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Abstract: Avocado (Persea americana Mill.) is a fruit with a high content of unsaturated fatty acids
and bioactive compounds, whose consumption has considerably increased in the USA and Europe.
Thus, the conservation of the avocado mesocarp (pulp) has become more relevant. Avocado pulp
was processed using a scraped-surface heat exchanger (SSHE) system to extend the shelf-life of the
mesocarp. Through analysis with X-ray diffraction and HRTEM, it was possible to identify crystalline-
type structures in the avocado pulp processed and stored at 4 ◦C. The 2θ-angles and d-spacing of
the structures that reported the highest diffraction intensity are comparable to the polymorphs β′

reported in the literature for fatty acid mixtures processed under similar conditions. Furthermore,
the X-ray signals suggest the presence of polymorphs α and β in all samples processed and stored
at different temperatures. Calorimetry analysis showed curves with first-order phase changes as
indicative of crystallization-type transitions. The shelf-life evaluation of the avocado pulp showed
that the crystallization process minimized the losses of antioxidant capacity and prevented color
change, while the enzyme polyphenol oxidase remained inactivated. The changes induced by the
SSHE continuous processing applied might represent an alternative to obtaining avocado products
that preserve avocado’s properties and extend its shelf-life.

Keywords: polymorphism; X-ray diffraction; HRTEM; avocado; scraped-surface heat exchanger

1. Introduction

The main world producer of avocado is Mexico [1,2], and the most consumed variety
of this fruit is Hass [3]. Avocado is a fruit that prioritizes, during maturation, the accumu-
lation of oil in its idioblastic cells [3,4]. The highest concentration of fatty acids present
in avocado relates to monounsaturated fatty acids [5,6], which are associated with the
prevention of diabetes and cardiovascular diseases and with the increase in high-density
lipoprotein levels in blood which are associated with being a protective against coronary
heart disease [7–9]. The highest fatty acids in avocado oil are oleic and linoleic, though the
content ratio between oleic and linoleic acid is in the order of 8:1 [1,10,11]. The oil content
reaches 60–70% of the dry weight of the avocado pulp, while the content of carbohydrates
is only 10% [3,12].

The consumption of avocado pulp has increased in recent years, not only because of
the presence of unsaturated acids but also due to its content of bioactive compounds and the
impact of the latter on human health. Pigments such as chlorophylls and carotenoids, whose
biological activities are associated with the prevention of cancer and anemic processes, as
well as with cell protective mechanisms [12,13], are present in significant amounts in the
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avocado pulp. Furthermore, the fruit has phenolic compounds such as vanillic, p-coumaric,
benzoic, caffeic, ferulic, and chlorogenic acids, epicatechin, catechin, and alpha and beta to-
copherols. These phenolic compounds have antimicrobial, cardioprotective, antiallergenic,
and anti-inflammatory activities [14–16]. The highest concentration of phytosterols present
in avocado pulp is associated with β-sitosterol, followed by campesterol and stigmasterol;
these compounds contribute to the inhibition of the generation of carcinogenic compounds
and to the decrease in the activity of cholesterol [17–20].

Research on the thermal and non-thermal process of avocado pulp tends to overlook
the loss of the bioactive compounds and to concentrate on extending the shelf-life of the
mesocarp. Nevertheless, the thermal inactivation of the polyphenol oxidase enzyme is
another aspect to consider for the final product since this enzyme causes oxidation and
color changes in the pulp [21].

The high-pressure process (HHP) is the most recurrent method for preserving avocado
pulp [22]. An HHP is a non-thermal technology and has no significant impact on the
color, flavor, and nutritional quality of the food matrix treated [23]. This process decreases
the activity of enzymes and microbial load. However, during storage, the avocado puree
develops color changes [24]. Freeze-drying is another technology employed to extend the
shelf-life of avocado pulp. It has been reported to minimize the losses of nutritional value
because of the low temperatures of operating conditions; however, freeze-dried pulp shows
a higher browning index than fresh avocado pulp [25]. This may be because the polyphenol
oxidase needs high temperatures (60–80 ◦C) to be inactivated [26].

Changing the microstructure of the avocado pulp as a method to extend shelf-life could
decrease the loss of bioactive compounds while inactivating enzymes, thus preventing
color changes. In products such as ice cream, margarine, or cocoa butter, crystallization
improves the functionality of vegetable oils and gives the products smooth and creamy
properties. The crystallization of fatty acids derives from polymorphism and molecular
interactions [27]. The melting points and crystal packing of fatty acids show the different
types of polymorphs. There are three main types of polymorphs: α, β′, and β [27–30].
The interplanar distances for each type of polymorph have been reported and are useful
in identifying these structures; Table 1 summarizes the ranges of interplanar distances
among these polymorphic structures. The long spacings are around 2θ = 1–15◦, and the
short spacings show a range of 2θ = 16–25◦. The short spacing quantification gives the
identification of the polymorphic structures [27,31].

Table 1. Interplanar spacing values reported for fatty acids [27,28,31].

Polymorphic Form Interplanar Spacing (Å) 2θ Angle Melting Points Packing

α 4.15 Long spacings: 1–15◦

Short spacings: 16–25◦
Lower Hexagonal

β′ 4.2–4.3 and 3.7–4.0 Intermediate Orthorhombic
β 4.6 Higher Triclinic

The operating conditions affect the nucleation rate, crystal growth, and ratio of the
type of polymorphs [32]. The different operating conditions can be chosen depending on
the composition of the matrix, and their interactions of different compounds. For example,
in the case of the rate of cooling, it is desirable to have rapid cooling and uniformity in
the food matrix, because the production of nuclei is maximized and the size distribution
of the crystal becomes narrower. In the case of lipid products, the crystallization is di-
rectly related to high- and low-melting components and affects the size, crystalline mass,
and the polymorph formed [32,33]. The temperature is important for the nuclei forma-
tion. The balance between the thermodynamic force (supersaturation) and mobility effects
(glass transition) is the optimal point of the nucleation phase, correlated with the maxi-
mum number of crystals formed [32]. For instance, changes in the melting temperatures
and onset of crystallization of tempered and untempered cocoa butter were observed by
Ray et al. (2012) [34]. Nosratpour et al., (2020) [35] observed different microstructural
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behavior under different cooling rates of milkfat blends. Given the avocado pulp has
significant contents of fatty acids, the crystallization process could improve the texture and
characteristics of the final product.

In the food industry, the scraped-surface heat exchanger (SSHE) works with fluids with
a high viscosity and density [31], such as ice cream and related products, in crystallization
processing [36]. SSHEs consist of a double-cylinder with an insider rotor and have blades
that scrape the inner wall of the cylinder. The rotation of the rotor generates turbulence on
the fluid and improves the heat transfer [36,37]. SSHEs are widely used for crystallization
because the continuous system impacts directly on the structure and orientation of crystals,
polymorphism, and the distribution of the crystals in the food matrix [38,39].

To the authors’ understanding, this is the first work that investigates the crystallization
process to extend the shelf-life of avocado pulp and analyzes the effect of this technology
on the avocado pulp microstructure. Hence, the present work aimed to change the mi-
crostructure of avocado pulp by using a system of three scraped-surface heat exchangers
(heating, pre-cooling, and cooling phases) as a continuous processing technique without af-
fecting the nutritional composition and beneficial properties of avocado pulp and extending
its shelf-life.

2. Materials and Methods
2.1. Materials

The avocado (Persea americana Mill.) Hass was purchased from producers in the state
of Michoacán, Mexico. Avocados were selected according to homogeneity in maturity;
specimens with external and internal damage were discarded. The selected avocados
were cleaned and sanitized by rinsing with tap water and NaClO 0.1% dissolution (Hycel,
Zapopan, Jalisco, Mexico). The pulp was manually separated from seeds and peels, and
the yield of pulp per kilogram of avocado was around 60%. The size reduction in the
avocado pulp was performed in a cutter mixer (Crypto Peerless K55, Crypto Peerless, Ltd.,
Halifax, UK) for 2 min with 50 mL of water per kilogram of pulp.

2.2. Reagents

The HPLC-grade methanol, hexane, diethyl ether, and acetone solvents used in the
extractions were purchased from JT Baker (Avantor Performance Materials, Inc., Xalostoc,
Estado de México, Mexico). The Trolox standard, 2,2-diphenyl-1-picrylhydrazyl (DPPH),
Folin–Ciocalteu, and catechol reagents were purchased from Sigma-Aldrich (Sigma-Aldrich,
Co., Santa Clara, CA, USA).

2.3. Crystallization Process
Crystallization Process in SSHE

The process consisted of three coupled scraped-surface heat exchangers for the heating,
pre-cooling, and cooling stages. Figure 1 depicts the components of the equipment used.
The avocado pulp sample begins the process in the SSHE for heating (1). The blades (7)
and the rotation of the rotor (8) enhanced the heat transfer. The operating conditions for
the heating, pre-cooling and cooling stages are summarized in Table 2.

Table 2. Operating conditions of the three different stages of the process.

Stage

Condition Heating Pre-Cooling Cooling

Medium Thermal oil Water Water
Mean temperature (◦C)

of the medium 150 8 4

Residence time (min) 4 4 5
Blade rotation speed (rpm) 300 200 200
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2.4.2. Color 
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Figure 1. Scraped-surface heat exchanger system, (1) inlet of SSHE heating, (2) outlet of SSHE heating,
(3) inlet of SSHE pre-cooling, (4) outlet of SHHE pre-cooling, (5) inlet of SSHE cooling, (6) outlet of
SSHE cooling, (7) blades, (8) rotor, (a) outlet of heating medium, (b) inlet of heating medium, (c) inlet
of pre-cooling medium, (d) outlet of pre-cooling medium, (e) outlet of cooling medium, (f) inlet of
cooling medium.

The volume flow rate and outlet temperature of avocado pulp were 200 mL/min and
7 ◦C, respectively, and it was collected and stored under three different temperatures,
namely 4 ◦C, 10 ◦C, and −20 ◦C, until analysis (2 weeks approximately). The amount
of product obtained per kg of avocado pulp submitted to SSHE processing was 0.4 kg.
The storage temperatures were selected by considering common storage temperatures for
foodstuff, namely fresh conditioning (10 ◦C), refrigeration (4 ◦C), and freezing (−20 ◦C), in
order to prevent microbial growth.

2.4. Physicochemical Parameters
2.4.1. Moisture Content

The moisture content was determined by dehydrating 5 g of each sample in triplicate
at 110 ◦C up to constant weight [14,40,41].

2.4.2. Color

The color assessment of avocado pulp at 25 ◦C and avocado pulp processed and stored
at 4 ◦C was conducted using the CIE coordinates (L*, a*, b*). The read was from a CR-10
tristimulus colorimeter (Konika Minolta, Inc., Tokyo, Japan) with a D75 light source [42].
Color difference (∆E) was calculated from Equation (1):

∆E∗ =

√
(∆L∗)2 + (∆a∗)2 + (∆b∗)2 (1)



Foods 2024, 13, 3717 5 of 16

2.4.3. Viscosity Measurements

The rheological properties of avocado pulp were determined by using the concentric
cylinder configuration of a rheometer (HAAKE RotoVisco 1, Thermo Fisher Scientific,
Waltham, MA, USA), specifically the bob Z-31. Samples of 52 g of avocado pulp for each
determination were introduced in the corresponding cup. The temperature was maintained
with a water bath (HAAKE DC30-K20, Thermo Fisher Scientific, Waltham, MA, USA),
at 80 ◦C, 25 ◦C, and 5 ◦C, which were the mean temperatures of each stage of the process
inside the SSHE. The behavior of shear stress (τ, Pa · s) with respect to the shear rate

.
γ (1/s)

of a non-Newtonian fluid was used to characterize the consistency (K, Pa · sn) and behavior
index (n, dimensionless) of samples. The viscosity results were obtained by employing the
power law model [21,24] (Equation (2)):

τ = K
( .
γ
)n (2)

2.5. Biochemical Analysis
2.5.1. Avocado Oil Extraction

The Soxhlet method (AOAC 963.15) was employed to determine oil content. Samples
of 20 g of avocado pulp were dehydrated at 110 ◦C up to constant weight. The dried sample
was spread in the thimble and placed into the Soxhlet device. The reflux took place with
150 mL of ethyl ether for approximately four hours. The flask was dried at 110 ◦C to
constant weight.

2.5.2. DPPH

The methods reported by Figueroa et al. [43] and Diez Rodilla et al. [44] were used with
some modifications. Briefly, samples of 1 g of avocado pulp and 10 mL of
an 80:20 (v/v) aqueous methanolic solution were homogenized in triplicate using a magnetic
stirrer plate (Thermo Fisher Scientific Inc., Waltham, MA, USA) for 30 min at 25 ◦C. Subse-
quently, the samples were sonicated using an ultrasonic bath (Thermo Fisher Scientific Inc.,
Waltham, MA, USA) for 30 min at 25 ◦C. Finally, the samples were centrifugated in a Hermle
centrifuge Z326K (Hermle Labortechnik GmbH, Wehingen, Germany) at 11,000 rpm for
15 min. Supernatants were collected. The extraction was repeated two times more on the
solid residue. The three supernatants were mixed and stored until further analysis.

Aliquots of 50 µL of extract were added to 1950 µL of DPPH solution and were
incubated for 30 min at room temperature. The absorbance was read at 515 nm (Jenway
6705UV/Vis, Cole-Parmer, Vernon Hills, IL, USA). A trolox calibration curve was prepared
in the range of 150–750 mM, and the results were expressed as the µg Trolox equivalent per
gram dry weight (dw).

2.5.3. Total Phenolic Compounds

The method of Singleton and Rossi [45] and Campos et al. [19] was used to determine
the total phenolic compounds with some modifications. In total, 100 µL of the extract was
mixed with 900 µL of Folin–Ciocalteu reagent. The solution was allowed 5 min at room
temperature, and then it was added to 700 µL of 7% sodium carbonate solution in distilled
water. It was mixed and incubated for 90 min, and the absorbance was read at 725 nm.
Gallic acid was used as a standard for the calibration curve. The total phenolic compounds
were expressed as mg of gallic acid equivalent (GAE) per gram.

2.5.4. Enzymatic Activity

The oxidation of the catechol by the polyphenol oxidase determines the enzymatic
activity in a matrix such as avocado pulp. The enzymatic activity (E.A.) of the polyphenol
oxidase was determined by using 0.2 mL of the sample, 2.4 mL of the buffer of phos-
phates (10 mM, pH 6.5), and 0.4 of catechol (0.5 M). The change in absorbance was deter-
mined spectrophotometrically (Jenway 6705UV/Vis, Cole-Parmer, Vernon Hills, IL, USA)
at 420 nm for 10 min every 30 s and 20 ◦C [46].
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The reaction rate for the polyphenol oxidase was defined by the change in the ab-
sorbance for t = 1 min (Equation (3)):

E.A. =
∆A420 nm

t
(3)

2.6. Microstructure Analysis
2.6.1. Differential Scanning Calorimetry

The isothermal determinations were performed in a differential scanning calorimetry
(DSC) equipment (Diamond DSC, Perkin-Elmer, Waltham, MA, USA). Hermetic aluminum
pans were used to process the samples. The setting conditions for the analysis were as
follows: holding for 1 min at −20 ◦C; heating the sample from −20 ◦C to 80 ◦C at a rate of
10 ◦C/min. The following configuration was intended to imitate the processing conditions
of the heating and cooling stages: holding for 1 min at 20 ◦C, heating to 80 ◦C, and cooling
up to −20 ◦C at a rate of 10 ◦C/min.

2.6.2. X-Ray Diffraction

The samples of avocado pulp stored at three temperatures (4, 10, and −20 ◦C) were
analyzed in a Rigaku MiniFlex (Rigaku Holdings Corporation, Tokyo, Japan) diffractometer
to obtain the XRD patterns with Cu Kα radiation (λ = 1.540 56 Å). The results of the XRD
analysis were the diffraction angles 2θ, intensity, and d-spacing.

2.6.3. HRTEM

The avocado samples (approximately 10 µL) were placed on a carbon grid coated with
formvar and analyzed in an Aberration Corrected Cold Field Emission Scanning Transmis-
sion Electron Microscope Jeol JEM-ARM200CF (JEOL Ltd., Tokyo, Japan). The microscope
was equipped with a cold field emission gun, Cs corrector, and a high-angle annular dark
field (HAADF) detector and had an ultra-high resolution of 0.72 Å. An electron beam
spot with a condenser aperture of 60 nm at 200 kV for less than 30 s was used. Several
locations on individual samples were analyzed. Fast Fourier Transform (FFT) analysis and
image processing were applied using the freely available Digital Micrograph (GATAN Inc.,
Pleasanton, CA, USA) software (https://www.gatan.com/products/tem-analysis/gatan-
microscopy-suite-software, accessed on 18 November 2024) attached at the microscope.

3. Results
3.1. Physicochemical Characterization of Avocado Pulp

Table 3 summarizes the physicochemical characterization of the avocado pulp before
and after SSHE processing. In the case of the color difference, the first result shown is after
comparing the raw pulp and the avocado pulp before the process. The ∆E* after processing
and two weeks of storage at 4 ◦C was calculated with respect to the color of the raw pulp.

Table 3. Results of physicochemical parameter of avocado pulp.

Parameter Before SSHE Processing After SSHE Processing

Moisture content (%) 61 ± 2.8 a 57 ± 1.3 a

Color difference, ∆E*
(dimensionless) 1.89 ± 0.07 b 5.02 ± 0.06 c

Results are mean SD (n = 3). Means within row with different superscript small letters are statistically different
(p < 0.05).

The average temperature of avocado pulp at the heating stage was approximately
80 ◦C. However, the residence time inside each SSHE was short (approximately 5 min)
to minimize the effect of the high temperature on the bioactive compounds. Also, the
temperature of heating can impact the evaporation of water and, in turn, impact the
crystallization process. For example, in some products, such as with the crystallization of

https://www.gatan.com/products/tem-analysis/gatan-microscopy-suite-software
https://www.gatan.com/products/tem-analysis/gatan-microscopy-suite-software
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sugars, there is a desirable decrease in the aqueous content, given that drying influences
the rate of crystallization of sugars [32]. In the case of avocado pulp, the moisture content
is relevant to the re-emulsification process in the pre-cooling and cooling stages.

The pigments in avocado pulp are chlorophylls and carotenoids [47,48]. The temper-
ature, pH, and mechanical forces can degrade these compounds and change their color
during storage or after processing [13]. The first compounds of the chlorophyll break-
down are pheophytins and pheophorbides [49,50]. As a result, the avocado pulp showed
‘degreening’ [50]. To the naked eye, the color change seemed non-drastic. The crystalliza-
tion process could have delayed the degradation kinetics of the pigments, and the final
product was more stable than the avocado pulp. Figure 2 shows the avocado pulp after
process (a), and the avocado pulp processed and stored at 4 ◦C (b). The product stored
at 10 ◦C remained without signs of discoloration or spoiling for 2.5 weeks. Discoloration
and spoilage was not evident in the samples stored at 4 ◦C and −20 ◦C after 5 weeks.
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Viscosity

The viscosity of the avocado pulp, according to the power law model, indicated a
pseudoplastic behavior, given the behavior index (n) was 0.349 ± 0.05 and the consistency
index was 0.854 ± 0.04 Pa·s. In crystallization, high viscosities could make it difficult to
reach a thermodynamic steady state in the sample. The viscosity of the avocado pulp
could affect the nucleus formation and crystal growth. For instance, in products such as
caramels with high sucrose or lactose, and candies, the high viscosity inhibits the rate of
nucleation [32]. However, Sonwai et al. [51] correlated the increase in viscosity with the
degree of crystallinity in the product, and with increased steady shear the crystallization
was faster and the degree of crystallinity was higher. Viscosity might be an important pa-
rameter influencing the crystallization degree. Furthermore, the measurement of viscosity
during storage could be considered as a control parameter for crystallization.

3.2. Biochemical Characterization
3.2.1. Oil Content

The fat content in the avocado puree immediately after SSHE processing was
24.3 ± 0.9%. Variations in the dry matter and fat content of avocado pulp are due to
geographical location, growing conditions, maturity stages, environmental conditions,
and genetics [19,52,53]. These results were relevant due to the possible generation of
oil-in-water emulsions by effect of the thermal and mechanical stress involved in SSHE
processing, as reported in different food products [38,54] and which could be important for
the crystallization observed in the avocado pulp.

3.2.2. Antioxidant Capacity and Total Phenolic Compounds

The antioxidant capacity determined by the DPPH method before and immediately af-
ter the processing through the SSHE system was 0.135 ± 0.002 a µg TE/g dw and 0.108 ±
0.001 b µg TE/g dw, respectively. The total phenolic content was 6.024 ± 0.213 c mg GAE/g dw
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of avocado pulp and 4.571 ± 0.263 d mg GAE/g dw after processing. The decrease in the
antioxidant capacity was probably due to the thermal treatment with the SSHE system.
However, the DPPH method can be affected by how antioxidants act in the electron transfer
due to the exposure of light or oxygen and the interaction of water [55].

The variations of the total phenolic compounds and the antioxidant capacity reported
for the avocado pulp fluctuate with different stages of fruit maturity, the geographical
location of the fruit, and the process employed for the avocado pulp [56], such as the
use of a high-pressure [47], lyophilization [25], cold plasma [55], and pulse light [57].
The results of the increase or decrease in the antioxidant capacity by effect of these different
technologies are related to the operating conditions and the residence time associated with
the process [58].

3.2.3. Enzymatic Inactivation

The change in the absorbance found in the avocado pulp sample shows the polyphenol
oxidase reaction to the catechol, which causes enzymatic browning in the avocado (Figure 3).
However, the thermal treatment in the SSHE inactivates the enzymatic activity because
there are no changes in the absorbance of the avocado pulp processed.
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Figure 3. Enzymatic activity of polyphenol oxidase of avocado pulp and avocado pulp after SSHE
processing. Circles represent the enzymatic activity found in the avocado pulp before the process,
whereas rhombi are for the avocado pulp after processing.

The activity of the enzyme polyphenol oxidase (PPO) is undesirable in some vegetables
and fruits, such as avocado pulp. Generally, the browning formation on the avocado pulp
is associated with a loss in the nutritional value of the fruit, mainly in the proteins, amino
acids, or lipids, due to the formation of free radicals during the reduction of o-quinone
molecules in the redox reaction [26,59]. The damage of the pulp’s color and the decrease
in the bioavailability of the nutrients is an indicator of poor quality in avocado pulp
products [26,60,61]. The efforts of the food industry to extend the shelf-life of the avocado
mesocarp focused on reducing or inactivating the activity of PPO.

3.3. Microstructure
3.3.1. Differential Scanning Calorimetry

The temperatures of the processing were imitated in the DSC analysis in order to
analyze whether there was a phase transition in the avocado pulp with the thermal shock.
Nonetheless, the thermograms obtained do not correspond to the real processing conditions
because during the DSC analysis it is not possible to include the effect of the convective
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heat transfer (see Figure 4). The mechanical action of the blades in similar systems have
been reported to separate the oil; thus, the temperature differences as well as the blade
rotation involved in the process seemed to produce the reincorporation of the oil drops
into the aqueous matrix of the avocado pulp, i.e., re-emulsification. Also, the composition
of avocado pulp and the variety of fatty acids present in avocado oil does not allow for
the obtaining of defined peaks that would indicate the phase transition. Table 4 shows the
peaks for avocado without processing and with storage at 4 ◦C, and the temperatures for
every sample are similar; however, in the case of the sample stored at −20 ◦C, a change in
the behavior was observed; specifically, the DSC showed a possible second-order transition
of the avocado pulp after storage at −20 ◦C.
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Figure 4. DSC profiles of avocado pulp immediately after processing (AP) (a), avocado processed
and stored at 4 ◦C (APP4) (b), avocado processed and stored at −20 ◦C (APP-20) (c), and avocado
without processing and heated and cooled for comparison (d).

Table 4. The DSC results of the avocado pulp and avocado pulp processed and stored at 4 ◦C.

Sample TOS (◦C) TE (◦C) Peak (◦C) ∆H (J/g)

APulp −1.75 14.90 5.92 252.2326
A4 −1.75 12.86 4.87 238.3095

Tan et al. [2] obtained the same peaks for avocado oil and suggested the correlation
with the degree of saturation and the temperature of the melting peaks of tri-saturated and
mono-unsaturated TAGs, compared with the tri-unsaturated TAGs, which have a lower
melting point and possibly generate unstable crystals.

3.3.2. X-Ray Diffraction and HRTEM

Figure 5 displays the diffraction patterns of the samples obtained from the
three different conditions of avocado pulp processing under the prepared SSHE system.
With respect to the nuclei formation process, the nuclei can be affected by surfactants (such
as saturated or unsaturated mono- and diacylglycerols) and by the affinity to the hydropho-
bic tail between the surfactant molecule structure and the triacyl glycerols (TAGs) [62–65].
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Figure 5. XRD patterns: green plot: avocado pulp without process; blue plot: avocado processed and
stored at 10 ◦C; red plot: avocado processed and stored at 4 ◦C; and gray plot: avocado processed
and stored at −20 ◦C.

The oleic and palmitic acids present higher concentrations in avocado Hass
(Persea americana Mill.), followed by linoleic and palmitoleic acids [36,41,66–68].
The TAG structure, the carbon number in TAGs and diversity of fatty acids, as well as the
presence of specific TAGs would affect the arrangement of the polymorphic form [63,69–71].
The operating conditions are also relevant for the formation of nuclei during the process,
as well as the storage conditions [32]. Thus, the diffraction patterns show the differences
in the intensity of the polymorphs for the three avocado samples processed and stored
at different temperatures. According to the measurements for each peak, in the case of
the avocado pulp processed and stored at 4 ◦C, the interplanar spacings with the highest
intensity were at d = 4.217 Å.

As compared to the reports of interplanar spacings for fatty acids, the polymorph type
with the higher proportion in avocado pulp processed and stored at 4 ◦C was β′. Water and
triglycerides are the major components of avocado pulp [72]. Therefore, these components
are the most involved in the formation of nuclei. In agreement with the triacyl glycerol
profile of avocado, storage at 4 ◦C favored the growth of β′ polymorphs. In products
such as margarine or cocoa butter, the form β′ is desirable because it is associated with
a smooth and creamy texture [71]. In the case of cocoa butter, monosaturated fatty acids
are predominant (palmitate, oleate, and stearate) and promote six different types of the
polymorph β′ [51].

The effect of rotor speed and temperature contribute to the rupture of idioblastic
cells of the avocado, and to the release of the oil contained in the cells into the avocado
matrix. As explained above, in the pre-cooling phase of the process, the lower temperature
contributed to the re-emulsification of the avocado oil in the pulp matrix. Under the cooling
temperature, the nucleation of triglycerides and other components of the avocado pulp,
such as fiber, carbohydrates, water, and proteins, was triggered.

Table 5 shows the distribution of different types of polymorphs across the diffrac-
togram of avocado samples. The form β′ is the polymorph with the highest intensity,
followed by the form α. Due to the rotation speed, storage temperature, and the fatty acid
profile, the polymorph α present in the avocado pulp would change into the form β after a
longer time of crystal maturation.

Figure 6 shows the selected-area electron diffraction (SAED) pattern for the avocado
pulp processed and stored at 4 ◦C. The presence of the geometry’s bright spots (Figure 6c)
indicates the formation of crystals in the avocado pulp. The change in the microstructure of
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the avocado pulp and its consequences on its shelf-life have not been reported yet. The com-
position of the avocado fruit, operating conditions, and temperature storage contributed to
the formation of nuclei and maturation of the different types of crystals [63,73].

Table 5. Interplanar spacing values for avocado pulp processed and stored at 4 ◦C.

Polymorphic Form Interplanar Spacing (Å) 2θ Angle Intensity Counts

α 4.15 21.353 28,410

β′

4.329
4.055
3.895
3.701

20.502
21.900
22.812
24.027

28,341
28,685
28,960
29,648

β 4.686 18.921 25,108
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Figure 6. TEM micrographs (a,b) and SAED pattern of avocado pulp processed and stored at 4 ◦C.
(a) Region enclosed by the red box in the micrograph (b). (c). Fast Fourier Transform (FFT) masking
tool shows atomic columns as found in the region indicated by the gray square.

In the case of the avocado pulp processed and stored at 10 ◦C, the highest intensity
was for polymorph β, as shown in Table 6. However, the presence of polymorphs α and β,
for an equal intensity, gave an SAED pattern that is shown in Figure 7.

Table 6. Interplanar spacing values for avocado pulp processed and stored at 10 ◦C.

Polymorphic Form Interplanar Spacing (Å) 2θ Angle Intensity Counts

α 4.158 21.353 16,303

β′

4.316
4.229
4.089
3.701

20.562
20.988
21.717
24.027

17,059
16,647
15,477
11,212

β 4.613 19.225 17,059

The stability of the crystals and the definition in the SAED pattern were not equal
to that of the avocado pulp stored at 4 ◦C, because the temperature of maturation allows
the growth of crystals but not with enough intensity to make the pulp stable. Also, the
decomposition of the avocado pulp was faster than that of the avocado pulp stored at 4 ◦C.
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The FFT pattern of the avocado pulp processed and stored at −20 ◦C (see Figure 8)
showed only two bright spots, and if it is compared with the results in Table 7, the intensity
of alpha and beta forms was equal; hence, the stability of the crystals did not allow their
distinction by TEM. The storage temperature affected the growth of polymorphs, and due
to the composition of the avocado pulp, water was probably frozen and did not allow the
maturation of the polymorphic forms.
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(b) Region enclosed by the red box in the micrograph (a).
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Figure 8. TEM micrographs (a,b) and FFT pattern of avocado pulp processed and stored at −20 ◦C in
the region enclosed by the red box (c). (b) Region enclosed by the red box in the micrograph (a). The
region enclosed by the green box shows particles with similar morphology to those found in samples
stored at −4 ◦C and 10 ◦C.
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Table 7. Interplanar spacing values for avocado pulp processed and stored at −20 ◦C.

Polymorphic Form Interplanar Spacing (Å) 2θ Angle Intensity Counts

α 4.158 21.353 20,430

β′
4.217
3.835
3.701

21.049
23.835
24.027

20,361
20,499
20,361

β 4.613 19.225 18,366

Several studies have reported that α crystals are composed of long, saturated fatty
acid molecules. Given the cell breakage induced by the SSHE processing, which leads to the
release of oil from idioblastic cells, the formation of these polymorphs could be triggered
briefly after the first stage of the SSHE processing; that is, where temperature is still high
and such kinds of fatty acid chains would have a greater probability to intercalate and form
the crystal networks, which could also be structures with a lower density and prone to be
reorganized into more stable crystals. In the second and third stages of the SSHE process
applied, a consequence of the lower temperature and emulsification of the oil released from
the idioblastic cells could be the tighter packing of the more stable polymorph β′. Therefore,
the formation of the β polymorphs could be the result of the crystal maturation occurring
under storage conditions, i.e., once the pulp was processed by the SSHE. Nevertheless, an
optimal temperature would be required for the formation of the more stable polymorphs,
given that their presence was markedly increased when the storage temperature was 4 ◦C
rather than 10 ◦C or −20 ◦C [74,75].

4. Conclusions

Polymorphs in avocado pulp were identified after the implementation of scraped-
surface heat exchanger processing. The type of polymorphic growth in avocado pulp with
the highest intensity was β′. This process allowed the formation of polymorphs in the
avocado pulp, particularly when the pulp was stored at 4 ◦C. Blade rotation speed affects
the development of nuclei, and the storage temperature had an impact on the maturation
of different polymorphic forms.

This process represents a new alternative to extend the shelf-life and change the
microstructure of avocado puree. The polymorphism in the avocado puree preserved the
color and improved the sensorial characteristics of the final product through a smooth
and creamy texture. It is important to explore the relationship between the polymorphism
found through the process studied here and the inactivation of the polyphenol oxidase
enzyme, to minimize the losses of the bioactive compounds.
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