

Article Enzymatic Oxidation of Aflatoxin M₁ in Milk Using CotA Laccase

Yongpeng Guo¹, Hao Lv¹, Zhiyong Rao¹, Zhixiang Wang^{1,*}, Wei Zhang¹, Yu Tang² and Lihong Zhao^{2,*}

- ¹ College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; guoyp@henau.edu.cn (Y.G.); lcxhau@163.com (H.L.); rzyhau@163.com (Z.R.); weizhang@henau.edu.cn (W.Z.)
- ² College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; m17801115235@163.com
- * Correspondence: wzxhau@henau.edu.cn (Z.W.); zhaolihongcau@cau.edu.cn (L.Z.)

Abstract: Aflatoxin M_1 (AFM₁) in milk poses a significant threat to human health. This study examined the capacity of *Bacillus licheniformis* CotA laccase to oxidize AFM₁. The optimal conditions for the CotA laccase-catalyzed AFM₁ oxidation were observed at pH 8.0 and 70 °C, achieving an AFM₁ oxidation rate of 86% in 30 min. The Km and Vmax values for CotA laccase with respect to AFM₁ were 18.91 µg mL⁻¹ and 9.968 µg min⁻¹ mg⁻¹, respectively. Computational analysis suggested that AFM₁ interacted with CotA laccase via hydrogen bonding and van der Waals interactions. Moreover, the oxidation products of AFM₁ mediated by CotA laccase were identified as the C3-hydroxy derivatives of AFM₁ by HPLC-FLD and UPLC-TOF/MS. Toxicological assessment revealed that the hepatotoxicity of AFM₁ was substantially reduced following oxidation by CotA laccase. The efficacy of CotA laccase in removing AFM₁ in milk was further tested, and the result showed that the enzyme agent achieved an AFM₁ removal rate of 83.5% in skim milk and 65.1% in whole milk. These findings suggested that CotA laccase was a novel AFM₁ oxidase capable of eliminating AFM₁ in milk. More effort is still needed to improve the AFM₁ oxidase activity of CotA laccase in order to shorten the processing time when applying the enzyme in the milk industry.

Keywords: aflatoxin M1; CotA laccase; oxidation; milk

1. Introduction

Milk is commonly recognized as a fundamental food product that provides a comprehensive range of readily accessible and bioavailable nutrients crucial for human growth, development, and health maintenance. Moreover, the consumption of milk products is correlated with a decreased risk of cardiovascular diseases, notably stroke [1]. However, the food hygiene of milk products is often compromised by aflatoxin M_1 (AFM₁), which has been a great concern for consumers. AFM₁, known as a milk toxin, is the hydroxylated form of aflatoxin B_1 (AFB₁), which is generated by the hepatic mitochondrial cytochrome P450 enzymes and excreted in the milk, feces, and urine of lactating animals after the consumption of an AFB₁-contaminated diet. AFM₁ appears in dairy cow milk within 12 h of the first AFB₁ administration and clears from milk after a 72 h AFB₁ withdrawal period [2,3]. The carry-over rate of dietary AFB₁ to milk AFM₁ in dairy cattle ranges between 0.3 and 6.2% depending on the health conditions, milk yield, feed type, and level of contamination [4]. AFM₁ remains stable during various milk processing methods, including sterilization, pasteurization, and fermentation, and its presence has been documented throughout the entire dairy supply chain, encompassing products such as milk powder, cheese, and yogurt [5]. The prevalence of AFM₁ in milk poses significant health risks, particularly for vulnerable populations such as infants and the elderly, who may be more susceptible to its harmful effects. Although AFM₁ has been found to be 10-fold less carcinogenic than AFB₁, IARC continues to classify it as a class 1 carcinogen [6]. Given the potential health risks of AFM₁, over 60 countries have developed guidelines for the maximum residue level of milk AFM₁. Among these, 34 countries, including China, have set the limit at 0.5 μ g L⁻¹ in fluid milk.

Citation: Guo, Y.; Lv, H.; Rao, Z.; Wang, Z.; Zhang, W.; Tang, Y.; Zhao, L. Enzymatic Oxidation of Aflatoxin M₁ in Milk Using CotA Laccase. *Foods* **2024**, *13*, 3702. https://doi.org/ 10.3390/foods13223702

Academic Editor: Leili Afsah-Hejri

Received: 22 October 2024 Revised: 15 November 2024 Accepted: 15 November 2024 Published: 20 November 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). In contrast, the European Union has adopted a more stringent maximum level at 0.05 μ g L⁻¹ for AFM₁ in raw milk and milk intended for the production of dairy products.

The development of efficient and environmentally sustainable methods to reduce AFM₁ contamination in milk is urgently needed. Milk contamination can be reduced either indirectly, by preventing dairy animals' dietary exposure to AFB₁, or directly, by eliminating AFM₁ from contaminated milk. The implementation of good agricultural practices (GAPs), such as crop rotation, soil management, insect damage control, the selection of fungalresistant crop varieties, and timely harvesting, is helpful for the inhibition of mold infection and AFB₁ generation [7]. Unfortunately, these pre-harvest prevention strategies are not consistently sufficient to produce AFB₁-free crops. To mitigate the carry-over of feedderived AFB₁ to milk AFM₁, dairy farming commonly employs organic and inorganic adsorbents like yeast cell wall extracts [8], calcium montmorillonite clay [9], and hydrated sodium calcium aluminosilicates [10], which can bind AFB₁ within the gastrointestinal tract of animals. Moreover, several reports documenting the capacity of yeasts and lactic acid bacteria to bind AFM₁ in contaminated milk are available [11–13]. Despite favorable outcomes of microbial cells in milk AFM₁ elimination, the commercialization of adsorptionassociated technologies still has limitations, like the instability of microbial cell-AFM₁ complexes, the increase in microbial loads, and the loss of nutritional value [14].

In recent years, research emphasis has gradually shifted toward the microbial and enzymatic degradation of aflatoxins in food commodities, which transforms aflatoxins into less harmful metabolites, while preserving the palatability and nutritional value of food and feed. A number of AFB1-degrading fungal and bacterial strains have been identified, including *Pleurotus eryngii* [15], *Ganoderma sinense* [16], *Myroides odoratimimus* [17], Pseudomonas aeruginosa [18], Cellulosimicrobium funkei [19], and Bacillus licheniformis [20]. Several studies have also documented that AFB₁ can be degraded by laccase [21,22], peroxidase [23,24], dipeptidyl peptidase [25], and F₄₂₀H₂-dependent reductase [26]. However, the capacity and application potential of these microorganisms and enzymes for degrading AFM₁ have been rarely studied. In this study, we expanded upon previous findings that demonstrated the capacity of CotA laccase to directly oxidize AFB₁ without the need for redox mediators, resulting in the formation of aflatoxin Q_1 and epi-aflatoxin Q_1 [22]. We further investigated the enzymatic characteristics of CotA laccase in oxidizing AFM₁. CotA laccase-mediated AFM₁ oxidation products were identified. Additionally, we evaluated the toxicity of AFM_1 oxidation products using hepatocytes L-02. The interaction between CotA laccase and AFM₁ was investigated by molecular docking simulation. Furthermore, the efficacy of CotA laccase in removing AFM_1 in both skim milk and whole milk was evaluated for the first time. This work is expected to contribute to the advancement of enzyme-based strategies to mitigate AFM₁ contamination in milk products.

2. Materials and Methods

2.1. Materials and Reagents

CotA laccase was expressed and purified from *Escherichia coli* Rossta (DE3) bearing recombinant expression vector pET31b-CotA as described previously [22]. AFM₁ was purchased from Sigma-Aldrich (Shanghai, China). AFM₁ immune-affinity columns were obtained from Clover Technology Group, Inc. (Beijing, China). Ultrahigh-temperature-treated (UHT) whole milk and skim milk were purchased from a local supermarket.

2.2. Enzymatic Characteristics of CotA Laccase for Oxidizing AFM₁

The enzymatic characteristics of CotA laccase in the oxidation of AFM₁ were characterized. To assess the impact of pH on AFM₁ oxidation, a reaction mixture comprising 1 μ g mL⁻¹ of AFM₁ and 0.1 U mL⁻¹ of CotA laccase was incubated at 37 °C across a range of pH conditions (pH 4.0 to 9.0) for 12 h. The impact of temperature on AFM₁ oxidation was assessed by incubating 1 μ g mL⁻¹ of AFM₁ with 0.1 U mL⁻¹ of CotA laccase across a temperature range of 30 to 80 °C for 30 min. Additionally, the influence of metal ions on CotA laccase-mediated AFM₁ oxidation was evaluated by pre-incubating 0.5 U mL⁻¹

of CotA laccase with 10 mM of different metal ions at 37 °C and pH 7.0 for 10 min. Subsequently, AFM₁ (1 µg mL⁻¹) was introduced, and the mixture was incubated at 37 °C for an additional 30 min. The Michaelis–Menten kinetics of CotA laccase-mediated AFM₁ oxidation was analyzed at 37 °C and pH 7.0. Initial reaction velocities were determined by quantifying the reduction in AFM₁ concentration in 30 min following the introduction of 0.1 U mL⁻¹ of CotA laccase. The experimental data were fitted to the Michaelis–Menten equation to derive the K_m and V_{max} values with Graphpad Prism 7.0.

2.3. AFM₁ Concentration Determination by HPLC

Chromatographic analysis was conducted utilizing a high-performance liquid chromatography (HPLC) system (Shimadzu LC-10 AT, Shimadzu, Tokyo, Japan), which was equipped with a post-column photochemical derivatization unit and an RF-20A fluorescence detector (Shimadzu, Tokyo, Japan). The separation process employed an isocratic method using a reverse-phase column (DIKMA, C18, 5 μ m, 150 \times 4.6 mm). The mobile phase consisted of acetonitrile, methanol, and water in a volumetric ratio of 24:8:68. The excitation and emission wavelengths were set at 365 nm and 435 nm, respectively. The flow rate was maintained at 1.0 mL min⁻¹, and the injection volume was 20 μ L.

2.4. UPLC-TOF/MS Analysis of CotA Laccase-Mediated AFM1 Oxidation Products

UPLC-TOF/MS was applied to identify CotA laccase-mediated AFM₁ oxidation products. Chromatographic separation was performed using an Acquity UPLC BEH C18 column (1.7 µm, 2.1 × 100 mm) (Waters, Milford, MA, USA). The mobile phase, delivered at a flow rate of 0.3 mL min⁻¹, comprised a binary solvent system of water and methanol. The elution gradient was as follows: 0–10 min, 5% to 50% methanol; 10–11 min, 50% to 95% methanol; 11–13 min, 95% methanol; and 13–15 min, 95% to 5% methanol. The sample injection volume was set at 2 µL. Mass spectral data were acquired using a Waters Xevo G2-XS QTOF mass spectrometer (Waters, Milford, MA, USA). The TOF-MS was conducted in ESI positive mode. The mass spectrometry parameters were set as follows: ion source temperature at 350 °C, nitrogen gas flow rate at 10 L min⁻¹, capillary voltage at 3000 V, and scan range from m/z 50 to 1000.

2.5. Homology Modeling and Molecular Docking

The three-dimensional structure of *B. licheniformis* ANSB821 CotA laccase was constructed with the X-ray crystal structure of *B. subtilis* 168 CotA laccase (PDB entry 2WSD) [27] as a template with the SWISS-MODEL sever. The three-dimensional structure of AFM₁ was generated using ChemBioDraw 2014. Molecular docking was conducted using MOE Dock in MOE v2014.0901. The docking procedure adhered to the "induced fit" protocol, which permitted the side chains of the receptor pocket to adjust in response to ligand conformations, while maintaining a positional constraint.

2.6. Cytotoxicity Evaluation of AFM₁ Oxidation Products

Human fetal hepatocyte cell line L-02 obtained from Tongpai Biotechnology Co., Ltd. (Shanghai, China) was cultured in Dulbecco's Modified Eagle's Medium (DMEM) containing 10% fetal bovine serum and 100 U mL⁻¹ of penicillin and streptomycin. Cell viability was assessed using a CCK-8 assay kit (Biosharp, Beijing, China). L-02 cells were inoculated in a 96-well plate (1×10^4 cells each well), and treated with 100 μ M of AFM₁ and CotA laccase-catalyzed AFM₁ oxidation products for 24 h. Afterwards, 10 μ L of CCK-8 reagent was introduced into each well, followed by incubation at 37 °C for 1 h. The absorbance value at 450 nm was taken with a microplate reader to assess cell viability. The extracellular lactate dehydrogenase (LDH) activity and cell apoptosis rate of L-02 cells were also measured after exposure to 100 μ M of AFM₁ and CotA laccase-catalyzed AFM₁ oxidation products for 24 h. LDH activity was determined using a commercially available kit (Biosharp, Beijing, China). The rate of cellular apoptosis was assessed utilizing the Annexin V-fluorescein isothiocyanate (FITC) Apoptosis Detection Kit (Uelandy, Suzhou, China).

2.7. Performance of CotA Laccase in Degrading AFM₁ in Milk

The experiments regarding the elimination of AFM_1 in whole milk and skim milk by CotA laccase were carried out in 100 mL conical flasks. Milk samples were spiked with AFM₁ at a concentration of 2.0 ng mL⁻¹. To study the effect of the amount of CotA laccase on AFM1 oxidation, CotA laccase was added to 20 mL of spiked milk to reach a final concentration ranging from 0.1 to 2.0 U mL $^{-1}$. The control was prepared with sodium phosphate buffer in place of CotA laccase. The samples were incubated at 37 °C for 12 h in a water bath. The effect of incubation time on AFM_1 oxidation was determined at 3, 6, 12, 18, and 24 h, respectively, with 1.0 U mL⁻¹ of CotA laccase at 37 °C. All experiments were repeated three times. The concentration of AFM_1 in milk was measured with HPLC. Briefly, the milk samples were centrifuged at 6000 rpm for 20 min. Then, 10 mL of supernatant was collected and applied to an AFM₁ immune-affinity column at a steady flow rate of 1 mL min⁻¹. The column was washed twice with 10 mL of ultrapure water. AFM₁ was eluted from the column with 2 mL of methanol. The eluent was evaporated to dryness at 40 °C under a N₂ stream and reconstituted in 1 mL of ultrapure water before loading in the HPLC system. Validation parameters for the determination of AFM₁ concentration in milk with the HPLC-FLD method are summarized in Table S1.

3. Results and Discussion

3.1. Enzymatic Properties of CotA Laccase for Oxidizing AFM₁

Laccases, a class of multicopper oxidases, possess the ability to oxidize a diverse array of aromatic compounds [28]. Due to their versatility, stability, and broad substrate specificity, numerous applications of laccases have been developed within the food industry over recent decades, including roles in baking, fruit juice clarification, wine and beer stabilization, and sugar beet pectin gelation [29]. Our previous study found that CotA laccase could serve as a novel aflatoxin oxidase [22].

In the current study, we further characterized the enzymatic properties and kinetics of CotA laccase in the oxidation of AFM₁. The influence of pH, temperature, and metal ions on CotA laccase-catalyzed AFM₁ oxidation was initially examined. The optimal pH range for CotA laccase in oxidizing AFM₁ was observed at pH 7.0 to 9.0, with the oxidation rate remaining above 86%, and the highest AFM₁ oxidation rate of 94% was obtained at pH 8.0 (Figure 1A). The substrate-dependent optimal pH is a characteristic feature of laccases. Previously, the optimal pH values for B. licheniformis CotA laccase in the oxidation of 2, 2'-Azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), syringaldazine, 2,6-dimethoxyphenol, and AFB₁ were determined to be 4.2, 6.8, 7.2, and 8.0, respectively [22]. Therefore, it is essential to determine the optimal pH for the oxidation of various substrates using CotA laccase. The effect of temperature on the oxidation of AFM₁ by CotA laccase is illustrated in Figure 1B. The oxidation rate of AFM₁ increased from 22% to 86% as the temperature rose from 30 $^{\circ}$ C to 70 $^{\circ}$ C, and then dropped to 60% at 80 $^{\circ}$ C. This observation aligns with the known characteristics of Bacillus CotA laccases, which are recognized as thermophilic enzymes with optimal activity within a temperature range of 50 °C to 70 °C [30]. The influence of various metal ions on the CotA laccase-mediated oxidation of AFM₁ was examined, as depicted in Figure 1C. The presence of K⁺, Li⁺, and Ba^{2+} exhibited minimal impact on AFM₁ oxidation by CotA laccase, whereas Mn²⁺ and Ca^{2+} at 10 mM caused a more than 15% reduction in the AFM₁ oxidation rate. Moreover, Cu²⁺, Zn²⁺, Co²⁺, and Ni²⁺ could strongly inhibit the AFM₁-oxidizing activity of CotA laccase. Indeed, the inhibitory effects of Cu^{2+} , Zn^{2+} , Co^{2+} , and Ni^{2+} are commonly observed in laccases, potentially due to their interaction with the electron transport system of the enzymes [31,32].

Figure 1. Enzymatic properties and kinetics of CotA laccase-mediated AFM₁ oxidation. Effect of pH (**A**), temperature (**B**), and metal ions (**C**) on CotA laccase-mediated AFM₁ oxidation. (**D**) Michaelis-Menten plot of CotA laccase-catalyzed AFM₁ oxidation.

The kinetic parameters of CotA laccase with respect to AFM₁ were determined by fitting the experimental data to the Michaelis–Menten plot (Figure 1D). The coefficient of determination (\mathbb{R}^2) was 0.9897, indicating an excellent fit of the model to the data. The $K_{\rm m}$ and $V_{\rm max}$ values were calculated to be 18.91 µg mL⁻¹ and 9.968 µg min⁻¹ mg⁻¹, respectively. This strong correlation of the Michaelis–Menten model further implies that AFM₁ is a novel substrate of CotA laccase.

3.2. Identification of CotA Laccase-Mediated AFM₁ Oxidation Products

CotA laccase-mediated AFM₁ oxidation products in sodium phosphate buffer were characterized by HPLC-FLD and UPLC-TOF/MS analysis. The oxidation of AFM₁ resulted in the formation of two products with retention times earlier than that of AFM₁ (Figure 2A). The oxidation products were further characterized by MS analysis, as shown in Figure 2B and Figure S1. The two products showed the same molecular ion peak at m/z 345.03 ([M + H]⁺), m/z 367.01 ([M + Na]⁺) and m/z 382.98 ([M + K]⁺), corresponding to the formula of C₁₇H₁₂O₈, which suggested the addition of a single oxygen to AFM₁ (C₁₇H₁₂O₇). Aflatoxins can be degraded by several mechanisms, such as epoxidation, hydroxylation, dehydrogenation, and reduction. Research by Loi et al. [21] suggested that treating aflatoxins with Lac2 laccase led to cleavage of the lactone ring, whereas Alberts et al. [33] found that pure laccase of *T. versicolor* changed the double bond of the furan ring. Moreover, Liu et al. [34] reported that both the furan ring and lactone ring were abolished after treatment by *Bacillus pumilus* superoxide dismutase.

Our previous study confirmed that CotA laccase catalyzed the C3-hydroxylation of AFB₁, leading to the formation of a pair of epimers, AFQ₁ and epi-AFQ₁ [22]. Based on HPLC-FLD and UPLC-TOF/MS analysis in this study, the same degradation pathway was proposed for AFM₁, as shown in Figure 2C. The two transformation products were named aflatoxin N₁ (AFN₁, 3S) and epi-aflatoxin N₁ (epi-AFN₁, 3*R*). Further study is necessary to confirm their chemical structures using nuclear magnetic resonance spectroscopy.

Figure 2. Identification of CotA laccase-mediated AFM_1 oxidation products. (**A**) HPLC chromatograms of AFM_1 and CotA laccase-mediated AFM_1 oxidation products. (**B**) Mass spectra analysis of AFM_1 and CotA laccase-mediated AFM_1 oxidation products. (**C**) The reaction scheme for AFM_1 oxidation by CotA laccase.

3.3. Interaction of AFM₁ with CotA Laccase by Molecular Docking

A docking simulation study was conducted to examine the interaction of AFM_1 with CotA laccase. The docking score for the binding mode of AFM₁ with CotA laccase was calculated to be -5.50 kcal mol⁻¹ (Figure 3). The binding free energy was negative, reflecting that AFM₁ oxidation by CotA laccase was spontaneous. The main interaction observed between AFM₁ and CotA laccase was hydrogen bonding. Specifically, the two carbonyl oxygen atoms of the lactone group in AFM₁, acting as hydrogen bond acceptors, formed hydrogen bonds with the backbone of Gly321 and Gly322, respectively. Additionally, AFM₁ provided good van der Waals interaction with Ile260, Ile318, Cys320, and Ile417. Liu et al. [35] also reported that hydrogen bonding was the primary driving force for the binding between aflatoxins (AFB₁, AFB₂, AFG₁, and AFG₂) and *Trametes* sp. C30 laccase. The in silico investigation conducted by Dellafiora et al. [36] indicated distinct binding configurations of AFB₁ and AFM₁ within the catalytic sites of laccases derived from *Trametes versicolor*. The hydroxyl group on the difuran moiety of AFM₁ enabled a more profound penetration into the catalytic pocket of *T. versicolor* laccases, attributed to the establishment of an additional hydrogen bond within the AFM₁–laccase complex. However, we found that the simulated binding model of AFM₁ to CotA laccase was the same as the AFB₁-CotA interaction model [22], which was in agreement with the finding in this study that AFB_1 and AFM₁ underwent same molecular modification by CotA laccase.

3.4. Hepatotoxicity Evaluation of AFM₁ Oxidation Products

The liver, being the main organ for mycotoxin metabolism, is primarily impacted by AFM₁ toxicity. A previous study has documented that AFM₁ exposure results in liver damage, characterized by poor cytoplasmic integrity, inflammatory infiltration, sinusoidal dilation, and nuclear irregularities [37]. Thus, this study assessed the cytotoxicity of AFM₁ oxidation products using hepatocytes L-02. As shown in Figure 4A, the viability reduced remarkably following exposure to 100 μ M of AFM₁ for 24 h. Conversely, treatment with 100 μ M of CotA laccase-mediated AFM₁ oxidation products did not notably impact cell viability. The detrimental impact of AFM₁ on L-02 cells was corroborated by a notable increase in the extracellular LDH activity of the AFM₁ group (Figure 4B). LDH, a cytoplasmic

enzyme, is rapidly released into the culture medium upon cytomembrane leakage, serving as an indicator of cell damage. Consistent with the result of cell viability, no significant difference was observed in extracellular LDH activity between the group treated with AFM₁ oxidation products and the control group. Furthermore, flow cytometry analysis indicated a significant increase in cell apoptosis rate in the AFM₁ group compared to the control, whereas the AFM₁ oxidation products did not induce cell apoptosis (Figure 4C,D). Collectively, these findings suggest that the CotA laccase-mediated oxidation of AFM₁ effectively detoxifies its hepatotoxic effects.

Figure 3. Molecular docking analysis of AFM_1 with CotA laccase. (**A**) The two-dimensional interaction model of AFM_1 with CotA laccase. (**B**) The three-dimensional interaction model of AFM_1 with CotA laccase.

Figure 4. Evaluation of the cytotoxic effects of AFM₁ and its oxidation products. (**A**) Viability of L-02 cells following exposure to 100 μ M of AFM₁ and CotA laccase-catalyzed AFM₁ oxidation products. (**B**) LDH activity. (**C**,**D**) Apoptosis rate of L-02 cells. Different letters denote statistically significant differences between groups (*p* < 0.05).

3.5. Performance of CotA Laccase to Degrade AFM₁ in Milk

The performance of CotA laccase to eliminate AFM_1 in milk was further investigated. Whole milk and skim milk spiked with AFM_1 at a concentration of 2 ng mL⁻¹ were subjected to treatment with CotA laccase. The impact of the amount of CotA laccase on AFM_1 elimination is shown in Figure 5A. The AFM_1 removal percentage increased with the increase in CotA laccase from 0.1 to 2.0 U mL⁻¹, and the maximum removal rates were 83.5% and 65.1% for skim milk and whole milk, respectively.

Figure 5. Elimination of AFM_1 in milk by CotA laccase. Effect of CotA laccase amount (**A**) and incubation time (**B**) on AFM_1 degradation rate in skim milk and whole milk.

As summarized in Table 1, several research efforts have been dedicated to the enzymatic elimination of AFM₁ in milk. Marimón Sibaja et al. [38] reported that commercial horseradish peroxidase (HRP) could reduce AFM₁ content in UTH milk by 65.0%. Kerstner et al. [39] used crude extract of peroxidase from rice bran to eliminate AFM₁ in milk and achieved the removal percentage of 71.2%. However, H₂O₂ was required for the oxidation of AFM₁ by peroxidases. With respect to large-scale milk processing, CotA laccase has the advantage of directly oxidizing AFM₁ by using O₂ as an electron acceptor. The food matrix can exert a significant influence on the performance of enzymes in food processing. The AFM₁ elimination efficiency of CotA laccase was significantly reduced by fat and fat-soluble vitamins in whole milk.

Enzyme	Origin	Reaction Conditions	Elimination Rate	Reference
HRP	Amoracia rusticana	0.015 U mL ⁻¹ HRP, 0.08% H ₂ O ₂ , 5 ng mL ⁻¹ AFM ₁ , 30 °C for 8 h	65.0%	[38]
RBP	Rice bran	0.015 U mL ⁻¹ HRP, 0.08% H ₂ O ₂ , 5 ng mL ⁻¹ AFM ₁ , 4 °C for 24 h	71.2%	[39]
SOD	Bacillus pumilus	1 U mL ⁻¹ SOD, 2 μ g mL ⁻¹ AFM ₁ , 40 °C for 24 h	26.0%	[34]
CAT	Bacillus pumilus	1 U mL $^{-1}$ CAT, 2 μg mL $^{-1}$ AFM $_1$, 40 $^\circ C$ for 12 h	47.2%	[40]
POD1	Bacillus pumilus	1 U mL ⁻¹ POD1, 2 μ g mL ⁻¹ AFM ₁ , 35 °C for 12 h	22.4%	[41]
POD2	Bacillus pumilus	1 U mL ⁻¹ POD2, 2 μ g mL ⁻¹ AFM ₁ , 35 °C for 12 h	25.6%	
POD3	Bacillus pumilus	1 U mL ⁻¹ POD3, 2 μg mL ⁻¹ AFM ₁ , 35 °C for 24 h	24.3%	
Lac	Trametes versicolor	20 mg mL ^{-1} Lac, 0.5 ng mL ^{-1} AFM1, 25 °C for 80 min	32.0%	[42]
CotA	Bacillus licheniformis	2 U mL ⁻¹ CotA, 2 ng mL ⁻¹ AFM ₁ , 37 °C for 12 h	83.5% for skim milk; 65.1% for whole milk	This study

Table 1. Summary of enzymatic elimination of AFM₁ in milk.

The impact of incubation time on the elimination of AFM_1 is given in Figure 5B. The removal percentage of AFM_1 in milk by CotA laccase increased with increasing incubation time, which reached 80.9% and 59.3% for skim milk and whole milk, respectively, at 37 °C after 24 h. Procedures possessing high applicable potential for the elimination of AFM_1 in milk should meet a set of criteria including safety, rapidity, and selectivity [43]. The negative impact of CotA laccase treatment on the nutritive value, organoleptic profiles, and technological properties of milk should be further investigated.

4. Conclusions

This study presents the first characterization of the enzymatic properties and kinetics of CotA laccase in oxidizing AFM₁. The optimal oxidation of AFM₁ by CotA laccase was observed at pH 8.0 and 70 °C. Molecular docking simulations suggested that AFM₁ could interact with CotA laccase via hydrogen bonding and van der Waals interactions. The CotA-AFM₁ complex formed two hydrogen bonds via the carbonyl oxygen atoms and the Gly321 and Gly322 residues. Moreover, HPLC-FLD and UPLC-TOF/MS analysis indicated that CotA laccase oxidized AFM₁ to its C3-hyhroxy derivatives AFN₁ and epi-AFN₁. Furthermore, the oxidation of AFM₁ catalyzed by CotA laccase was observed to significantly reduce its cytotoxicity in hepatocytes. Subsequently, CotA laccase was employed to eliminate AFM₁ in milk, with the removal percentage being influenced by factors such as milk type, CotA laccase concentration, and incubation duration. It was shown that 83.5% of AFM₁ in skim milk and 65.1% of AFM₁ in whole milk were eliminated by 2 U mL⁻¹ of CotA laccase at 37 °C after 12 h. This study highlights the AFM₁ oxidase activity of CotA laccase. Nonetheless, further research is necessary to increase the AFM₁ removal efficiency of CotA laccase in milk by enzyme engineering technology.

Supplementary Materials: The following supporting information can be downloaded at: https: //www.mdpi.com/article/10.3390/foods13223702/s1, Figure S1: (**A**) Selected ion chromatography of AFM₁; (**B**) Selected ion chromatography of CotA laccase-mediated AFM₁ oxidation products. Table S1. Validation parameters for the determination of AFM₁ concentration in milk with HPLC-FLD method.

Author Contributions: Conceptualization, Y.G. and L.Z.; data curation, Y.G.; formal analysis, Y.T.; funding acquisition, Y.G.; investigation, W.Z.; project administration, Y.G., H.L. and Y.T.; supervision, L.Z.; validation, H.L. and Z.R.; visualization, Z.W.; writing—original draft, Y.G.; writing—review and editing, Z.W. and L.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Science and Technology Project of Henan Province (242102111006), China Postdoctoral Science Foundation (2023M730998), and Young Talents Fund of Henan Agricultural University (30501327).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the article and Supplementary Materials; further inquiries can be directed to the corresponding authors.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- 1. Thorning, T.K.; Raben, A.; Tholstrup, T.; Soedamah-Muthu, S.S.; Givens, I.; Astrup, A. Milk and dairy products: Good or bad for human health? An assessment of the totality of scientific evidence. *Food Nutr. Res.* **2016**, *60*, 32527. [CrossRef] [PubMed]
- 2. Guo, Y.; Zhang, Y.; Wei, C.; Ma, Q.; Ji, C.; Zhang, J.; Zhao, L. Efficacy of *Bacillus subtilis* ANSB060 biodegradation product for the reduction of the milk aflatoxin M₁ content of dairy cows exposed to aflatoxin B₁. *Toxins* **2019**, *11*, 161. [CrossRef] [PubMed]
- Ogunade, I.M.; Arriola, K.G.; Jiang, Y.; Driver, J.P.; Staples, C.R.; Adesogan, A.T. Effects of 3 sequestering agents on milk aflatoxin M₁ concentration and the performance and immune status of dairy cows fed diets artificially contaminated with aflatoxin B₁. J. Dairy Sci. 2016, 99, 6263–6273. [CrossRef]
- Veldman, A.; Meijs, J.A.C.; Borggreve, G.J.; Heeres-van der Tol, J.J. Carry-over of aflatoxin from cows' food to milk. *Anim. Sci.* 1992, 55, 163–168. [CrossRef]

- 5. Ismail, A.; Akhtar, S.; Levin, R.E.; Ismail, T.; Riaz, M.; Amir, M. Aflatoxin M1: Prevalence and decontamination strategies in milk and milk products. *Crit. Rev. Microbiol.* **2016**, *42*, 418–427. [CrossRef]
- Ostry, V.; Malir, F.; Toman, J.; Grosse, Y. Mycotoxins as human carcinogens-the IARC monographs classification. *Mycotoxin Res.* 2017, 33, 65–73. [CrossRef]
- Zhu, Y.; Hassan, Y.I.; Lepp, D.; Shao, S.; Zhou, T. Strategies and methodologies for developing microbial detoxification systems to mitigate mycotoxins. *Toxins* 2017, 9, 130. [CrossRef] [PubMed]
- 8. Firmin, S.; Morgavi, D.P.; Yiannikouris, A.; Boudra, H. Effectiveness of modified yeast cell wall extracts to reduce aflatoxin B₁ absorption in dairy ewes. *J. Dairy Sci.* 2011, *94*, 5611–5619. [CrossRef]
- 9. Maki, C.R.; Thomas, A.D.; Elmore, S.E.; Romoser, A.A.; Harvey, R.B.; Ramirez-Ramirez, H.A.; Phillips, T.D. Effects of calcium montmorillonite clay and aflatoxin exposure on dry matter intake, milk production, and milk composition. *J. Dairy Sci.* 2016, *99*, 1039–1046. [CrossRef]
- 10. Queiroz, O.C.M.; Han, J.H.; Staples, C.R.; Adesogan, A.T. Effect of adding a mycotoxin-sequestering agent on milk aflatoxin M₁ concentration and the performance and immune response of dairy cattle fed an aflatoxin B₁-contaminated diet. *J. Dairy Sci.* **2012**, *95*, 5901–5908. [CrossRef]
- 11. Corassin, C.H.; Bovo, F.; Rosim, R.E.; Oliveira, C.A.F. Efficiency of *Saccharomyces cerevisiae* and lactic acid bacteria strains to bind aflatoxin M₁ in UHT skim milk. *Food Control* **2013**, *31*, 80–83. [CrossRef]
- 12. Elsanhoty, R.M.; Salam, S.A.; Ramadan, M.F.; Badr, F.H. Detoxification of aflatoxin M₁ in yoghurt using probiotics and lactic acid bacteria. *Food Control* **2014**, *43*, 129–134. [CrossRef]
- 13. Foroughi, M.; Sarabi Jamab, M.; Keramat, J.; Foroughi, M. Immobilization of *Saccharomyces cerevisiae* on perlite beads for the decontamination of aflatoxin M₁ in Milk. *J. Food Sci.* **2018**, *83*, 2008–2013. [CrossRef] [PubMed]
- 14. Nguyen, T.; Flint, S.; Palmer, J. Control of aflatoxin M1 in milk by novel methods: A review. *Food Chem.* **2020**, *311*, 125984. [CrossRef]
- 15. Brana, M.T.; Cimmarusti, M.T.; Haidukowski, M.; Logrieco, A.F.; Altomare, C. Bioremediation of aflatoxin B₁-contaminated maize by king oyster mushroom (*Pleurotus eryngii*). *PLoS ONE* **2017**, *12*, e0182574. [CrossRef]
- 16. Lou, H.; Yang, C.; Li, Y.; Li, Y.; Li, Y.; Zhao, R. Optimization of aflatoxin B₁ degradation in corn by *Ganoderma sinense* through solid-state fermentation. *LWT* **2023**, *183*, 114959. [CrossRef]
- 17. Mwakinyali, S.E.; Ming, Z.; Xie, H.; Zhang, Q.; Li, P. Investigation and characterization of *Myroides odoratimimus* strain 3J2MO aflatoxin B₁ degradation. *J. Agric. Food Chem.* **2019**, *67*, 4595–4602. [CrossRef]
- 18. Sangare, L.; Zhao, Y.; Folly, Y.M.; Chang, J.; Li, J.; Selvaraj, J.N.; Xing, F.; Zhou, L.; Wang, Y.; Liu, Y. Aflatoxin B₁ degradation by a *Pseudomonas* strain. *Toxins* **2014**, *6*, 3028–3040. [CrossRef]
- Sun, L.H.; Zhang, N.Y.; Sun, R.R.; Gao, X.; Gu, C.; Krumm, C.S.; Qi, D.S. A novel strain of *Cellulosimicrobium funkei* can biologically detoxify aflatoxin B₁ in ducklings. *Microb. Biotechnol.* 2015, *8*, 490–498. [CrossRef]
- Zhang, F.-L.; Ma, H.-H.; Dong, P.-Y.; Yan, Y.-M.C.; Chen, Y.; Yang, G.-M.; Shen, W.; Zhang, X.-F. Bacillus licheniformis ameliorates aflatoxin B₁-induced testicular damage by improving the gut-metabolism-testis axis. J. Hazard. Mater. 2024, 468, 133836. [CrossRef]
- Loi, M.; Fanelli, F.; Zucca, P.; Liuzzi, V.C.; Quintieri, L.; Cimmarusti, M.T.; Monaci, L.; Haidukowski, M.; Logrieco, A.F.; Sanjust, E.; et al. Aflatoxin B₁ and M₁ degradation by Lac2 from *Pleurotus pulmonarius* and Redox Mediators. *Toxins* 2016, *8*, 245. [CrossRef] [PubMed]
- 22. Guo, Y.; Qin, X.; Tang, Y.; Ma, Q.; Zhang, J.; Zhao, L. CotA laccase, a novel aflatoxin oxidase from *Bacillus licheniformis*, transforms aflatoxin B₁ to aflatoxin Q₁ and epi-aflatoxin Q₁. *Food Chem.* **2020**, 325, 126877. [CrossRef] [PubMed]
- 23. Hu, S.; Xu, C.; Lu, P.; Wu, M.; Chen, A.; Zhang, M.; Xie, Y.; Han, G. Widespread distribution of the DyP-carrying bacteria involved in the aflatoxin B₁ biotransformation in *Proteobacteria* and *Actinobacteria*. *J. Hazard. Mater.* **2024**, 478, 135493. [CrossRef] [PubMed]
- 24. Adegoke, T.V.; Yang, B.; Tian, X.; Yang, S.; Gao, Y.; Ma, J.; Wang, G.; Si, P.; Li, R.; Xing, F. Simultaneous degradation of aflatoxin B₁ and zearalenone by porin and peroxiredoxin enzymes cloned from *Acinetobacter nosocomialis* Y1. *J. Hazard. Mater.* **2023**, 459, 132105. [CrossRef] [PubMed]
- Zhang, H.; Cui, L.; Xie, Y.; Li, X.; Zhao, R.; Yang, Y.; Sun, S.; Li, Q.; Ma, W.; Jia, H. Characterization, Mechanism, and application of dipeptidyl peptidase III: An aflatoxin B₁-degrading enzyme from *Aspergillus terreus* HNGD-TM15. *J. Agric. Food Chem.* 2024, 72, 15998–16009. [CrossRef]
- Graham, D.E. A new role for coenzyme F420 in aflatoxin reduction by soil mycobacteria. *Mol. Microbiol.* 2010, 78, 533–536. [CrossRef]
- 27. Enguita, F.J.; Martins, L.O.; Henriques, A.O.; Carrondo, M.A. Crystal structure of a bacterial endospore coat component. A laccase with enhanced thermostability properties. *J. Biol. Chem.* **2003**, *278*, 19416–19425. [CrossRef]
- Martins, L.O.; Durao, P.; Brissos, V.; Lindley, P.F. Laccases of prokaryotic origin: Enzymes at the interface of protein science and protein technology. *Cell. Mol. Life Sci.* 2015, 72, 911–922. [CrossRef]
- 29. Mayolo-Deloisa, K.; Gonzalez-Gonzalez, M.; Rito-Palomares, M. Laccases in food industry: Bioprocessing, potential industrial and biotechnological applications. *Front. Bioeng. Biotechnol.* **2020**, *8*, 222. [CrossRef]
- 30. Chauhan, P.S.; Goradia, B.; Saxena, A. Bacterial laccase: Recent update on production, properties and industrial applications. *3 Biotech* **2017**, *7*, 323. [CrossRef]
- 31. Sun, F.; Yu, D.; Zhou, H.; Lin, H.; Yan, Z.; Wu, A. CotA laccase from *Bacillus licheniformis* ZOM-1 effectively degrades zearalenone, aflatoxin B₁ and alternariol. *Food Control* **2023**, *145*, 109472. [CrossRef]

- 32. Li, T.; Huang, L.; Li, Y.; Xu, Z.; Ge, X.; Zhang, Y.; Wang, N.; Wang, S.; Yang, W.; Lu, F.; et al. The heterologous expression, characterization, and application of a novel laccase from *Bacillus velezensis*. *Sci. Total Environ*. **2020**, *713*, 136713. [CrossRef]
- Alberts, J.F.; Gelderblom, W.C.; Botha, A.; van Zyl, W.H. Degradation of aflatoxin B₁ by fungal laccase enzymes. *Int. J. Food Microbiol.* 2009, 135, 47–52. [CrossRef]
- 34. Liu, X.; Zhao, F.; Wang, X.; Sang, Y. Superoxide dismutase, a novel aflatoxin oxidase from *Bacillus pumilus* E-1-1-1: Study on the degradation mechanism of aflatoxin M₁ and its application in milk and beer. *Food Control* **2024**, *161*, 110372. [CrossRef]
- Liu, Y.; Mao, H.; Hu, C.; Tron, T.; Lin, J.; Wang, J.; Sun, B. Molecular docking studies and in vitro degradation of four aflatoxins (AFB₁, AFB₂, AFG₁, and AFG₂) by a recombinant laccase from *Saccharomyces cerevisiae*. J. Food Sci. 2020, 85, 1353–1360. [CrossRef]
- 36. Dellafiora, L.; Galaverna, G.; Reverberi, M.; Dall'Asta, C. Degradation of aflatoxins by means of laccases from *Trametes versicolor*: An in silico insight. *Toxins* **2017**, *9*, 17. [CrossRef]
- 37. Gao, Y.-N.; Wu, C.-Q.; Wang, J.-Q.; Zheng, N. Metabolomic analysis reveals the mechanisms of hepatotoxicity induced by aflatoxin M₁ and Ochratoxin A. *Toxins* **2022**, *14*, 141. [CrossRef]
- Marimón Sibaja, K.V.; de Oliveira Garcia, S.; Feltrin, A.C.P.; Diaz Remedi, R.; Cerqueira, M.B.R.; Badiale-Furlong, E.; Garda-Buffon, J. Aflatoxin biotransformation by commercial peroxidase and its application in contaminated food. *J. Chem. Technol. Biotechnol.* 2019, 94, 1187–1194. [CrossRef]
- 39. Kerstner, F.; Cerqueira, M.B.R.; Treichel, H.; Santos, L.O.; Garda Buffon, J. Strategies for aflatoxins B₁ and M₁ degradation in milk: Enhancing peroxidase activity by physical treatments. *Food Control* **2024**, *166*, 110750. [CrossRef]
- 40. Liu, X.; Zhao, F.; Wang, X.; Peng, K.; Kang, C.; Sang, Y. Degradation mechanism of aflatoxin M₁ by recombinant catalase from *Bacillus pumilus* E-1-1-1: Food Applications in Milk and Beer. *Foods* **2024**, *13*, 888. [CrossRef]
- 41. Liu, X.; Zhao, F.; Chitrakar, B.; Wei, G.; Wang, X.; Sang, Y. Three recombinant peroxidases as a degradation agent of aflatoxin M₁ applied in milk and beer. *Food Res. Int.* **2023**, *166*, 112352. [CrossRef] [PubMed]
- Rezagholizade-shirvan, A.; Ghasemi, A.; Mazaheri, Y.; Shokri, S.; Fallahizadeh, S.; Alizadeh Sani, M.; Mohtashami, M.; Mahmoudzadeh, M.; Sarafraz, M.; Darroudi, M. Removal of aflatoxin M₁ in milk using magnetic laccase/MoS2/chitosan nanocomposite as an efficient sorbent. *Chemosphere* 2024, *365*, 143334. [CrossRef] [PubMed]
- Kolarič, L.; Minarovičová, L.; Lauková, M.; Kohajdová, Z.; Šimko, P. Elimination of aflatoxin M₁ from milk: Current status, and potential outline of applicable mitigation procedures. *Trends Food Sci. Technol.* 2024, 150, 104603. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.