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Abstract: For chicken carcass breast blood-related defects (CBDs), which occur with high frequency,
the visual features are approximated in terms of the similarity of the composition of these defects,
making it challenging to classify them, either manually or automatically, using conventional machine
vision. The aim of this paper was to introduce a method of CBD classification based on hyperspectral
imaging combined with Convolutional Neural Networks (CNNs). To process hyperspectral data, the
Improved Firefly Band Selection Algorithm was constructed with the 1-D CNN CBD classification
model as the objective function, achieving a reduction in the dimensionality of hyperspectral data.
The multidimensional data CBD classification models were developed based on YOLOv4 and Faster
R-CNN, incorporating the 1-D CNN CBD classification model and the feature fusion layer. The
combination of hyperspectral data and CNN can effectively accomplish the classification of CBDs,
although different model architectures emphasize classification speed and accuracy differently. The
multidimensional data YOLOv4 CBD classification model achieves an mAP of 0.916 with an inference
time of 41.8 ms, while the multidimensional data Faster R-CNN CBD classification model, despite
having a longer inference time of 58.2 ms, reaches a higher mAP of 0.990. In practical production
scenarios, the appropriate classification model can be selected based on specific needs.

Keywords: chicken carcass breast; defect detection; hyperspectral imaging; deep learning

1. Introduction

Chicken is the world’s leading consumer meat product, and chicken carcasses are one
of the most important primary processed products of chicken meat [1]. The appearance
of chicken carcasses is a key factor in determining their commercial value and ensuring
food safety. Factors such as feed nutrition, farm management, and the slaughtering pro-
cess may lead to appearance defects like bone breakage, bruising, and blood and fecal
contamination, during the production of chicken carcasses [2]. The breast is the area most
densely populated by chicken carcass defects, with problems including scars, abrasions,
chicken breast congestion (CBC), chicken breast blisters (CBBs), and chicken breast blood
residues (CBBRs) [3]. The term ‘scar’ refers to the mark left on the skin after healing from
external injuries sustained during the farming process of chickens, while abrasion refers
to the superficial skin damage caused by friction or scraping during transportation and
slaughter. CBC refers to the collision of the slaughtered chicken carcasses with the process-
ing equipment during dehairing and transfer, resulting in the rupture of the capillaries in
the breast, which triggers the accumulation of blood in the chest cavity [4]. CBBs refer to
the effects of prolonged periods of chickens lying down on their chests due to the factors
of feed, management, or disease, leading to sustained pressure on the soft tissues of the
chest, which in turn causes the accumulation of blood, lymphatic fluids, or other bodily

Foods 2024, 13, 3745. https://doi.org/10.3390/foods13233745 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods13233745
https://doi.org/10.3390/foods13233745
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://doi.org/10.3390/foods13233745
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods13233745?type=check_update&version=1


Foods 2024, 13, 3745 2 of 19

fluids in the interstitial space of the chest tissues, and the eventual formation of cysts.
CBBR is the blood from neck wounds sustained due to hanging from the head that is not
washed off during transportation and remains on the surface of the breast after air drying.
Since scars and abrasion appear as small patches of dark yellow and dark red, respectively,
against the pinkish-white background of the chicken carcass, their visual characteristics are
distinct, making them detectable using conventional machine vision. However, chicken
carcass breast blood-related defects (CBDs), such as CBC, CBBs, and CBBRs, are primarily
composed of blood, with the only differences relating to blood concentration and com-
position. These differences result in insignificant differences in the color and brightness
characteristics of the defects in the visible wavelength range, especially if the composition
is similar and the imaging characteristics are similar. Machine vision methods rely on
two-dimensional spatial information such as color and luminance in the visible wavelength
range for defect classification, making it difficult to effectively differentiate these defects in
some cases. At present, manual inspection is mainly used to identify CBDs. The speed of
manual detection can hardly keep up with the production pace, requiring 8–10 people in
the defect identification process on each production line [5]. Therefore, a technology that
can automatically and accurately locate and identify CBDs is needed.

Hyperspectral imaging technology is capable of creating different spectral images
at different wavelengths based on differences in the chemical and physical properties
of the samples [6], offering great advantage in identifying visually similar but different
compositions and contents. Hyperspectral imaging technology has been widely used in
food processing to detect latent defects in raw materials and finished products, such as
bruising and frost damage in apples, pears, and peaches [7]. In the defect identification
of chicken carcasses, hyperspectral imaging technology has similar applications, such as
the identification of surface contaminants, skin diseases, and so on. After washing, fecal
residues present on the surface of chicken carcasses are difficult to detect with the naked
eye and traditional machine vision. Kang et al. used hyperspectral imaging technology to
collect images of chicken carcasses at specific wavelengths to identify fecal contamination
on the surface of chicken carcasses [8]. Skin tumors present on chicken carcasses manifest
as distortions in the skin shape of the lesion area rather than discoloration, making the
accuracy of identification by the naked eye and traditional machine vision relatively low.
Fletcher and Kong used PCA-dimension-reduced hyperspectral images to identify skin
tumors on chicken carcasses [9]. These studies indicate that hyperspectral imaging may
have a unique advantage in identifying defects which have similar visual characteristics
but different compositions.

Although the hyperspectral imaging system could provide valuable and rich spectral
and spatial information on CBDs with approximate image characteristics, images corre-
sponding to hundreds of hyperspectral bands also generate large amounts of redundant
data [10]. These redundant data consume substantial computational resources. Processing
high-dimensional data can lead to model overfitting, which may affect the accuracy of
CBDs. As an emerging hyperspectral dimensionality reduction algorithm, a metaheuristic
optimization algorithm is applied in hyperspectral data dimensionality reduction. These
algorithms simulate natural phenomena to construct intelligent populations representing
hyperspectral bands and, through the interaction and evolution of individuals, search
the hyperspectral data to select the optimal spectral bands. Common metaheuristic opti-
mization algorithms include Genetic Algorithm, Particle Swarm Optimization, Ant Colony
Optimization, and Firefly Algorithm, among others [11]. A class of algorithms like the
Firefly Algorithm, employing global attraction mechanisms during the search process, can
cover the entire hyperspectral wavelength range, effectively avoiding the problem of local
optima [12].

Even after dimensionality reduction, complex mapping is still required to utilize
hyperspectral data for CBD classification in order to find the relationship between hyper-
spectral information and CBDs. Hyperspectral images contain one-dimensional spectral
information and two-dimensional spatial information [13]. In food detection modeling
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based on hyperspectral images, one-dimensional spectral information has often been used
for target detection, while two-dimensional spatial information has typically been used
for the visualization of the detection results [14]. Currently, one-dimensional spectral
information is widely used in prediction modeling about pork tenderness [15], the assess-
ment of E. coli contamination [16], and the detection of adulteration in minced mutton [17].
Meanwhile, the results were visualized by applying the model to each pixel in the image.
This approach effectively utilizes one- and two-dimensional information to some extent.
For the classification of CBDs, it is essential to first determine the location of the defects and
then further identify others with similar visual characteristics [18]. This process can begin
via the use of two-dimensional spatial information to locate the defects. One-dimensional
spectral information is then used to effectively identify the defects of different compositions,
allowing more precise identification of the defects within the identified locations.

Whether performing defect localization based on two-dimensional spatial data or
defect identification based on one-dimensional spectral data, accurate modeling is required.
Convolutional Neural Network (CNN) models excel at precisely extracting positional fea-
tures from two-dimensional spatial information while also capturing classification features
from one-dimensional spectral information [19]. Target detection models based on CNN
models (such as Faster R-CNN, YOLO, SSD, etc.) are commonly used for defect detection
and grading in food [20]. Studies using YOLOv4 for the defect grading of apples [21], an
improved Faster R-CNN for cherry defect identification [22], and SSD for potato defect
detection show that CNN models can effectively use two-dimensional spatial information
to localize CBDs [23]. Due to the similar visual characteristics of CBDs, it is challenging to
achieve accurate identification based solely on two-dimensional spatial information. There-
fore, after the CNN models have completed defect localization, extracting one-dimensional
spectral information from these localized areas for spectral feature recognition can further
improve the accuracy of defect classification. For the one-dimensional spectral informa-
tion of CBDs, 1-D-CNN can extract the contained classification features through multiple
convolutional layers and pooling operations [24], thereby efficiently identifying localized
defects [25]. Therefore, based on the CNN model, the basic network frameworks are im-
proved to effectively utilize the multidimensional information obtained from hyperspectral
data, which makes it possible to accurately locate and identify CBDs.

The main purpose of this paper is to explore the potential of using hyperspectral
imaging technology combined with CNN models in the classification of CBDs. The main
workflow of this study is shown in Figure 1. In performing dimensionality reduction and
constructing multidimensional data CBD classification models, the aim is to fully utilize
the advantages of hyperspectral multidimensional information in identifying substances
with similar visual characteristics but different contents in terms of the main components,
thereby establishing a method for the localization and identification of CBDs. The specific
contents are as follows:

(1) We addressed the redundancy and multidimensional characteristics of hyperspectral
data. Using the 1-D CNN CBD classification model, the Improved Firefly Band
Selection Algorithm was developed as the objective function of the Firefly Algorithm
to obtain the spectral bands most suitable for detecting CBDs.

(2) The YOLOv4 and Faster R-CNN CBD classification models were constructed based on
the synthesized pseudo-color images, aiming to evaluate the classification accuracy of
CBDs based on two-dimensional spatial data.

(3) The multidimensional YOLOv4 and Faster R-CNN CBD classification models were
constructed by introducing the feature extraction module, the 1-D CNN CBD clas-
sification model, and the feature fusion layer into the YOLOv4 and Faster R-CNN
CBD classification models, respectively. It allows the models to extract classification
features from the one-dimensional spectral information of the localized regions and
integrate them with the classification features from the two-dimensional spatial in-
formation, thereby improving the classification accuracy of CBDs. On this basis, the
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classification performances of the multidimensional YOLOv4 and Faster R-CNN data
CBD classification models were compared.

Figure 1. The main flow of the research: (a) sample preparation; (b) HSI system; (c) hyperspectral
image dimensionality reduction; (d) model construction; (e) model result.
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2. Materials and Methods
2.1. Sample Preparation

The method proposed in this study is mainly applicable to large slaughterhouses with
a high degree of automation, where the production process is generally standardized. This
includes procedures such as slaughtering, dehairing, gutting, rinsing, and pre-cooling.
The defects generated, the detection environment, and the conveyor system designed for
detection in this process are highly similar. Therefore, a representative large slaughterhouse
in the local area was selected for sampling in this study. A total of 1080 chicken carcasses
(Figure 1a) were selected from different time periods and batches, with a weight range of
1.2 to 2.0 kg and a standard deviation of 0.43 kg. These 1080 chicken carcasses were divided
into three groups of 360 each, with each group containing only carcasses of the CBC, CBB,
or CBBR types. Water was absorbed from the agitated surface with absorbent paper, and
the hyperspectral data of the samples were collected using a hyperspectral imaging system.

2.2. Hyperspectral Data Acquisition

The Image-λ-N17E near-infrared HSI system (Sichuan Dualix Spectral Image Technol-
ogy Co., Ltd., Chengdu, China) (Figure 1b) was used to acquire the hyperspectral data. The
system comprised an imaging spectrograph (ImSpector N17E; Spectral Imaging Ltd., Oulu,
Finland); an industrial camera (Lumenera lt365R, Lumenera Corporation, Ottawa, ON,
Canada) with a sensor resolution of 960 × 1040 pixels and a spectral resolution of 2.8 nm; a
camera lens (OLES23; Spectral Imaging Ltd., Oulu, Finland) with an aperture of f/2.4 and
a field of view (FOV) of 22o, avoiding imaging errors due to variations in chicken carcass
size; two 150 W tungsten filament halogen lamps, providing a continuous and stable light
source spanning from the visible to the near-infrared spectral range, covering 400 nm to
2500 nm (Halogen Light source; Sichuan Dua lix Spectral Imaging Technology Co., Ltd.,
Chengdu, China); a step motor (Isuzu Optics Corp., Taiwan, China)-driven displacement
platform; and a computer equipped with data acquisition software.

Hyperspectral data acquisition was carried out in the factory workshop, and the
hyperspectral camera was used to scan and collect data, employing a line camera in
conjunction with a displacement platform. The acquisition parameters were set as follows:
an object distance of 40 cm; a platform forward speed of 0.6 cm/s; a backward speed of
2 cm/s; an exposure time of 10 ms. The hypercube comprised 360 single-band spectral
images, each 960 pixels in width and 1101 pixels in length, spanning the wavelength range
from 382.3 nm to 1020.2 nm with a spectral resolution of 1.8 nm. During data acquisition,
in order to reduce the impact of surface unevenness on the quality of the hyperspectral
images, two halogen lamps were used to uniformly illuminate the surface of the chicken
carcass in opposing directions, ensuring an even distribution of reflected light. Additionally,
the chicken carcass was kept at the center of the camera’s field of view to avoid angular
deviations that could cause inconsistency in imaging, ensuring that each image accurately
and completely reflected the characteristics of the chicken carcass.

2.3. Spectral Image Correction

Due to unstable light sources, camera currents, and other factors, noise may be intro-
duced during hyperspectral data acquisition, which will impact the imaging quality. To
mitigate external noise interference, black and white correction was utilized at the pixel
level for hyperspectral image correction. Specifically, the black calibration image is ob-
tained by turning off lights and covering the camera lens, while the white calibration image
is captured by placing a white cloth next to the chicken carcass. The specific correction
calculation formula is shown in Equation (1):

R =
(I − B)
(W − B)

× 100% (1)
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where I denotes the original image; W denotes the gray and white calibration image; B
denotes the all-black calibration image; and R denotes the corrected relative image.

2.4. Hyperspectral Band Selection Algorithm

Extracting effective bands from the vast amount of hyperspectral data in order to
classify CBDs is crucial for improving the classification accuracy and model detection
speed. The Firefly Algorithm was chosen as the fundamental dimensionality reduction
algorithm to be used for hyperspectral data in this paper. The algorithm has excellent
global search capabilities, and can avoid local optima due to the large volume of data
processed during dimensionality reduction, thus affecting the accuracy of band selection. It
was proposed by Yang in 2008 and simulates the process of light signal exchange between
fireflies [26]. The flow of the algorithm is as follows: firstly, the population is initialized and
the luminance value of each firefly is calculated; then, based on the luminance difference
and distance, the firefly with lower luminance values moves closer to the one with higher
luminance values; then, the position is updated based on the luminance attractiveness
and the luminance is recalculated iteratively until the stopping condition is satisfied, thus
finding the global optimal solution. Only accurate evaluation results can guide the algo-
rithm towards better solutions in iterative processes. Therefore, an accurate evaluative
object function is crucial for the firefly classification in terms of performance. In this paper,
the 1-D CNN CBD classification model was constructed based on the characteristics of
one-dimensional spectral data, serving as the objective function of the Firefly Algorithm.
The structure of the 1-D CNN CBD classification model is shown in Figure 2. It consists of
13 one-dimensional convolutional layers (1-D Conv) with ReLU activation functions, 5 max
pooling layers, and 2 fully connected layers. Using the 1-D CNN CBD classification model
as the objective function, the improved Firefly Band Selection Algorithm was constructed.
The initial parameters were set as follows: number of fireflies (n) = 5, where each firefly rep-
resents three different hyperspectral bands; maximum attraction (β0) = 0.5; light intensity
absorption coefficient (λ) = 0.8; step coefficient (∂) = 0.6; and maximum number of itera-
tions (Max Iterations) = 100. The 360-band average spectral reflectance data for CBDs were
extracted from the hyperspectral data using ENVI 5.6 software (Harris Geospatial Solutions,
Interlocken, CO, USA) and used as the Improved Firefly Band Selection Algorithm input.
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2.5. The Multidimensional Data CBD Classification Model

For the classification of CBDs, based on the advantages of hyperspectral two-dimensional
images in terms of location information and the advantages one-dimensional spectral in-
formation in terms of composition and ingredients, two-dimensional images were used
to locate the defects. Then, one-dimensional spectral data were extracted from the defect
areas for identification in this paper. To accurately identify CBDs, it is essential to construct
a CNN model that effectively utilizes both one-dimensional and two-dimensional informa-
tion, and then integrates this information. YOLOv4 and Faster R-CNN are representative
models among CNN models, being capable of both localizing defects and identifying
defects within the localized regions [27]. However, YOLOv4 and Faster R-CNN primarily
classify based on two-dimensional image features. Due to the similar visual characteris-
tics of CBDs, performing effective identification based solely on two-dimensional image
information is challenging. To improve the identification accuracy of the model for CBDs,
the classification features from two-dimensional spatial data need to be fused with those
from one-dimensional spectral data. In view of this, multidimensional data classification
models for CBDs have been developed based on YOLOv4 and Faster R-CNN, respectively.
Taking the network structure of YOLOv4 as an example, the original YOLOv4 structure
was modified, with the spectral data extraction module (Figure 3b), the 1-D CNN CBD
classification model for one-dimensional feature extraction (Figure 3c), and the feature
fusion layer (Figure 3d) added to YOLOv4. As shown in Figure 3, the multidimensional
data YOLOv4 CBD classification model was constructed. Figure 3a details the structure
of the head parts of the modified YOLOv4 network. The head part of YOLOv4 network
performs the prediction of localized CBDs, which includes three feature extraction branches,
each handling feature maps of different scales to enhance detection capabilities for defects
of various sizes. To simplify the network structure while maintaining the integrity of the
feature extraction for CBDs, only the largest feature extraction branch of the head part
(Figure 3a) was retained in the modified model.
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Faster R-CNN, like YOLOv4, relies on two-dimensional image features for classifica-
tion. Faster R-CNN uses two-dimensional convolution, max pooling, and fully connected
layers to achieve the feature extraction, localization, and identification of CBDs, respectively.
Among these features, the Region Proposal Network (RPN) in Faster R-CNN has two deci-
sion branches: one is responsible for determining whether the generated anchors contain
CBDs, and the other is responsible for obtaining coordinate adjustment parameters. At the
end of the RPN, initial rough detection results are obtained. The CBD classification based
on Faster R-CNN has the same limitations as the use of YOLOv4. Similarly, to improve
the identification accuracy of defects and to compare the accuracy of these two models
in multidimensional data identification, the spectral data extraction module (Figure 4a),
the 1-D CNN CBD classification model for one-dimensional feature extraction (Figure 4b),
and the feature fusion layer (Figure 4c) were also added to the structure of Faster R-CNN.
The multidimensional data Faster R-CNN CBD classification mode, shown in Figure 4,
was constructed.
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2.6. Evaluation Indicators

To evaluate and compare the two models more objectively, mIoU, precision, recall,
F1 score, AP, mAP, and inference time were used as the evaluation indexes of the multidi-
mensional data localization and identification model, and the confidence level in terms of
precision, recall, and F1 score was set to 0.5. IoU (intersection over union) is a metric used
to evaluate the overlap between the predicted bounding box, generated by the model, and
the ground truth bounding box during data annotation, while mIoU (mean intersection
over union) is the average IoU across multiple images, and is used to assess the overall
localization accuracy of the model. Precision represents the proportion of true positive
samples in relation to predicted positive samples: the higher the precision value, the higher
prediction accuracy of the model. Recall is an indicator of the model’s ability to identify
all positive samples; the higher the recall, the lower the model’s miss rate [28]. F1 score
is the PR area enclosed by the curve (precision is the vertical coordinate and recall is the
horizontal coordinate) combining precision and recall. The higher the F1 score at the same
confidence level, the better the performance of the model. AP and mAP are the indices
generated within a certain threshold. They not only evaluate the results, but also reflect the
stability of the model for each classification prediction. The smaller the fluctuation of the
PR curve and the larger the value of AP, the better the stability and accuracy of the model.
Inference time represents the time required for a model to process a single image and is
used as a metric to evaluate the model’s speed of detection. When the detection accuracy
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meets the requirements, a shorter inference time indicates the better real-time performance
of the model. The corresponding calculation results are shown in Equations (2)–(7):

IoU =
|A ∩ B|
|A ∪ B| (2)

Accuracy =
(TP + TN)

(P + N)
(3)

Precision =
TP

(TP + FP)
(4)

Recall =
TP

(TP + FN)
(5)

AP =
∫ 1

0
Precision d(Recall) (6)

mAP =
AP
C

(7)

where A is the predicted region and B is the real region. TP (true positive) is the number of
samples that are correctly predicted by the model to belong to a category and do belong to
a category, TN (true negative) is the number of samples that do not belong to a category
and are not predicted by the model to belong to a category, FP (false positive) is the number
of samples that are incorrectly predicted by the model to belong to a category and are
not, C is the number of categories, and AP is the area bounded by the PR curve and the
horizontal and vertical coordinates (with recall as the horizontal coordinate and precision
as the vertical coordinate).

3. Results
3.1. Spectral Characteristics

Due to the different moisture, protein, and other contents in various CBDs, their
spectral performances also differ. As shown in Figure 5, by calculating the average spectral
reflectance of breast defects (CBC, CBBs, and CBBRs) in each hyperspectral image, the aver-
age spectral curves of all CBDs were obtained. It can be seen that the three defect types have
distinct absorption peaks in the 420–600 nm wavelength range and a smaller absorption
trough in the 950–970 nm range. The wavelength ranges of 420–450 nm, 520–570 nm, and
570–600 nm represent proteins that correspond to the main hemoglobin components of the
blood [29]. These values are consistent with the three defects being closely related to blood
composition. Due to the different causes of defect formation, the number of red blood cells
and the hemoglobin content of the above three blood-related defects are different. CBC
results from internal bleeding due to a chest impact, CBB results from capillary rupture
and bleeding due to prolonged friction, and CBBR is blood that was not completely rinsed
off the surface after external bleeding. Therefore, the hemoglobin content decreases sequen-
tially from CBC to CBBRs to CBBs. This is reflected in the spectral curves as a sequential
decrease in absorption intensity in the protein absorption bands of CBC, CBBs, and CBBRs.
The band near 960 nm is related to water absorption [30]. CBBs contain tissue fluid, and
CBC contains plasma, and both of these are primarily composed of water. CBBRs, having
been air-dried, have the least amount of moisture compared to the other two defects. This
is reflected in the spectral curves near 960 nm, where the spectral reflectance decreases
sequentially from CBC to CBBs to CBBRs. The trends and differences in the spectral curves
indicate that it is feasible to classify CBC, CBBs, and CBBRs using hyperspectral data.
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3.2. Band Selection Results and Analysis
3.2.1. The Training of the Objective Function

The presence of redundant or irrelevant information in hyperspectral data can lead to
model overfitting, while dimensionality reduction can lead to key features being retained,
thereby improving the model’s generalization ability. In this paper, the Firefly Algorithm is
chosen as the dimensionality reduction method for hyperspectral images. For hyperspectral
data dimensionality reduction using the Firefly Algorithm, an objective function capable of
accurately evaluating the classification performance of each band combination represented
by each firefly in every iteration is necessary. In this paper, the 1-D CNN CBD classification
model, based on one-dimensional spectral information, was established and used as the
objective function of the Firefly Algorithm. The training results of the 1-D CNN CBD
classification model for over 100 training cycles are shown in Figure 6. It illustrates that the
model starts to converge in the 35th generation and that the loss values for the calibration
and validation sets are 0.12 and 0.1, respectively, which indicates that the 1-D CNN has
strong adaptability to the spectral data of CBDs, making it suitable for the identification
of these defects (Figure 6a). Additionally, the evaluation metrics in Table 1 show that the
F1 scores for each class are all above 0.95, confirming the model’s good performance. The
AP values also exceed 0.95, indicating the model’s good stability. However, in terms of
individual categories, examining the confusion matrix in Figure 6c, we can see that there is
some degree of confusion in the classification of CBBs and CBBRs, which is also evidenced
by the relatively small fluctuations in the PR curve in Figure 6b [31]. This may be due
to the small differences in erythrocyte count between these two defects and the fact that
some CBBC surfaces were not fully air-dried, leading to spectral reflectance values that
are too close. This makes it difficult for the model to discriminate. The above indicators
suggest that the 1-D CNN CBD classification model is suitable for use as the objective
function for the Firefly Algorithm and as a method for one-dimensional spectral feature
extraction in subsequent classification models. However, some confusion was observed
in the classification of CBBs and CBBRs by the model, indicating that the classification of
CBDs based on a single dimension has certain limitations.

Table 1. A comparison of the 1-D CNN CBD classification models’ performances in CBD classification.

Label Precision Recall F1 Score AP mAP

CBC 0.992 0.991 0.992 0.996
0.970CBB 0.977 0.984 0.980 0.963

CBBR 0.976 0.969 0.972 0.952
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Figure 6. Results of the 1-D CNN CBD classification model: (a) loss curves; (b) PR curves; (c) confusion
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3.2.2. Band Selection Result

The results of the Improved Firefly Band Selection Algorithm after 100 rounds of band
selection are shown in Figure 7. The dashed lines represent the five different band combi-
nations associated with the five fireflies set by the Hyperspectral Band Selection Algorithm,
with each color representing one combination. Each combination includes three bands,
facilitating subsequent modeling based on the band selection results. The five selected
band combinations are discretely distributed across the entire wavelength range, indicating
that the algorithm performed a global search over the hyperspectral wavelength range and
avoided local optima. Figure 8a–e show the changes in CBD classification efficiency of
the 5 band combinations selected by the Improved Firefly Band Selection Algorithm after
100 iterations. In Figure 8, the classification efficiencies of the band combinations repre-
sented by each firefly are 0.96, 0.83, 0.91, 0.89, and 0.90, respectively. Among these, the red
band combination has the highest classification efficiency of 0.96 (Figure 8a), indicating that
this band combination is the optimal choice for identifying CBDs. Therefore, the grayscale
images corresponding to the band combination represented by the red dashed line (430 nm,
576 nm, and 962 nm) are synthesized into pseudo-color images and used as the input in
terms of two-dimensional spatial information in subsequent models. Figures 9a–c and 9d,
respectively, show the grayscale and pseudo-color images of CBC at wavelengths of 445 nm,
576 nm, and 962 nm, while Figure 9e–g, and Figure 9h, as well as Figure 9i–k, and Figure 9l,
respectively, show the grayscale and pseudo-color images of CBBs and CBBRs at the
same wavelengths. In the pseudo-color images constructed from the downscaled images,
the color differences between the three types of defects and the surrounding skin were
preserved, while the differences between the defects were significantly enhanced. This
provides a better image environment for CBD identification, based on the pseudo-color
image breast defects, and the classification of CBDs later on.
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3.3. Results of the CBD Classification Model
3.3.1. Results of the CBD Classification Model Based on Pseudo-Color Images

First, we investigated the efficiency of YOLOv4 and Faster R-CNN in localizing and
identifying CBDs based solely on two-dimensional spatial information. In this paper,
synthesized pseudo-color images (Figure 9) were used to construct YOLOv4 and Faster
R-CNN CBD classification models. Figure 10 shows the specific training results of the
YOLOv4 and Faster R-CNN CBD classification models when used to classify CBDs. The
convergence process of the LOSS values for both models during training is shown in
Figure 10a,d. The LOSS value of the YOLOv4 CBD classification model rapidly decreases
within the first 20 epochs, gradually stabilizing and converging after 80 epochs. In contrast,
the LOSS value of the Faster R-CNN CBD classification model steadily decreases within
the first 30 epochs, but then slowly stabilizes and converges after 70 epochs. This indicates
that applying the pseudo-color image data set, synthesized from grayscale images selected
by The Improved Firefly Band Selection Algorithm, to the YOLOv4 and Faster R-CNN
CBD classification models is feasible. The localization and identification results of the
CBD classification model for randomly selected samples are shown in Figure 11, where
differently colored boxes represent different defects, with predicted labels and IoU values
displayed above the boxes. Figure 11 shows that both models are able to localize different
CBDs. The mIoU values of the two models are 0.903 and 0.932, and the IoU values for
different CBDs do not show significant differences (Table 2). This shows that both models
perform the defect localization task effectively, with the Faster R-CNN CBD classification
models showing higher localization accuracy. However, as can been seen from the confusion
matrices (Figure 10c,f), the defect identification performance of both models is not ideal,
particularly for YOLOv4. The mAP value is 0.649. It is slightly higher for Faster R-CNN,
where it is 0.758 (Table 2). Additionally, compared with CBBR identification, both models
exhibit more severe confusion when identifying CBC and CBBs, likely due to their similar
compositions. Both are subcutaneous hemorrhages in chicken breasts, displaying similar
morphologies and structures, but CBBs contain more tissue fluid, increasing the difficulty
of classification based on two-dimensional images. The similar trends in the PR curves
for these two defects, shown in Figure 10b,e, further confirm that these two defects have
similar visual characteristics. CBBR, which is blood residue on the surface of the chicken
breast, differs from CBC and CBBs in terms of shape and color. Therefore, the identification
performance for CBBRs is relatively better than that for these two defects. As shown in
Table 2, the inference time of the YOLOv4 and Faster R-CNN CBD classification models
reaches a maximum of 35.9 ms, demonstrating that CBD detection based on pseudo-color
images has good real-time performance. The mIoU values of both models exceed 0.903,
indicating that they can accurately localize CBDs. However, the lowest mAP and F1 scores
for the two models are 0.522 and 0.621, respectively. This is mainly due to the significant
similarities in image features among the three types of defects, particularly between CBC
and CBBs. This highlights the limitations of the current models in identifying CBDs based
solely on two-dimensional spatial information. Therefore, it is necessary to incorporate
information from other dimensions to improve classification performance.

Table 2. Performance metrics comparison of the localization and identification model based on
pseudo-color images.

Model Label Precision Recall F1 Score AP IoU mIoU mAP Inference Time

YOLOv4
CBC 0.634 0.613 0.624 0.522 0.894

0.903 0.649 29.7CBB 0.600 0.643 0.621 0.537 0.909
CBBR 0.967 0.935 0.951 0.888 0.902

Faster
R-CNN

CBC 0.750 0.692 0.720 0.628 0.947
0.932 0.758 35.9CBB 0.787 0.783 0.808 0.696 0.925

CBBR 0.975 0.944 0.959 0.949 0.934
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Figure 11. Randomly selected detection results of the model: (a–c) and (d–f) are the random detection
results of the YOLOv4 CBD classification model and the Faster R-CNN CBD classification model,
respectively, for chicken carcasses with CBB, CBC, and CBBR defects.

3.3.2. Results of the Multidimensional Data CBD Classification Model

Using the characteristics of the multidimensional information obtained from hyper-
spectral spectra, the above synthetic pseudo-color images (Figure 10) and one-dimensional
spectral information about CBDs were used as inputs to construct the multidimensional
data CBD classification model. The network structures of YOLOv4 and Faster R-CNN were
modified based on the morphology of CBDs and the characteristics of hyperspectral data,
and multidimensional data CBD classification models were constructed. With modified
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models based on the realization of defect localization, the spectral values of the defects in
the localized region are extracted, and the defect images and spectral information are fused
to achieve the accurate identification of CBDs. The structures of the multidimensional
data YOLOv4 CBD classification model and the multidimensional data Faster R-CNN
CBD classification model are shown in Figures 3 and 4. These models were constructed by
incorporating the spectral data extraction module, the 1-D CNN CBD classification model,
and the feature fusion layer into the original YOLOv4 and Faster R-CNN frameworks and
by removing redundant network structures in YOLOv4.

Figure 12 shows the detection results of the multidimensional data YOLOv4 CBD
classification model when applied to the test set. From Figure 12a, it can be observed that
the loss values of the model on the training and test sets converge after 100 iterations,
reaching 0.224 and 0.208, respectively. Figure 12b presents the PR curve of the model,
showing that the classification accuracy for CBDs exceeds 0.862. These results indicate
that the YOLOv4 CBD classification model based on multidimensional data achieved a
good fit on the multidimensional data, and its classification accuracy for CBDs improved
to varying degrees compared to the YOLOv4 model based on pseudo-color images. The
confusion matrix shown in Figure 12c reflects the classification confusion between different
defect types. Compared to the original YOLOv4, the model shows a reduced degree of
classification confusion for various types of CBD. However, there is still some confusion
between CBC and CBBs. This confusion may be due to the fact that both CBC and CBBs are
subcutaneous hemorrhages in the breast, with CBBs containing more tissue fluid, leading
to very similar visual characteristics and spectral information, which increases the difficulty
of classification. Additionally, the relatively low localization accuracy of YOLOv4 leads
to there being more noise in the extracted spectral information, further impacting the
classification of CBC and CBBs. Table 3 provides a more comprehensive and detailed
evaluation of the model. It can be seen from Table 3 that the model’s IoU values remain
similar to those of the original YOLOv4 model, with F1 scores and AP values for all defect
types above 0.862, while the detection time increases by only 12.1 ms. This indicates that the
introduction of one-dimensional spectral information did not affect the model’s localization
accuracy, and that using the multidimensional data fusion method for CBD classification
significantly improved the model’s classification accuracy with only a minimal increase in
time cost.

Foods 2024, 13, x FOR PEER REVIEW 16 of 20 
 

 

the loss values of the model on the training and test sets converge after 100 iterations, 
reaching 0.224 and 0.208, respectively. Figure 12b presents the PR curve of the model, 
showing that the classification accuracy for CBDs exceeds 0.862. These results indicate that 
the YOLOv4 CBD classification model based on multidimensional data achieved a good 
fit on the multidimensional data, and its classification accuracy for CBDs improved to 
varying degrees compared to the YOLOv4 model based on pseudo-color images. The con-
fusion matrix shown in Figure 12c reflects the classification confusion between different 
defect types. Compared to the original YOLOv4, the model shows a reduced degree of 
classification confusion for various types of CBD. However, there is still some confusion 
between CBC and CBBs. This confusion may be due to the fact that both CBC and CBBs 
are subcutaneous hemorrhages in the breast, with CBBs containing more tissue fluid, lead-
ing to very similar visual characteristics and spectral information, which increases the dif-
ficulty of classification. Additionally, the relatively low localization accuracy of YOLOv4 
leads to there being more noise in the extracted spectral information, further impacting 
the classification of CBC and CBBs. Table 3 provides a more comprehensive and detailed 
evaluation of the model. It can be seen from Table 3 that the model’s IoU values remain 
similar to those of the original YOLOv4 model, with F1 scores and AP values for all defect 
types above 0.862, while the detection time increases by only 12.1 ms. This indicates that 
the introduction of one-dimensional spectral information did not affect the model’s local-
ization accuracy, and that using the multidimensional data fusion method for CBD clas-
sification significantly improved the model’s classification accuracy with only a minimal 
increase in time cost. 

 
Figure 12. Detection results of the multidimensional data YOLOv4 localization and identification 
model: (a) loss curves; (b) PR curves; (c) confusion matrices. 

Table 3. A comparison of the multidimensional data YOLOv4 CBD classification models. 

Label Precision Recall F1 Score AP IoU mIoU mAP Inference Time 
CBC 0.967 0.951 0.959 0.915 0.894 

0.901 0.916 41.8 CBB 0.950 0.966 0.958 0.862 0.912 
CBBR 0.983 0.983 0.983 0.972 0.897 

Figure 13 shows the detection results of the multidimensional data Faster R-CNN 
CBD classification model when applied to the test set. The multidimensional data Faster 
R-CNN CBD classification model has loss values of 0.003 and 0.015 when applied the 
training and test sets, respectively, with classification accuracies exceeding 98% (as shown 
in Figure 13a,b). This indicates that, compared to the multidimensional data YOLOv4 CBD 
classification model, the multidimensional data Faster R-CNN CBD classification model 
demonstrates improved fitting performances and classification accuracies when applied 
to multidimensional data. From the confusion matrix shown in Figure 13c, it is evident 
that the multidimensional data Faster R-CNN CBD classification model further reduces 
the classification confusion for CBC and CBBs, which poses a challenge for the multidi-
mensional data YOLOv4 CBD classification model. This improvement is due to the Faster 
R-CNN’s feature extraction network, which can capture the deeper classification features 
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model: (a) loss curves; (b) PR curves; (c) confusion matrices.

Table 3. A comparison of the multidimensional data YOLOv4 CBD classification models.

Label Precision Recall F1 Score AP IoU mIoU mAP Inference Time

CBC 0.967 0.951 0.959 0.915 0.894
0.901 0.916 41.8CBB 0.950 0.966 0.958 0.862 0.912

CBBR 0.983 0.983 0.983 0.972 0.897

Figure 13 shows the detection results of the multidimensional data Faster R-CNN
CBD classification model when applied to the test set. The multidimensional data Faster
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R-CNN CBD classification model has loss values of 0.003 and 0.015 when applied the
training and test sets, respectively, with classification accuracies exceeding 98% (as shown
in Figure 13a,b). This indicates that, compared to the multidimensional data YOLOv4
CBD classification model, the multidimensional data Faster R-CNN CBD classification
model demonstrates improved fitting performances and classification accuracies when
applied to multidimensional data. From the confusion matrix shown in Figure 13c, it is
evident that the multidimensional data Faster R-CNN CBD classification model further
reduces the classification confusion for CBC and CBBs, which poses a challenge for the
multidimensional data YOLOv4 CBD classification model. This improvement is due to the
Faster R-CNN’s feature extraction network, which can capture the deeper classification
features of CBC and CBBs from pseudo-color images. Additionally, Faster R-CNN can more
precisely localize the defects, reducing noise in the one-dimensional spectral information
and thereby enhancing classification accuracy. Table 4 provides a more comprehensive
and detailed evaluation of the models. As shown in Table 4, the multidimensional data
Faster R-CNN CBD classification model outperformed the multidimensional data YOLOv4
CBD classification model in both localization accuracy (IoU) and AP and F1 scores, and the
detection time increased to 58.2 ms.
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Figure 13. Detection results of the multidimensional data Faster R-CNN CBD classification model:
(a) loss curves; (b) PR curves; (c) confusion matrices.

Table 4. A comparison of the multidimensional data Faster R-CNN localization and identification
model’s performance on different carcass breast blood-related defects.

Label Precision Recall F1 Score AP IoU mIoU mAP Inference Time

CBC 0.992 1.000 0.996 0.996 0.919
0.924 0.990 58.2CBB 0.983 0.992 0.983 0.983 0.924

CBBR 0.992 0.983 0.979 0.988 0.935

In summary, multidimensional data classification models based on hyperspectral data
are capable of performing the classification tasks for CBDs. The main detection flow of
the model is shown in Figure 14. However, different model architectures have different
focuses in terms of classification: the multidimensional data Faster R-CNN localization
and identification model exhibits higher classification and localization accuracy, while the
multidimensional data YOLOv4 localization and identification model provides faster clas-
sification speed. In practical production, different models can be selected based on specific
needs in terms of classifying CBDs. It should be emphasized that, as the classification
accuracy of the model will be affected by the field environment and chicken species, when
in a new detection environment, more hyperspectral images of chicken carcasses in the
current environment need to be collected to correct and add training to the model in order
to maintain the original classification accuracy.
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4. Conclusions

In this paper, a method for CBD classification was proposed based on hyperspectral
images and CNN models. The 1-D CNN CBD classification model was chosen as the
objective function for the Firefly Algorithm in order to construct the Improved Firefly
Algorithm, which aimed to enhance the accuracy of band selection. As a result, 445 nm,
576 nm, and 962 nm were selected as the most suitable bands for CBD classification. Based
on the pseudo-color images synthesized from the dimensionally reduced hyperspectral
data and the Faster R-CNN and YOLOv4 network models, a CBD classification model
was developed. The classification model based on pseudo-color images performed well in
defect localization, with mIoU values of 0.903 and 0.932. However, its performance in CBD
classification was not ideal, with mAP values of 0.649 and 0.705. To improve the classifi-
cation accuracy based on two-dimensional spatial information, a multidimensional data
CBD classification model was constructed. The multidimensional data CBD classification
model successfully classifies CBDs, but the focus of the classification varies across differ-
ent model architectures. The multidimensional data YOLOv4 CBD classification model
achieved an mAP of 0.970 with an inference time of 41.8 ms, while the multidimensional
data Faster R-CNN CBD classification model, although having a longer inference time of
58.2 ms, achieved a higher mAP of 0.990. Currently, there is limited international research
on localizing and identifying CBDs. This paper proposes a model using hyperspectral data
for the automatic and rapid localization and identification of CBDs and tests the efficiency
of two CNN models. This could provide valuable insights for the automation of broader
livestock and poultry detection.
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