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Abstract: The impact of mechanized processes on the properties of Xifeng Baijiu, as well as the
differences between Baijiu produced through mechanized versus traditional methods, remains insuf-
ficiently understood. In this study, the differences in physicochemical properties, microorganisms,
volatile flavor compounds, and their correlations in the traditional and mechanized processes of pro-
ducing Xifeng Baijiu were compared. High-throughput sequencing revealed that the abundance and
diversity of bacteria and fungi were higher in the traditional process compared to the mechanized one.
The bacterial population exhibited a more pronounced succession pattern than the fungal population
throughout the fermentation. In the early stages, Firmicutes and Actinobacteria were the dominant
bacterial phyla in both processes, with Lactobacillus, Saccharopolyspora, Bacillus, Acetobacter, Weissella,
and Thermoactinomyces being the predominant bacterial genera, and Saccharomycopsis, Issatchenkia,
Kazachstania, Thermoascus, Pichia, and Rhizopus are the dominant fungi. Chemical analysis identified
71 volatile flavor components in the fermented grains, predominantly esters and alcohols. Ethyl
caproate, 1-nonyl alcohol, ethyl acetate, acetic acid, butyric acid, furfuryl alcohol, caproic acid, and
2,4-di-tert-butylphenol were the key differential compounds between the two production methods.
Pearson correlation analysis indicated a stronger relationship between bacteria and flavor compounds
than between fungi and these substances, with Lactobacillus showing a negative correlation with
other dominant bacterial genera. These findings offer a foundation for future research into the factors
contributing to differences in Baijiu produced by traditional and mechanized methods and serve as a
reference for improving mechanized processes.

Keywords: Xifeng Baijiu; traditional process; mechanized process; solid-state fermentation; microbial
diversity; volatile flavor compounds

1. Introduction

Baijiu, a traditional alcoholic beverage made from grains using solid-state fermentation
and distillation [1,2], plays an important role in cultural, economic, and social activities [3,4].
Xifeng Baijiu, a famous Chinese Baijiu, has special characteristics owing to its unique
brewing technology. Pure grain brewing coupled with sea-stored wine provides Xifeng
Baijiu with mellow, elegant, sweet, and cool flavors.

In recent years, with the rapid development of microbiome technology, microorgan-
isms in Baijiu-brewing environments have been extensively studied. For example, fungi
play a key role in solid-state fermentation [5]. They can produce amylase, thereby hydrolyz-
ing the starch in raw sorghum into sugars that can directly participate in fermentation.
Issatchenkia, Talaromyces, Aspergillus, and Eurotium are the dominant fungal genera in the
fermentation of sauce-flavor Baijiu in China [6]. The assembly and succession of microbial
communities in the second round of fermentation of light-flavor Baijiu were studied. It
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found that Streptomyces, Bacillus, and Lactobacillus were the dominant bacteria in the early
stages of fermentation, whereas Lactobacillus was the dominant bacterium in the middle
and late stages of fermentation [7]. In the Baijiu-brewing process, microorganisms are
found throughout the fermentation system and interact and influence each other, forming
a complex brewing micro-ecology. Therefore, the fermentation process is essentially a
“multi-micro-fermentation” process. Microorganism contents in the brewing environment
of Xifeng Baijiu, the fermented grains, and Daqu have been studied, but investigations of
the principles and mechanisms related to microbial composition are required.

Simultaneously, Baijiu’s aroma components have gained research interest. Baijiu is
mainly composed of ethanol, water, and trace components, of which water and ethanol
account for approximately 98–99% of the contents, and trace components, including esters,
acids, alcohols, aldehydes, and ketones, account for only 1–2%. Although the content of
trace components is low, as important aromatic substances in Baijiu, their content and
composition determine the characteristics of Baijiu. For Xifeng Baijiu, the volatile flavor
substance contents in Baijiu with different storage durations and container types have
been identified using a variety of methods, such as headspace solid-phase microextrac-
tion gas chromatography-mass spectrometry and comprehensive two-dimensional gas
chromatography-time of flight mass spectrometry, and the key volatile flavor substances
in Xifeng Baijiu have been determined [8,9]. However, further research is needed on the
characteristic aroma substances and vintage signal substances of Xifeng Baijiu.

Flavor is the main characteristic of fermented products [10] such as Baijiu. The
type and quality of Baijiu depend on its volatile substance contents, and microorganisms
are closely related to the formation of volatile substances. Increasingly, studies on the
correlation between microorganisms and flavor substances are being conducted. For
example, Acinetobacter, yeast, and other microorganisms were significantly correlated with
the contents of n-propanol, 2,3-butanediol, and other components of the base wine [11].
Lactobacillus was positively correlated with ester content [12]. These results have significant
implications for the development of Baijiu with certain flavors and directional control of
microorganisms during fermentation.

With the progress of science and technology and the development of society, the
disadvantages of the traditional brewing process of Chinese Baijiu, including extensive
processing, low production efficiency, low standardization, and a low degree of refine-
ment, have been highlighted. Therefore, mechanized Baijiu-brewing methods have been
developed, and research on the mechanization of Baijiu brewing has gradually increased.
Bacillus, Lactobacillus, and Sphingomonas play important roles in the biological regulation
of the core microbial communities in grains in different rounds of sauce-flavor Baijiu
fermentation [13–15]. A study on microbial community evolution during manual and
mechanized brewing of Xiaoqu Qing-flavor Baijiu showed that Lactobacillus was the most
abundant bacterium in both manual and mechanized brewing. The abundance of Lactobacil-
lus in mechanized brewing was higher than in manual brewing, and the fungal diversity
in manual brewing was higher than 1in mechanized brewing [16]. Existing research on
the Xifeng Baijiu brewing workshop mainly focuses on some microorganisms in the brew-
ing workshop environment [17,18], while a comparison of the whole microenvironment
throughout the fermentation processes of traditional and mechanized workshops has not
been conducted.

In this study, the microorganisms present in the environment and fermentation pro-
cesses of mechanized and traditional workshops were investigated. The bacterial and
fungal community compositions during fermentation using the two brewing methods
were compared to determine the differences caused by the different environments. The
effect of a mechanized brewing method on environmental microorganisms was also in-
vestigated. Moreover, the content of volatile flavor compounds during the fermentation
process was detected to further determine the relationship between microbial communities
and metabolites. Finally, we traced the sources of fermentation flora and evaluated the
impact of the environment on fermentation flora abundance. This study provides a basis for
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understanding the brewing process of Xifeng Baijiu from the perspective of environmental
microorganisms, which can support the improvement in the quality of Baijiu and promote
the advancement of the Baijiu industry.

2. Materials and Methods
2.1. Experimental Design and Sample Collection

The fermented grains were collected from both traditional and mechanized work-
shops in Shaanxi Xifeng Liquor Co., Ltd., Baoji, China (107.325677◦ E, 34.549184◦ N). The
traditional and mechanized workshops were two separate workshops built side by side,
with the same source, transport, and storage conditions for the grains used for brewing,
and the same brewing process. In addition, the Daqu and water used for brewing in the
two different types of workshops were also the same. The difference was that the entire
production process of the mechanized workshop was completed by machine, and the lids
of the pits were made of cement, while the production process of the traditional workshop
was completed manually and the lids of the pits were made of stainless steel. In addition to
the above differences, the traditional workshop has been in production for a longer time,
while the mechanized workshop has been in production for a shorter time.

Three pits in the mechanized and traditional workshops were selected for sampling.
Samples of fermented grains in the top, middle, and bottom layers were collected by a
customized sampler similar to a soil drill at eight different time points (day 0, day 4, day
7, day 10, day 14, day 18, day 22, and day 30) during the round-cellar period. For each
layer, the fermented grains were collected at three points: the central position and the two
points near the two ends of the pit wall (Figure 1). Subsequently, the samples were mixed
and stored in a Ziplock bag, and Daqu and environmental samples (from the water, tools,
ground, and air) were collected simultaneously. Then, the collected samples were stored at
−80 ◦C.
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Figure 1. Schematic diagram of the sampling points. The numbers in the figure represent the
sampling points, the diagonal filling part represents the pit mud, and the different filling colors in the
pit represent the different water content at different levels.

2.2. Determination of Physical and Chemical Indices

Determination of the temperature of the fermented grains: a thermometer was inserted
near the sampling point and left for approximately 1 min while the sample was collected.
After the thermometer readings stabilized, the temperature data were recorded.

Determination of moisture, acidity, starch, and reducing sugar in fermented grains:
near-infrared spectral analysis was conducted using the Antaris II FT-NIR Analyzer
(Thermo Fisher Scientific Inc., Walthan, MA, USA) to measure moisture, acidity, starch, and
reducing sugar in fermented grains [19].
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2.3. DNA Extraction

DNA was extracted from all samples using the indirect extraction method according to
the instructions of the FastDNA® soil DNA extraction kit. Then, the quality of the extracted
DNA was evaluated using an enzyme-labeled instrument, and the content of the extracted
DNA was determined by electrophoresis using a 1% agarose gel. The DNA samples that
met the standards were immediately stored in a freezer at −80 ◦C [20].

2.4. PCR Amplification and High-Throughput Sequencing

The primers F338 (5′-ACTCCTACGGGAGGCAGCAG-3′) and R806 (5′-GGACTACHV-
GGGTWTCTAAT-3′) were used to amplify the bacterial 16S rRNA V3-V4 region gene
sequence. The gene sequence of the fungal ITS region was amplified using the F1737 (5′-
GGAAGTAAAAGTCGTAACAAGG-3′) and R2043 (5′-GCTGCGTTCTTCATCGATGC-3′)
primers. The amplified products were recovered, quantified, and sequenced on an Illumina
MiSeq platform, and a database was constructed according to the required data depth.
High-throughput sequencing was performed by Meiji Biomedical Technology Co., Ltd
(Shanghai, China).

2.5. High-Throughput Sequencing Data Analysis

After the PE reads obtained by sequencing were split, the double-ended reads were
quality-checked and filtered according to sequencing quality. Double-ended reads were
spliced based on any overlap to optimize the data after quality control splicing. Then, the
DADA2 sequence denoising method was used to process the optimized data to obtain the
amplicon sequence variant (ASV) representing the sequence and abundance information.
Based on the ASV representing sequence and abundance information, taxonomic, commu-
nity diversity, species difference, correlation analyses, and statistical and visual analyses
were performed.

2.6. Determination of Volatile Flavor Substances

Ultrapure water (40 mL) was added to 10 g of fermented grains and ultrasonicated
in an ice bath for 30 min with ultrasonic equipment (SB-800DTD, SCIENTZ, Zhejiang,
China). The mixture was centrifuged at 4 ◦C at 10,000 r/min for 20 min using a refrigerated
centrifuge (GL-21M, cence, Changsha, China). Then, 8 mL supernatant was extracted into a
20 mL headspace bottle, and 3 g NaCl and 20 µL internal standard (geranyl acetate) were
added to a gas chromatograph mass spectrometer (GCMS-QP2020NX, Shimadzu Company,
Kyoto, Japan) for detection. The gas chromatography-mass spectrometry conditions were as
follows. The column was a Shim-pack GIST C18 column (Shimadzu Company, Kyoto, Japan;
4.6 mm × 250 mm, 5 µm), the column temperature was 30 ◦C, the detection wavelength
was 210 nm, the flow rate was 1 mL/min, the mobile phase A was methanol, and B was
0.02 mol/L potassium dihydrogen phosphate solution. Heating procedure: the solution
was heated at 50 ◦C for 2 min, followed by 4 ◦C/min temperature increases up to 230 ◦C,
which was maintained for 15 min. The temperature of the inlet and the detector was 250 ◦C,
the carrier gas was high-purity nitrogen, the flow rate was 1 mL/min, the shunt ratio
was 37:1, the tail-blowing air was 20 mL/min, the airflow rate was 400 mL/min, and the
hydrogen flow rate was 40 mL/min [9].

2.7. Data Analysis

Excel 2010 was used for statistical analysis, and IBM SPSS (version 26.0) was used to
perform analysis of variance (ANOVA) and Duncan’s test; differences were considered
statistically significant at p < 0.05. Data were plotted using the Origin 2023 software. Statis-
tical analyses of all sequencing data were performed in R (Version 4.3.1). The Bray–Curtis
distance between samples was calculated using the “Vegan” package in R, and principal
component analysis (PCA) of bacteria and fungi in the fermentation process of fermented
grains was conducted through the “Vegan” package operation. Linear discriminant analysis
effect size (LEfSe) was calculated using the “microeco” package in R. Canonical correspon-
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dence analysis (CCA) was performed to analyze the relationship between microorganisms
and metabolites during fermentation. In addition, correlations between variables were
examined using the Pearson correlation coefficient and were visualized using the “ggplot2”
package in R.

To explore the source of microorganisms in fermented grains, traceability analysis was
conducted using SourceTracker and default parameters. The grains before fermentation
were set as the “sink”, and potential microbial sources such as the ground, air, Daqu, tools,
and water were set as the “source”.

3. Results and Discussion
3.1. Changes in Physicochemical Indices During Fermentation

With the extension of fermentation time, the moisture content of the fermented grains
from the two different types of workshops generally increased and was the same at the
late stage of fermentation (Figure 2a). This indicates that the starch in the raw materials
was rapidly hydrolyzed to produce ethanol and water in the early stage of fermentation,
which increased the water content of the fermented grains, whereas in the late stage of
fermentation, the water content of the fermented grains stabilized.
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Water is a crucial factor in the Baijiu-brewing process, as it is required in every stage
of the fermentation process and affects the growth, reproduction, and metabolic activities
of microorganisms. During the first four days of fermentation, the acidity of the fermented
grains from the two different types of workshops increased greatly and then gradually
stabilized; therefore, days 0 to 4 were the main acid-production stage of grain fermentation
from the two different types of workshops (Figure 2b). In addition, owing to the tools, oper-
ating environment, and personnel, the brewing microenvironment is complex, resulting in
differences in acidity between the grains from the mechanized and traditional workshops.
Acids are important substances for the synthesis of Baijiu flavor substances [21]. A suitable
acidity level can inhibit the growth of pathogenic microbes and support the growth of
yeast and other beneficial microorganisms. The content of reducing sugar and starch in
the fermented grains decreased with increasing fermentation time (Figure 2c,d). Starch
consumption was rapid in days 0 to 4 of fermentation; this might be due to the high growth
and propagation of yeast in the early fermentation period, which requires a large amount
of matter and energy, resulting in high starch consumption [22].

However, because solid-state fermentation of Baijiu is a natural multi-strain fermenta-
tion process, the differences in the content of water, acidity, starch, and reducing sugars
in the fermented grains from the two different types of workshops may be caused by
differences in microflora in the two different types of workshops.

3.2. Changes in the Content of Volatile Flavor Compounds During Fermentation

Flavor substances in the fermented grains from traditional and mechanized workshops
were detected using GC-MS. A total of 71 volatile components were detected, including
41 esters, 13 alcohols, 5 acids, 3 phenols, and 9 aldehydes and ketones (Figure 3a).

Esters are the main cause of Baijiu aromas, and different esters produce different types
of aromas. For instance, ethyl esters mainly produce floral and tropical fruit aromas in
Baijiu [23]. Alcohols constitute a key part of the flavor backbone of Baijiu and could react
with acids to produce aromatic substances, reduce the spiciness of Baijiu, and increase the
harmony and fullness of the Baijiu [24]. Although the content of alcohols in the Baijiu is
not high, it also contributes to the flavor of the Baijiu. Comparative analysis showed that
the content of esters and alcohols in the fermented grains from the two different types of
workshops was higher than other components (Figure 3b), which was consistent with the
findings of many previous studies on the content of volatile flavor substances in fermented
grains [22,25]. There was no difference in the esters and alcohols between the grains from
the two different types of workshops, but the content of acids was higher in the grains
from the traditional workshop compared with that from the mechanized workshop, which
may be due to the production environment formed in the traditional workshop over a
long time. Compared with the mechanized workshop, the traditional workshop has longer
production lifespans and involves more human activities in the production process, which
leads to different microbial environments in the two types of workshops, and ultimately
affects the composition of the fermented grains.
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3.3. Screening of Key Metabolites and Volatile Flavor Compounds During Fermentation

The flavor substances in the fermented grains from the traditional and mechanized
workshops were significantly separated in the PCA, with the first principal component
(PC1) at 58.82%, second principal component (PC2) at 12.84%, and total contribution degree
at 71.66% (Figure 3d). Based on the results of the quantitative analysis of volatile com-
pounds, partial least squares discriminant analysis (PLS-DA) was performed to determine
volatile compound concentrations in different samples, and a VIP score chart was obtained.
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The results showed eight volatile compounds with a VIP > 1: ethyl hexanoate, 1-nonyl
alcohol, ethyl acetate, acetic acid, butyric acid, furfuryl alcohol, hexanoic acid, and 2,4-di-
tert-butylphenol (Figure 3c). These compounds were differential metabolites that could
distinguish the mechanized and traditionally fermented grains. The VIP values of 2,4-di-
tert-butylphenol and hexanoic acid were the highest, indicating that these two substances
played a very important role in distinguishing the grains fermented using different brewing
methods. Hexanoic acid was the predominant volatile compound in strong-flavor Baijiu,
Nong-flavor and Jiang-flavor Baijiu, special-flavor Baijiu, Feng-flavor Baijiu, Fuyu-flavor
Baijiu, Chinese medicinal Baijiu, and sesame-flavor Baijiu. When hexanoic acid was absent
in strong-flavor Baijiu, the “jiao-aroma” of the Baijiu body was weakened [26]. In addition,
2,4-ditert-butylphenol significantly contributed to the burned taste of the Baijiu and could
interact with the skeletal components in the base of the Baijiu to characterize the burned
taste within a certain concentration range. However, when the concentration range was
exceeded, it inhibited the characterization of the burned taste [27].

3.4. Analysis of Microbial Diversity During the Fermentation of Grains
3.4.1. Analysis of Microbial α Diversity in Fermented Grains

The dilution curves of bacteria and fungi in all samples gradually increased with the
increase in sequencing depth and eventually tended to plateau (Figure A1), indicating that
the sequencing data were reasonable in volume, covered the population information of
most microorganisms in the samples with high reliability, and could be used for subsequent
bioinformatics analyses.

The Chao index was used to characterize the abundance of bacteria and fungi in the
fermented grains, and the Shannon index was used to evaluate the diversity of bacteria and
fungi. The Chao index of the fermented grains from the two different types of workshops
decreased gradually with fermentation time, and that of the traditionally fermented grains
was higher than that of the mechanically fermented grains. The bacterial Shannon index of
the grains from the two different types of workshops increased and then decreased with
fermentation time, and that of the fermented grains from the traditional workshop was
higher than that of those from the mechanized workshop (Figure 4a,b).

In contrast to the bacterial indices, the Chao and Shannon indices of the fungi in the
grains from both workshops increased with fermentation time, and those of the grains
from the traditional workshop were higher than those from the mechanized workshop
(Figure 4c,d). These results showed that the abundance and diversity of bacteria and
fungi in the fermented grains from the traditional workshop were higher than those
in the fermented grains from the mechanized workshop. The prominence of bacteria
gradually decreased, and fungi gradually became the dominant microorganisms during
the fermentation process.

The Venn diagram was used to analyze the differences in microbial community com-
position between grains at different stages of fermentation. The number of bacterial ASVs
in fermented grains in the traditional workshop reached a maximum value (977) at day
4 and then decreased, reaching a minimum value of 148 at day 0 (Figure A2a), while the
number of fungal ASVs reached a maximum value of 39 at day 30 (Figure A2b). The
grains from the mechanized workshop had the highest number of bacterial ASVs (1199)
and the lowest number of fungal ASVs (8) at day 0, and the number of bacterial ASVs
was the lowest and the number of fungal ASVs was the highest at day 30 (Figure A2c,d).
This was similar to the results of the diversity analysis described above. This may be
because, as fermentation progressed, the oxygen content and pH in the pit decreased, and
the microenvironment of fermented grains became unfavorable for bacterial growth, while
the fungi occupied the bacterial ecological niche and gradually became the predominant
fermentation population [28].
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3.4.2. Analysis of Microbial β Diversity in Fermented Grains

The types of flavor substances in the fermented grains from the traditional and mech-
anized workshops were significantly different. To study the β diversity of microbial
communities in fermented grains from the two different types of workshops and different
fermentation times, the differences in community structure were visualized using PCA of
Bray–Curtis distances based on the numbers of ASVs.

There was a significant difference in the bacterial populations between the grains
from the traditional and mechanized workshops (p = 0.001), which increased at the end
of fermentation (day 30) (Figure A3a,b). This may be related to environmental differences
in the pits of the two different types of workshops. In the traditional workshop, bacterial
populations in fermented grains showed an obvious succession trend with the progression
of fermentation, and day 14 was used as the time cut-off to divide the bacterial communities
into two groups, which exhibited significant differences: the early phase of fermentation
and the middle and late phases of fermentation (Figure 5a). Similar succession patterns
were observed in the grains from the mechanized workshop, but they were not as significant
as those in the traditional workshop (Figure 5b).
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Figure 5. PCoA analysis of microbial communities. (a) Bacteria in fermented grains from the
traditional workshop. (b) Bacteria in fermented grains from the mechanized workshop. (c) Fungi in
fermented grains from the traditional workshop. (d) Fungi in fermented grains from the mechanized
workshop. C represents the traditional workshop; J represents the mechanized workshop.

The fungal populations exhibited no significant differences between the grains from
the traditional and mechanized workshops, although the populations of fungi in the
fermented grains from the two different types of workshops at the end of fermentation
(day 30) were slightly dispersed compared with those at the beginning of fermentation
(day 0) (Figure A3c,d). With the progression of fermentation, the fungal populations in later
fermentation periods were clustered, showing no obvious succession trend (Figure 5c,d),
indicating that fungal populations played a key role throughout the fermentation process,
and multiple strains interacted to promote fermentation.
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According to these results, the difference in the microbial communities between the
grains from the two different types of workshops at the end of fermentation was more
significant than that at the beginning of fermentation, and the bacterial population had a
more significant succession rule than the fungi throughout the fermentation process. We
propose that there were differences in the working environments and methods of sealing
the pit between the two different types of workshops, which would affect the growth
and propagation of microorganisms in the fermentation process and ultimately lead to
the different compositions of microbial communities in the fermented grains from the
two different types of workshops. As fermentation progressed, the bacterial population
responded more strongly to the unfavorable environment of the pit and thus showed an
obvious succession rule.

3.5. Succession Trends of Microbial Communities
3.5.1. Changes in Bacterial Community Structures

Firmicutes, Proteobacteria, and Actinobacteria were the dominant bacterial phyla,
with an average relative abundance of >1% in the fermented grains from the traditional and
mechanized workshops. With the progression of fermentation, the relative abundance of
Firmicutes in the grains of the traditional and mechanized workshops gradually increased,
ranging from 53.85% to 99.69% and from 44.78% to 99.47%, respectively, whereas the rela-
tive abundances of Actinobacteria and Proteobacteria showed a decreasing trend. During
the same fermentation period, the relative abundance of Proteobacteria in the grains from
the traditional workshop remained higher than that in the grains from the mechanized
workshop, whereas the relative abundance of Actinobacteria in the grains from the mecha-
nized workshop remained higher than that in those from the traditional workshop, except
for on day 10 (Figure A4a,b). Firmicutes were the dominant bacterial phylum during the
fermentation of light-flavor Baijiu [22,29]. In addition, these dominant bacteria were also
the dominant bacteria in the pit mud during the brewing process of feng-flavor Baijiu
and some other flavors, such as sauce-flavor Baijiu [30]. Firmicutes, Proteobacteria, and
Actinobacteria were the predominant bacterial groups, with an abundance of >1% during
fermentation, and as fermentation progressed, Firmicutes became the dominant bacterial
phylum [31].

The dominant bacterial genera with an average relative abundance >1% in the fer-
mented grains were Lactobacillus, Saccharopolyspora, Bacillus, norank_f__Pseudonocardiaceae,
Streptomyces, Acetobacter, Pediococcus, Staphylococcus, Weissella, Thermoactinomyces, Achro-
mobacter, Kroppenstedtia, and Leuconostoc. The relative abundance of Lactobacillus in the
grains from the traditional and mechanized workshops gradually increased with the exten-
sion of the duration of fermentation (20.27–98.44%, 15.16–98.7%), and Lactobacillus became
the dominant bacterial genus in the fermentation process of the two different types of
workshops after day 7. The relative abundance of Saccharopolyspora decreased gradually
with increasing fermentation time (Figure 6a,b). Lactobacillus, as the dominant genus of
bacteria in fermented grains used for Feng-flavor Baijiu, can produce lactic acid and is
positively correlated with ethyl lactate content [32]. Similar findings were also reported for
sauce-flavor Baijiu, in which the abundance of Lactobacillus increased significantly during
fermentation and persisted until the end of fermentation reaching up to 60% in the middle
and late fermentation stages [13].
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Figure 6. Analysis of microbial community composition at the genus level in fermented grains.
(a) Bacteria in the fermented grains of the traditional workshop. (b) Bacteria in the fermented
grains of the mechanized workshop. (c) Fungi in the fermented grains of the traditional workshop.
(d) Fungi in the fermented grains of the mechanized workshop. C represents the traditional workshop;
J represents the mechanized workshop.

3.5.2. Changes in Fungal Community Composition

Ascomycota and Mucoromycota were the predominant fungal phyla with an aver-
age relative abundance of >1% in the fermented grains from the traditional and mecha-
nized workshops. Among them, Ascomycota was dominant, with relative abundances of
94% and 98% in the grains from the traditional and mechanized workshops, respectively
(Figure A4c,d). Previous studies found that Ascomycota was the main fungi in the fer-
mented grains of strong-flavor, sauce-flavor, and light-flavor Baijiu [22]. The most common
fungal genera with relative abundance > 1% in the fermented grains of the traditional and
mechanized workshop were Saccharomycopsis, Issatchenkia, Kazachstania, Thermoascus,
Naumovozyma, unclassified_f__Aspergillaceae, Pichia, Rhizopus, and Candida. During
the same fermentation period, the relative abundances of Kazachstania and Naumovozyma
in the grains from the mechanized workshop were higher than those in the traditional
workshop, and they comprised a certain proportion of the community from day 7, indicat-
ing that they mainly played a role in the middle and late fermentation stages. The relative
abundance of the Saccharomycopsis in grains from both types of workshops decreased
throughout fermentation, from 75.22% to 25.91% and 80.32% to 19.97%, respectively. In
contrast to those of bacteria, the fermentation modes of fungi gradually evolved from
Saccharomycopsis to Issatchenkia, Kazachstania, Thermoascus, Pichia, and other fungal
co-fermentation modes. Saccharomycopsis can provide hydrolases, such as amylase and
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glucoamylase, for fermentation; its relative abundance is high in the early fermentation
period but decreases in the middle and late fermentation periods (Figure 6c,d). Rhizopus,
Pichia, and other yeasts have strong ester production capacities; therefore, they mainly play
a role in late fermentation.

3.6. Traceability Analysis of Microorganisms

We used Source Tracker to quantitatively analyze the influences of air, Daqu, ground,
tools, and water on microbial abundances in the fermented grains at the beginning of
fermentation.

Bacteria in the fermented grains from the traditional workshop mainly came from
Daqu (83.50%), followed by air (10.68%), and tools (5.67%) (Figure 7a), while fungi mainly
came from Daqu (71.49%), followed by air (28.34%) (Figure 7b). In the mechanized work-
shop fermented grains, 94.04% of the bacterial population came from Daqu, and the air and
tools contributed 2.54% and 2.21%, respectively (Figure 7c). The fungal population was
mainly derived from Daqu (79.70%) and air (20.19%), while the other sources contributed
less than 1% (Figure 7d). In general, the contribution of air in the traditional workshop
to bacterial and fungal growth was greater than that in the mechanized workshop, but
the bacterial and fungal populations of the grains from both workshops mainly originated
from Daqu.
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Figure 7. Traceability analysis of microorganisms in fermented grains. (a) Bacteria in the fermented
grains of the traditional workshop. (b) Fungi in the fermented grains of the traditional workshop.
(c) Bacteria in the fermented grains of the mechanized workshop. (d) Fungi in the fermented grains
of the mechanized workshop.
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3.7. Correlation Analysis of Microorganisms and Key Volatile Compounds

The production of volatile metabolites in fermented grains is closely associated with
microbial activity. Therefore, microorganisms with a VIP > 1 were considered differential
microorganisms. Using the Mantel test and CCA, the relationship between differential
microbial genera and volatile metabolites in fermented grains from the traditional and
mechanized workshops was analyzed.

In the traditional workshop, there were five pairs of correlations between bacteria and
differential flavor substances and two pairs of correlations between fungi and differential
flavor substances. Bacteria showed extremely significant correlations with ethyl acetate
and 1-nonyl alcohol among the differential flavor substances (p < 0.01), whereas fungi
only showed significant correlations with 1-nonyl alcohol (p < 0.01) (Figure 8a). In the
fermented grains from the mechanized workshop, there were six correlations between
bacteria and differential flavor substances and four with fungi. There were extremely
significant correlations between bacteria and ethyl acetate and hexanoic acid among the
differential flavor substances (p < 0.01), whereas no significant correlations were observed
between fungi and the differential flavor substances (Figure 8b). Therefore, in the fermented
grains from both the traditional and mechanized workshops, the correlation between
bacteria and differential flavor substances was more significant than that between fungi
and differential flavor substances.

Foods 2024, 13, x FOR PEER REVIEW 14 of 21 
 

 

The production of volatile metabolites in fermented grains is closely associated with 
microbial activity. Therefore, microorganisms with a VIP > 1 were considered differential 
microorganisms. Using the Mantel test and CCA, the relationship between differential 
microbial genera and volatile metabolites in fermented grains from the traditional and 
mechanized workshops was analyzed. 

In the traditional workshop, there were five pairs of correlations between bacteria 
and differential flavor substances and two pairs of correlations between fungi and differ-
ential flavor substances. Bacteria showed extremely significant correlations with ethyl ac-
etate and 1-nonyl alcohol among the differential flavor substances (p < 0.01), whereas fungi 
only showed significant correlations with 1-nonyl alcohol (p < 0.01) (Figure 8a). In the fer-
mented grains from the mechanized workshop, there were six correlations between bac-
teria and differential flavor substances and four with fungi. There were extremely signifi-
cant correlations between bacteria and ethyl acetate and hexanoic acid among the differ-
ential flavor substances (p < 0.01), whereas no significant correlations were observed be-
tween fungi and the differential flavor substances (Figure 8b). Therefore, in the fermented 
grains from both the traditional and mechanized workshops, the correlation between bac-
teria and differential flavor substances was more significant than that between fungi and 
differential flavor substances. 

 

Figure 8. Mantel test analysis of microorganisms and differential flavor substances in fermented 
grains. (a) Traditional workshop. (b) Mechanized workshop. "*" means p<0.05, "**" means p<0.01, 
and "***" means p<0.001. 

The correlations between differential microorganisms and differential metabolites in 
fermented grains from the traditional and mechanized workshops were similar. Among 
the bacteria, only Lactobacillus was positively correlated with acids and esters (Figure 
9a,b), which may be due to the high relative abundance of Lactobacillus in fermented 
grains. Acetic and hexanoic acid, which are produced by Lactobacillus metabolism, provide 
synthetic precursors for many flavor substances, such as ethyl acetate and ethyl caproate, 
and inhibit the metabolic function of other bacteria. Among the fungi, Issatchenkia, Ka-
zachstania, and Naumovozyma were positively correlated with acids and esters, indicating 
that yeasts are the main fungal group in the fermentation process. However, Lactobacillus, 
Issatchenkia, Kazachstania, and Naumovozyma were negatively correlated with 2,4-di-tert-
butylphenol in fermented grains from the traditional workshop (Figure 9a), but they were 
positively correlated in fermented grains from the mechanized workshop (Figure 9b). 

  

Figure 8. Mantel test analysis of microorganisms and differential flavor substances in fermented
grains. (a) Traditional workshop. (b) Mechanized workshop. "*" means p < 0.05, "**" means p < 0.01,
and "***" means p < 0.001.

The correlations between differential microorganisms and differential metabolites in
fermented grains from the traditional and mechanized workshops were similar. Among
the bacteria, only Lactobacillus was positively correlated with acids and esters (Figure 9a,b),
which may be due to the high relative abundance of Lactobacillus in fermented grains. Acetic
and hexanoic acid, which are produced by Lactobacillus metabolism, provide synthetic
precursors for many flavor substances, such as ethyl acetate and ethyl caproate, and inhibit
the metabolic function of other bacteria. Among the fungi, Issatchenkia, Kazachstania, and
Naumovozyma were positively correlated with acids and esters, indicating that yeasts are
the main fungal group in the fermentation process. However, Lactobacillus, Issatchenkia,
Kazachstania, and Naumovozyma were negatively correlated with 2,4-di-tert-butylphenol
in fermented grains from the traditional workshop (Figure 9a), but they were positively
correlated in fermented grains from the mechanized workshop (Figure 9b).
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Figure 9. Correlation analysis of microorganisms and differential metabolites in fermented grains.
(a) Heat maps of the correlation between differential microorganisms and differential flavor sub-
stances in the fermented grains from the traditional workshop. (b) Heat maps of the correlation
between differential microorganisms and differential flavor substances in the fermented grains from
the mechanized workshops. (c) Network maps of the correlation between the dominant microor-
ganisms and differential flavor substances in the fermented grains from the traditional workshop.
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(d) Network maps of the correlation between the dominant microorganisms and differential flavor
substances in fermented grains from the mechanized workshop. (e) CCA (canonical correspondence
analysis) of microbes and metabolites in the fermented grains from the traditional workshop. The
blue letters represent the names of the microbial genus, and the red letters represent the names of the
flavor substance. (f) CCA (canonical correspondence analysis) of microbes and metabolites in the
fermented grains from the mechanized workshop. C represents the traditional workshop; J represents
the mechanized workshop.

From the correlation network diagram of dominant bacteria and fungi with a relative
abundance greater than 1% and differential metabolites in the fermented grains from
the traditional and mechanized workshop, it can be seen that the correlation between
microorganisms and differential metabolites in the fermented grains from the mechanized
workshop is stronger than that of those from the traditional workshop (Figure 9c,d).

The correlations between the dominant bacterial genera in the fermented samples
were further analyzed using the Pearson algorithm. In both the traditional and mechanized
workshops’ fermented grains, Lactobacillus, among the top ten dominant bacterial genera
screened, was negatively correlated with the other nine bacterial genera (Figure A5). This
negative correlation was extremely significant in the grains from the mechanized workshop
(p < 0.01). This indicated that Lactobacillus and other dominant bacterial genera showed an
antagonistic relationship, which is consistent with the results of the correlation heat map.

The correlation between differential flavor substances and microorganisms shown by
the CCA results is also consistent with the heat map. Only Lactobacillus in the bacterial
populations of the fermented grains from the traditional and mechanized workshops
was positively correlated with differential flavor substances, and these differential flavor
substances in grains from the traditional and mechanized workshops were mainly formed
during the late fermentation period (Figure 9).

4. Conclusions

In this study, high-throughput sequencing technology combined with headspace solid-
phase microextraction and GC-MS were used to analyze the microbial community structure
and volatile metabolite contents of fermented grains from traditional and mechanized
workshops and to reveal the relationships between differential microorganisms and volatile
metabolites at the genus level. A total of 71 volatile compounds were detected during
the fermentation of the grains using GC-MS. The dominant compounds were esters and
alcohols, and ethyl hexanoate, 1-nonyl alcohol, ethyl acetate, acetic acid, butyric acid, fur-
furyl alcohol, hexanoic acid, and 2,4-di-tert-butylphenol were the differential metabolites
between the mechanized and traditionally fermented grain samples. The results of high-
throughput sequencing showed that the abundance and diversity of bacteria and fungi in
the fermented grains from the traditional workshop were higher than those in the grains
from the mechanized workshop. The difference in the microbial communities at the end of
fermentation between the grains from the two different types of workshops was more sig-
nificant than that at the beginning of fermentation, and the bacterial population had a more
significant succession rule than that of the fungi throughout the fermentation process. In
the fermented grains from both workshops, the dominant bacterial phyla were Firmicutes,
Actinobacteria, and Proteobacteria. The dominant bacterial genera were Lactobacillus, Sac-
charopolyspora, Bacillus, Acetobacter, Weissella, and Thermoactinomyces. The dominant fungal
phyla were Ascomycota and Mucoromycota, and the dominant fungal genera were Saccha-
romycopsis, Issatchenkia, Kazachstania, Thermoascus, Pichia, and Rhizopus. Correlation analysis
results showed that in the grains from both the traditional and mechanized workshops,
the correlation between bacteria and differential flavor substances was more significant
than that of fungi. However, because Lactobacillus was negatively correlated with the other
nine dominant bacterial genera, only Lactobacillus in the bacterial population was posi-
tively correlated with differential flavor substances. This study provides a basis for further
understanding of the brewing process of Baijiu from the perspective of environmental
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microorganisms, and also suggests that the existing mechanized brewing method should
achieve intelligence and high yield while creating a similar microbial environment to the
traditional brewing method as much as possible; “take the essence and eliminate the dross”,
so as to improve the quality of Baijiu and promote the development of the Baijiu industry.
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Figure A3. PCoA analysis at day 0 and day 30 of microbial communities in the fermented grains from
the traditional and mechanized workshops. (a) Bacteria in the fermented grains at day 0. (b) Bacteria
in the fermented grains at day 30. (c) Fungi in the fermented grains at day 0. (d) Fungi in the
fermented grains at day 30. C represents the traditional workshop; J represents the mechanized
workshop.
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Figure A4. Analysis of microbial community composition at the phylum level in the fermented
grains. (a) Bacteria in the fermented grains of the traditional workshop. (b) Bacteria in the fermented
grains of the mechanized workshop. (c) Fungi in the fermented grains of the traditional workshop.
(d) Fungi in the fermented grains of the mechanized workshop. C represents the traditional workshop;
J represents the mechanized workshop.
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