Cumene
hydroperoxide appeared to be the best substrate between the two peroxides examined.
The notable hydroperoxidase function of LpGSTUs may have been related to their role in
conferring tolerance to oxidative-stress toxic metabolites [43,44]. Oxidative stress also leads
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to the formation of cytotoxic alkenals such as trans-2-nonenal. Alkenals react with GSH
through a Michael addition to the α,β-unsaturated carbonyl group to form conjugates. [45].
LpGSTUs effectively detoxify and eliminate trans-2-nonenal, trans-4-phenyl-3-buten-2-one,
and ethacrynic acid (2-[2,3-Dichloro-4-(2-methylidenebutanoyl)phenoxy]acetic acid).
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Figure 1. (a) Multiple-sequence alignments of LpGSTU25, LpGSTU2, and LpGSTU5. Sequences
were aligned with CLUSTAL Omega [33] and displayed using ESPript 3 [34]. LpGSTU25 num-
bering is shown above the alignment. The predicted secondary structure of LpGSTU25 is shown
above the alignment. (b) Phylogenetic analysis of LpGSTU25, LpGSTU2, and LpGSTU5 (labeled
red) with sequences representing all the identified GST classes from Arabidopsis thaliana: phi (GSTF),
tau (GSTU), lambda (GSTL), theta (GSTT), dehydroascorbate reductase (DHAR), elongation factor
1Bγ (EF1Bγ), zeta (GSTZ), Tetrachloro-hydroquinone dehalogenase (TCHQD), and Glutathionyl
hydroquinone reductase (GHR). Sequences were aligned with CLUSTAL Omega [33] and phylo-
genetic tree was constructed with iTOL v5 [35]. The accession numbers of the proteins were as
follows—phi class: AtGSTF1 (NP_180643.1), AtGSTF2 (NP_192161.1), and AtGSTF3 (NP_178394.1);
tau class: AtGSTU1 (NP_176178.1), AtGSTU2 (NP_565178.1), and AtGSTU3 (NP_177598.1); lambda
class: AtGSTL1 (NP_191064.1), AtGSTL2 (NP_001119157.1), and AtGSTL3 (NP_195899.1); theta
class: AtGSTT1 (NP_198937.1), AtGSTT2 (NP_198940.3), and AtGSTT3 (NP_198938.1); DHAR class:
AtGSTDHAR1 (NP_173387.1) and AtGSTDHAR2 (NP_177662.1); EF1Bgamma class: AtGSTEF1B1
(NP_563848.1) and AtGSTEF1B2 (NP_176084.1); zeta class: AtGSTZ1 (NP_178344.1) and AtGSTZ2
(NP_178343.1); TCHQD class: AtGSTTCHQD (NP_177853.1); GHR class: AtGSTGHR1 (NP_199315.1)
and AtGSTGHR2 (NP_001031671.1).

GSTs also showed antioxidant function through their dehydroascorbate reductase and
thioltransferase activities [46]. LpGSTUs efficiently catalyze the reduction of dehydroascor-
bate to ascorbic acid. They also displayed thioltransferase activity using 2-hydroxyethyl
disulphide (2,2-dithiodiethanol) as a substrate. It is widely accepted that during oxida-
tive stress, protein thiols can undergo S-thiolation, leading to the creation of protein-thiol
disulphides. These reactions serve regulatory and/or protective roles [47].
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Table 1. Specific activity of purified LpGSTUs. The data represent the means of triplicate determina-
tions with variation less than 5% in all cases.

Substrate Special Activity (U/mg)

LpGSTU-25.1 LpGSTU-5 LpGSTU-2
CDNB (1-chloro-2.4 dinitrobenzene) 66.3 2.0 2.7

NBD-chloride (4-Chloro-7-nitrobenzofurazan) 3.9 2.5 0.6
pNBD (p-Nitrobenzyl-Chloride) 9.8 9.5 2.1

CuOOH(Cumene hydroperoxide) 1.5 4.1 0.9
Tert-butyl-hydroperoxide 0.5 0.8 0.4
HNE (Trans-2-nonenal) 7.2 20.9 0.2

2-[2,3-Dichloro-4-(2-methylidenebutanoyl)phenoxy]acetic acid
(Ethacrynic acid) 10.3 36.2 2.6

Trans-4-phenyl-3-buter-2-one 0.4 0.5 0.3
2.2-Dithiodiethanol 3.3 6.5 2.2

DHA (Dehydroascorbate) 20.5 160.2 0.8
AITC (Allyl isothiocyanate) 5.2 25.8 6.9

PEITC (Phenethyl isothiocyanate) 19.5 48.0 1.3
Fluorodifen 0.0 0.0 0.1

Bromosulphopthalein 24.5 90.9 0.0
Sulphanilamide 0.0 0.0 0.1

Isothiocyanates are organic compounds that are produced by plants in response to
various forms of stress or injury [48]. These compounds are formed through the breakdown
of glucosinolates by an enzyme called thioglucosidase, also known as myrosinase [48,49].
Recent studies have shown that GSTs play a crucial role in the metabolism of isothiocyanates
by catalyzing the conjugation of naturally occurring isothiocyanates with GSH, resulting
in the formation of dithiocarbamates [49,50]. LpGSTUs are able to catalyze the reaction
between GSH and the two model isothiocyanates, the phenethyl isothiocyanate and the
allyl isothiocyanate.

3.2. Kinetic Analysis

Steady-state kinetics analysis of LpGSTUs was conducted using, as a substrate, the
model halogenated aromatic compound CDNB. The kcat and Km parameters were measured
and the results are listed in Table 2. The study revealed that when the concentration of
GSH was varied, LpGSTU25, LpGSTU2, and LpGSTU5 obeyed Michaelis–Menten kinetics
(Figure S3a–c). The Km values for GSH fall within the range observed for other tau-class
GSTs [13,24,25,27]. When the concentration of CDNB was varied (Figure S3d–f), all but
LpGSTU5, obeyed Michaelis–Menten kinetics. The steady-state kinetic analysis of LpGSTU5
revealed a sigmoid dependence on CDNB concentration (Figure S3f). The initial velocity
data were well fitted to a rate equation for positive cooperativity between the two H-sites
and Hill coefficient (nH value) of 1.94 ± 0.1. It is well known that the kinetic behavior of
several GSTs that belong to the tau and phi classes deviates from the normal Michaelis–
Menten kinetics, obeying allosteric kinetics [27]. Previous investigations, based on x-ray
crystallography, have established that key residues that bridge the dimer interface can form
a network of interactions, allowing the intersubunit communication of H-sites [42]. The
exact biological function of the positive cooperativity observed in several tau- and phi-class
GSTs is still not fully understood [13,27,42]. However, it is thought that GSTs display
significant catalytic power in metabolizing and eliminating potential toxic compounds that
the cell may encounter. It is believed that cooperativity offers a detoxification benefit in
situations where the cell is at risk from harmful substances [42].
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Table 2. Steady-state kinetic analysis of LpGSTUs for the CDNB/GSH substrate system.

Enzyme kcat (min−1) Km (mM)
(GSH)

Km (mM)
(CDNB)

kcat/Km, (mM−1 min−1)
(GSH)

kcat/Km, (mM−1 min1)
(CDNB)

LpGSTU25 6955 ± 140.0 1.14 ± 0.12 0.28 ± 0.03 6100 ± 869.40 24,839 ± 3704
LpGSTU2 63.7 ± 1.2 0.46± 0.05 0.47 ± 0.03 138.5 ± 11.80 135.5 ± 13.60

Enzyme kcat (min−1)
Km (mM)

(GSH)
S0.5 (mM) 1

(CDNB)
kcat/Km (mM−1 min−1)

(GSH)
kcat/S0.5 (mM−1 min1)

(CDNB)

LpGSTU5 78.4 ± 9.9 0.57 ± 0.03 0.10 ± 0.04 137.5 ± 10.20 784 ± 67.30
1 The Hill coefficient determined nH = 1.94 ± 0.10.

3.3. The Effect of Viscosity on Kcat

The effect of viscosity on kcat was studied to shine light on the rate-limited step of the
catalytic reaction. Previous investigations have shown that in the majority of GSTs, the rate-
limited step is relevant to product release or to the diffusion-controlled structural transitions
of the protein [51–53]. When the product release is restricted by a strictly diffusional
barrier, the inverse relative rate constant, k0

cat/kcat (k0
cat is determined at viscosity η0),

when plotted against the relative viscosity, η/η0, is linear with a slope approaching unity.
However, if the product release is restricted by chemistry or another non-diffusional barrier,
the slope will be nearly zero [51–53]. As shown in Figure 2a for the wild-type enzyme,
when the medium viscosity is increased, the kcat is decreasing with a slope of 0.61 ± 0.060,
suggesting that diffusion-controlled structural rearrangements of the protein determine the
rate-limiting step.
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Figure 2. The impact of viscosity on kcat for the CDNB/GSH reaction catalyzed by LpGSTU25 and
the mutant enzymes Phe215Ser and Phe215Lys. Plots of k0

cat/kcat as a function of η/η0 with glycerol
as cosolvent for the wild-type (a), and for the Phe215Ser (b) and Phe215Lys (c) mutant enzymes,
are shown.

3.4. The Role of Phe215 in Xenobiotic Substrate Binding and Catalysis

Among the three isoenzymes, LpGSTU25 displays the highest catalytic activity to-
wards the synthetic halogenated aromatic compounds (e.g., CDNB) compared to the other
two isoenzymes. Therefore, LpGSTU25 was selected for further structure–function studies.
The prediction of the 3D structure of LpGSTU25 was achieved using the AlphaFold [31]
algorithm (Figure 3). The substrates binding sites (G-site and H-site) of LpGSTU25 form a
large open cleft (Figure 3a,b) and exhibit a high degree of sequence identity with LpGSTU2
and LpGSTU5 (Figures 1a and 3c). Structural analysis of LpGSTU25 revealed that the
non-conserved residue Phe215 (replaced by His in LpGSTU2 and LpGSTU5, Figure 1a) is
positioned towards the ligand binding site (Figure 3b,c), suggesting its potential role in
substrate binding and/or catalysis. This amino acid residue is situated at the end of the
C-terminal α-helix H9 (Figure 1a). This helix has been extensively studied in other GSTs
and its structural and functional significance is well established [13]. Phe215 is involved
in an extensive interaction network with the H-site residue Tyr207 and other residues
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that stabilize the N-terminal region (Figure 3d). The N-terminal region accommodates
important residues (Trp16, Phe15, Val17) that play roles on G- and H-site formation, in-
cluding the catalytic residue Ser18 (Figure 3d). The other non-conserved residue at the
C-terminal α-helix H9 is Gln221, which has been substituted for Lys in LpGSTU2 and
LpGSTU5. Gln221 lies outside the H-site and faces towards the solvent, indicating a limited
functional/catalytic role.
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The figure was created using the program UCSF Chimera 1.16. [36]. (b) Ribbon representation of 
LpGSTU25 dimer. The spheres representing the bound GSH have been colored based on the atom 
type. Phe215 is depicted and colored green. The figure was created by PyMOL [37]. (c) LpGSTU25 
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Figure 3. (a) Surface representation of LpGSTU25. Each subunit is displayed in a distinct color
(red–blue). The ball-and-stick representation displays the bound GSH, colored based on the atom
type. The figure was created using the program UCSF Chimera 1.16. [36]. (b) Ribbon representation
of LpGSTU25 dimer. The spheres representing the bound GSH have been colored based on the atom
type. Phe215 is depicted and colored green. The figure was created by PyMOL [37]. (c) LpGSTU25
model in PyMOL ‘Sausage’ representation, with tube rendering where the radius represents the
average RMS deviation per residue between Cα pairs. The tube is tinted based on the degree of
sequence preservation, ranging from white (lower score) to red (matching identity). Phe215 is shown
in a stick representation and has been colored green. The analysis was created by ENDscript [34]
and the figure was created by PyMOL [37]. (d) Network of interactions between Phe215 (red), Trp16
(yellow), Val17 (turquoise), Ser18 (black), and Tyr207 (Blue). The bound GSH is displayed in a stick
representation with a magenta color.
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Site-saturation mutagenesis was employed to investigate the role of Phe215. A library
of mutant enzymes was created and expressed in E. coli BL21(DE3). An activity screening
of the Phe215 mutant library was conducted, allowing the selection of eight clones with the
highest activity. Sequence analysis of the mutant clones revealed that the residue at position
215 was mutated to Ser, Val, His, Lys, Leu, Arg, Thr, and Tyr. The resulting mutant enzymes
were expressed in E.coli BL21(DE3), purified by affinity chromatography, and subjected
to steady-state kinetic analysis using the substrates CDNB and GSH. The obtained data
(Table 3) revealed moderate alterations in the Km values of the mutant enzymes towards
CDNB and GSH. On the other hand, the effect of mutations on kcat values appeared to be
substantial (6–10-times reduction) when compared to the wild-type enzyme (Table 3). The
large effect of the mutations on the kcat indicated the contribution of Phe215 on the rate-
limiting step. Examining the effect of viscosity on the activity of two mutants, Phe215Ser
and Phe215Lys, revealed a linear relationship with slopes 0.67 ± 0.06 and 0.36 ± 0.04,
respectively (Figure 2b,c). The slopes obtained for the mutant enzymes were considerably
altered compared to that of the wild-type enzyme (0.61 ± 0.06). This observation suggests
that the mutations at the 215 position affects the rate-limiting step of the catalytic reaction.
Previous investigations had established that two regions of particular importance that
affect the rate-limiting step in GSTs are α-helix 2 and the C-terminal α-helix 9 [51–53].

Table 3. Steady-state kinetic parameters of the wild-type LpGSTU25 and its mutants for the CDNB
conjugation reaction.

kcat (min−1) Km (mM) (GSH) Km (mM) (CDNB)
kcat/Km

(mM−1 min−1)
(GSH)

kcat/Km
(mM−1 min−1)

(CDNB)

LpGSTU25 6955 ± 140.0 1.14 ± 0.12 0.28 ± 0.03 6100 ± 869.4 24,839 ± 3704.0
Phe215Thr 1650 ± 27.4 1.43 ± 0.16 0.31 ± 0.03 1153 ± 10.0 5322 ± 565.0
Phe215Val 460 ± 7.5 1.39 ± 0.13 0.29 ± 0.02 331 ± 3.1 1586 ± 150.0
Phe215Ser 364 ± 6.7 1.68 ± 0.14 0.33 ± 0.03 1103 ± 12.0 1103 ± 133.0
Phe215Leu 3.26 ± 1.1 1.35 ± 0.12 0.25 ± 0.02 2.4 ± 0.2 13.1 ± 1.2
Phe215Arg 468 ± 6.7 1.06 ± 0.17 0.92 ± 0.32 442 ± 0.3 509 ± 189.0
Phe215Tyr 2760 ± 114.0 1.03 ± 0.04 0.91 ± 0.12 2679 ± 182.0 3032 ± 585.6
Phe215Lys 1000 ± 34.4 1.98 ± 0.30 0.77 ± 0.07 505 ± 34.0 1298 ± 179.9
Phe215His 358 ± 11.8 1.41 ± 0.23 0.68 ± 0.08 254 ± 19.0 527 ± 89.3

3.5. Effect of Mutations on Structural Stability

The melting temperature (Tm) of the enzymes was determined through thermal de-
naturation experiments. This analysis allowed the rapid assessment of the mutations on
protein stability. The Tm values obtained are summarized in Table 4. The results indi-
cated that four point mutations (Phe215His, Phe215Ser, Phe215Arg, and Phe215Lys) had
a significant stabilizing effect on the enzyme. Conversely, the mutations Phe215Val and
Phe215Leu led to a considerable decrease in protein stability compared to the wild-type
enzyme. On the other hand, the mutations Phe215Thr and Phe215Tyr had a minimal
effect on the enzyme’s stability. Interestingly, the mutant Phe215His showed a substantial
increase in thermal stability (Figure 4a,b). To confirm this finding, the analysis of the
kinetics of thermal inactivation of the wild-type along with that of Phe215His was carried
out at a temperature equivalent to the Tm of each enzyme (55 ◦C and 58 ◦C, respectively;
see Table 4). As shown in Figure 4b, the inactivation reaction for the wild-type enzyme
proceeded in two distinct phases: an initial fast phase of inactivation and a slow phase.
A biphasic model was the best fit for the inactivation kinetics. As illustrated with the
wild-type enzyme, the relationship between the remaining activities and heating time can
be accurately described by the combination of two exponential terms. Several enzymes
display biphasic inactivation kinetics, which is markedly different from first-order kinetics.
The inactivation rate constants (min−1) were calculated for the fast and slow phase of inac-
tivation and the results along with the half-life values are listed in Table 5. The inactivation
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reaction for the Phe215His mutant enzyme showed a one-phase decay, indicating that the
thermal inactivation mechanism of the mutant enzyme had been significantly affected by
the mutation. Notably, the mutant enzymes with positive charged residues (Arg, Lys, His)
at position 215 displayed enhanced Tm values and therefore thermostability. All these
results suggest that position 215 is a significant structural determinant of thermal stability.

Table 4. Melting temperatures of wild-type LpGSTU25 and its mutant enzymes as determined by
thermal denaturation experiments.

Enzyme Tm (◦C)

LpGSTU25 54.1 ± 1.5
Phe215Val 50.3 ± 1.7
Phe215His 58.9 ± 1.6
Phe215Thr 54.9 ± 0.9
Phe215Ser 57.5 ± 0.9
Phe215Leu 51.8 ± 0.6
Phe215Lys 57.0 ± 0.9
Phe215Arg 56.3 ± 0.8
Phe215Tyr 54.8 ± 0.4
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Figure 4. Thermal inactivation of LpGSTU25 (a) and Phe215His mutant enzyme (c). The residual
activities were measured after heat treatment of enzymes at different temperatures (◦C) for 10 min.
The course of thermal inactivation of LpGSTU25 (b) and Phe215His mutant enzyme (d) determined
at the Tm of each enzyme (see Table 4) are shown.

Table 5. Inactivation rate constants and half-life values for the melting temperatures of wild-type
LpGSTU25 and Phe215His mutant enzyme.

Enzyme
Inactivation Rate Constants

(min−1)
Half-Life

(min)

Fast Phase Slow Phase Fast Phase Slow Phase

LpGSTU25 0.231 0.004 3.0 171.5

Phe215His 0.075 − 9.3 −
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4. Conclusions

GSTs play a significant role in determining herbicide selectivity in crops and weeds
such as L. perenne. The characterization of herbicide-metabolizing enzymes contributes
significantly in weed management and control. In the present work, three homologue GSTs
from L. perenne that belong to the tau class were characterized. LpGSTUs display a high
amino acid sequence identity (96–98% homology), providing an excellent opportunity for
studying structure–function relationships. LpGSTUs show broad substrate specificity and
high activity against xenobiotics and oxidative stress by-products, suggesting a prooxidant
protective function that is likely related to the minimization of oxidative damage and cell
detoxification [54,55]. Structural studies complemented with site-saturation mutagenesis
revealed that the amino acid residue at position 215 is a key structural determinant that
affects substrate affinity, catalysis, and thermostability. The results of the present work
shed light on the catalytic and functional role of the three members of the GST family
from L. perenne, a key agricultural grass weed. The comparative analysis of the catalytic
and functional properties of LpGSTUs provided new crucial information on the enzymes’
structure–function relationships and evolution. The results of the work have improved our
understanding of the GST family in L. perenne, key enzymes that can affect sustainable food
production and safety.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/foods13223584/s1, Figure S1: Multiple-sequence alignments of eight
GST sequences from L. species, identified by BLAST search using as a query either of the LpGSTU
sequences; Figure S2: SDS-PAGE analysis of purified LpGSTU25, LpGSTU2, and LpGSTU5; Figure S3:
Kinetic analysis of LpGSTU25, LpGSTU2, and LpGSTU5 using GSH and CDNB as substrates.
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