Taste Panellists’ Evaluations in Official Cheese Competitions: Analysis for Improvement Proposals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Statistical Analysis
2.1.1. Mixed-Effects Model to Estimate the Effect of Year and Cheese Variety on Marker Variables
2.1.2. Agreement Among Tasters According to Cheese Variety and Year
3. Results and Discussion
3.1. Effect of Year and Cheese Variety on the Final Score
Effect on the Final Score Only Considering the Five Permanent Tasters and Two Cheese Varieties
3.2. Effect of Year and Cheese Variety on the Organoleptic Markers
Effect on the Organoleptic Markers Considering Only the Five Permanent Tasters and Two Cheese Varieties
3.3. Agreement Between Tasters According to Cheese Variety and Year
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- AENOR UNE-EN ISO 5492:2010/A1; Análisis Sensorial. Vocabulario. Modificación 1 (ISO 5492:2010/Amd 1:2016). AENOR: Madrid, Spain, 2017.
- Molina Hernández, E. Curso de Análisis Sensorial de Alimentos. 2011. Available online: https://digital.csic.es/handle/10261/63961# (accessed on 4 March 2024).
- AENOR UNE-EN ISO 5492:2010; Análisis Sensorial. Vocabulario. AENOR: Madrid, Spain, 2010.
- Cordero-Bueso, G.A. Aplicación Del Análisis Sensorial de Los Alimentos En La Cocina y En La Industria Alimentaria; Cordero-Bueso, G., Ed.; Universidad Pablo de Olavide: Sevilla, Spain, 2013. [Google Scholar]
- Pérez Elortondo, F.J.; Salvador Moya, M.D. Análisis Sensorial de Alimentos y Respuesta Del Consumidor, 1st ed.; Editorial Acribia: Zaragoza, Spain, 2022; ISBN 978-84-200-1280-3. [Google Scholar]
- Fox, P.F.; McSweeney, P.L.H. Cheese: An Overview. In Cheese: Chemistry, Physics and Microbiology, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 5–21. [Google Scholar] [CrossRef]
- FAO. Cultivos y Productos de Ganadería. Available online: https://www.fao.org/faostat/es/#data/QCL (accessed on 10 December 2023).
- Statista. Annual Consumption of Cheese Worlwide in 2023, by Selected Country (in 1000 Metric Tons). Available online: https://www.statista.com/statistics/868231/global-annual-consumption-of-cheese-by-country/ (accessed on 26 October 2024).
- Eurostat. Producción de Queso. Available online: https://data.europa.eu/data/datasets/zwo26z1cgqtgqmwte8qvbq?locale=es (accessed on 11 December 2023).
- Ministry of Agriculture Fisheries and Food. Spanish Government Informe Del Consumo Alimentario En España 2021. Available online: https://www.mapa.gob.es/es/alimentacion/temas/consumo-tendencias/informe-consumo-alimentario-2021-baja-res_tcm30-624017.pdf (accessed on 7 December 2023).
- Cabildo de Gran Canaria Quesos de Gran Canaria: Mil y Una Opciones Para Elegir. Available online: https://cabildo.grancanariamegusta.com/blog/quesos-gran-canaria/ (accessed on 11 December 2023).
- The Guild of Fine Food 2023 Winners. Available online: https://worldcheeseawards.com/wca-results?page=2 (accessed on 5 November 2023).
- Dubeuf, J.P.; Morales, F.D.A.R.; Genis, J.M.C. Initiatives and Projects to Promote the Mediterranean Local Cheeses and Their Relations to the Development of Livestock Systems and Activities. Small Rumin. Res. 2010, 93, 67–75. [Google Scholar] [CrossRef]
- The Guild of Fine Food World Cheese Awards. Available online: https://gff.co.uk/awards/world-cheese-awards/ (accessed on 7 November 2023).
- Papetti, P.; Carelli, A. Composition and Sensory Analysis for Quality Evaluation of a Typical Italian Cheese: Influence of Ripening Period. Czech J. Food Sci. 2013, 31, 438–444. [Google Scholar] [CrossRef]
- Amores, G.; Pérez-Elortondo, F.J.; Albisu, M.; Barron, L.J.R. Short Communication: To What Extent Do Environmental or Technological Conditions Affect the Sensory Differentiation of Raw Ewe Milk Cheeses Produced in Valley or Mountain Farms? J. Dairy Sci. 2021, 104, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Mallatou, H.; Pappas, C.P.; Voutsinas, L.P. Manufacture of Feta Cheese from Sheep’s Milk, Goats’ Milk or Mixtures of These Milks. Int. Dairy. J. 1994, 4, 641–664. [Google Scholar] [CrossRef]
- Freitas, A.C.; Fresno, J.M.; Prieto, B.; Malcata, F.X.; Carballo, J. Effects of Ripening Time and Combination of Ovine and Caprine Milks on Proteolysis of Picante Cheese. Food Chem. 1997, 60, 219–229. [Google Scholar] [CrossRef]
- Álvarez, S.; Fresno, M.; Méndez, P.; Castro, N.; Fernández, J.R.; Sanz Sampelayo, M.R. Alternatives for Improving Physical, Chemical, and Sensory Characteristics of Goat Cheeses: The Use of Arid-Land Forages in the Diet. J. Dairy. Sci. 2007, 90, 2181–2188. [Google Scholar] [CrossRef]
- Álvarez, S.; Méndez, P.; Fresno, M. Effect of Feeding Goats with Leguminous Shrubs (Chamaecytisus proliferus ssp. Palmensis and Bituminaria bituminosa) on Milk and Cheese Properties. J. Appl. Anim. Res. 2018, 45, 1443–1451. [Google Scholar] [CrossRef]
- Álvarez, S.; Fresno, M. Effect of the Rippening Period and Intravarietal Comparison on Chemical, Textural and Sensorial Characteristics of Palmero (PDO) Goat Cheese. Animals 2020, 11, 58. [Google Scholar] [CrossRef]
- Fresno Baquero, M.; Álvarez Ríos, S.; Darmanin Garrido, N.; Fernández Armas, E.; Argüello Henríquez, A.; Castro Navarro, N.; Guillén Loren, M.D. Características Sensoriales de Los Quesos Herreños Ahumados. In Proceedings of the XXX Jornadas Científicas y IX Internacionales de la Sociedad Española de Ovinotecnia y Caprinotecnia, Granada, Spain, 28–30 September and 1 October 2005; pp. 59–61. [Google Scholar]
- Fresno, M.; Álvarez, S. Chemical, Textural and Sensorial Changes during the Ripening of Majorero Goat Cheese. Int. J. Diary Technol. 2012, 65, 393–400. [Google Scholar] [CrossRef]
- Sánchez-Macías, D.; Moreno-Indias, I.; Álvarez, S.; Clevelan, M.; Castro, N.; Argüello, A.; del Rosario Fresno, M. Sensory Analysis of Full-, Reduced- and Low-Fat Cheese Elaborated with Raw Goat Milk. J. Appl. Anim. Res. 2012, 40, 124–132. [Google Scholar] [CrossRef]
- McSweeney, P.L.H. Biochemistry of Cheese Ripening. Int. J. Dairy Technol. 2004, 57, 127–144. [Google Scholar] [CrossRef]
- Rincón, A.A.; Pino, V.; Fresno, M.R.; Jiménez-Abizanda, A.I.; Álvarez, S.; Ayala, J.H.; Afonso, A.M. Influence of Vegetable Coagulant and Ripening Time on the Lipolytic and Sensory Profile of Cheeses Made with Raw Goat Milk from Canary Breeds. Food Sci. Technol. Int. 2016, 23, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, P.; Blanco, M.A. Reliability of the Sensory Analysis Data of a Panel of Tasters. J. Sci. Food Agric. 2000, 80, 409–418. [Google Scholar] [CrossRef]
- Pinho, O.; Mendes, E.; Alves, M.M.; Ferreira, I.M.P.L.V.O. Chemical, Physical, and Sensorial Characteristics of “Terrincho” Ewe Cheese: Changes During Ripening and Intravarietal Comparison. J. Dairy. Sci. 2004, 87, 249–257. [Google Scholar] [CrossRef]
- Ryffel, S.; Piccinali, P.; Bütikofer, U. Sensory Descriptive Analysis and Consumer Acceptability of Selected Swiss Goat and Sheep Cheeses. Small Rumin. Res. 2008, 79, 80–86. [Google Scholar] [CrossRef]
- Cabildo de Gran Canaria Bases Reguladoras Que Han de Regir El “XIX Concurso Oficial de Quesos de Gran Canaria”. Available online: https://cabildo.grancanaria.com/documents/38405/274375/Bases+cata+queso.pdf/0c0b2dd7-6f32-c0f2-9fa5-c533191eff6c?t=1667820956592 (accessed on 7 July 2023).
- Ministry of Agriculture Fisheries and Food. Spanish Government Pliego de Condiciones “Queso Flor de Guía y Queso de Guía”. Available online: https://www.mapa.gob.es/images/es/queso-flor-de-guia_2007_03_15_tcm30-209922.pdf (accessed on 9 December 2023).
- AENOR UNE-ISO 6658:2019; Análisis Sensorial. Metodología. Guía General. AENOR: Madrid, Spain, 2019.
- AENOR UNE-EN ISO 8589:2010; Análisis Sensorial. Guía General Para El Diseño de Salas de Cata. AENOR: Madrid, Spain, 2010.
- Laird, N.M.; Ware, J.H. Random-Effects Models for Longitudinal Data. Biometrics 1982, 38, 963. [Google Scholar] [CrossRef]
- Shrout, P.E.; Fleiss, J.L. Intraclass Correlations: Uses in Assessing Rater Reliability. Psychol. Bull. 1979, 86, 420–428. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 20 June 2023).
- Niimi, J.; Eddy, A.I.; Overington, A.R.; Silcock, P.; Bremer, P.J.; Delahunty, C.M. Sensory Interactions between Cheese Aroma and Taste. J. Sens. Stud. 2015, 30, 247–257. [Google Scholar] [CrossRef]
- Palmquist, D.L.; Denise Beaulieu, A.; Barbano, D.M. Feed and Animal Factors Influencing Milk Fat Composition. J. Dairy Sci. 1993, 76, 1753–1771. [Google Scholar] [CrossRef]
- Niro, S.; Fratianni, A.; Tremonte, P.; Sorrentino, E.; Tipaldi, L.; Panfili, G.; Coppola, R. Innovative Caciocavallo Cheeses Made from a Mixture of Cow Milk with Ewe or Goat Milk. J. Dairy Sci. 2014, 97, 1296–1304. [Google Scholar] [CrossRef]
- Agencia Estatal de Meteorología. Estadística de Las Variables Meteorofenológicas. Available online: https://www.aemet.es/es/datos_abiertos/estadisticas/estadistica_meteorofenologicas (accessed on 6 July 2023).
- Teixeira, L.; Ramos, A.L.; Xambre, A.R.; Alvelos, H. Designing a Decision Support System for Tasting Panels. Procedia Technol. 2014, 16, 440–446. [Google Scholar] [CrossRef]
- Albi, M.A.; Gutiérrez, F. Study of the Precision of an Analytical Taste Panel for Sensory Evaluation of Virgin Olive Oil. Establishment of Criteria for the Elimination of Abnormal Results. J. Sci. Food Agric. 1991, 54, 255–267. [Google Scholar] [CrossRef]
- Drake, M.A. Invited Review: Sensory Analysis of Dairy Foods. J. Dairy Sci. 2007, 90, 4925–4937. [Google Scholar] [CrossRef] [PubMed]
- AENOR UNE 87027:1998; Análisis Sensorial. Identificación y Selección de Descriptores Para La Elaboración de Un Perfil Sensorial Mediante Distintos Enfoques. AENOR: Madrid, Spain, 1998.
- AENOR UNE-EN ISO 13299:2017; Análisis Sensorial. Metodología. Guía General Para Establecer Un Perfil Sensorial. AENOR: Madrid, Spain, 2017.
- Folgado-Fernández, J.A.; Palos-Sánchez, P.R.; Campón-Cerro, A.M.; Hernández-Mogollón, J.M. Productos Gastronómicos Con Identidad y Desarrollo Del Destino Turístico. Un Estudio Sobre Rutas Del Queso En España. Int. J. Sci. Manag. Tour. 2017, 3, 93–109. [Google Scholar]
Cheese Varieties | 2019 | 2020 | 2021 | 2022 | ||||
---|---|---|---|---|---|---|---|---|
No. Samples | No. Tasters | No. Samples | No. Tasters | No. Samples | No. Tasters | No. Samples | No. Tasters | |
Pasteurised semi-mature | 7 | 5 | 6 | 6 | 6 | 7 | 6 | 6 |
Pasteurised mature | 7 | 6 | 5 | 6 | 5 | 8 | 6 | 5 |
Soft | 14 | 5 | 11 | 5 | 9 | 8 | 9 | 5 |
Sheep’s milk semi-mature | 5 | 5 | 3 | 5 | 4 | 8 | 4 | 5 |
Cow’s milk semi-mature | 0 | 0 | 4 | 4 | 2 | 8 | 3 | 6 |
Mixed-milk semi-mature | 10 | 5 | 10 | 6 | 8 | 8 | 13 | 6 |
Goat’s milk mature | 9 | 6 | 11 | 6 | 5 | 8 | 8 | 5 |
Sheep’s milk mature | 5 | 5 | 6 | 5 | 6 | 8 | 4 | 5 |
Cow’s milk mature | 3 | 5 | 5 | 5 | 3 | 8 | 3 | 6 |
Mixed-milk mature | 11 | 5 | 13 | 6 | 11 | 8 | 9 | 6 |
Mixed coagulants | 5 | 16 | 5 | 17 | 5 | 16 | 5 | 11 |
Vegetable coagulant | 4 | 16 | 4 | 17 | 3 | 16 | 3 | 11 |
Goat’s milk semi-mature | 10 | 6 | 5 | 6 | 4 | 8 | 7 | 5 |
Total samples | 90 | 88 | 71 | 80 |
Cheese Variety | 2019 N = 575 | 2020 N = 602 | 2021 N = 632 | 2022 N = 482 |
---|---|---|---|---|
Pasteurised semi-mature | 35 (6.1) | 36 (6.0) | 48 (7.6) | 36 (7.5) |
Pasteurised mature | 42 (7.3) | 30 (5.0) | 40 (6.3) | 30 (6.2) |
Soft | 70 (12.2) | 55 (9.1) | 72 (11.4) | 45 (9.3) |
Sheep’s milk semi-mature | 25 (4.3) | 15 (2.5) | 32 (5.1) | 20 (4.1) |
Cow’s milk semi-mature | 0 (0.0) | 24 (4.0) | 16 (2.5) | 18 (3.7) |
Mixed milk semi-mature | 50 (8.7) | 60 (10.0) | 64 (10.1) | 78 (16.2) |
Goat’s milk mature | 54 (9.4) | 66 (11.0) | 40 (6.3) | 40 (8.3) |
Sheep’s milk mature | 25 (4.3) | 30 (5.0) | 48 (7.6) | 20 (4.1) |
Cow’s milk mature | 15 (2.6) | 25 (4.2) | 24 (3.8) | 18 (3.7) |
Mixed milk mature | 55 (9.6) | 78 (13.0) | 88 (13.9) | 54 (11.2) |
Mixed coagulants | 80 (13.9) | 85 (14.1) | 80 (12.7) | 55 (11.4) |
Vegetable coagulant | 64 (11.1) | 68 (11.3) | 48 (7.6) | 33 (6.8) |
Goat’s milk semi-mature | 60 (10.4) | 30 (5.0) | 32 (5.1) | 35 (7.3) |
Cheese Variety | Number of Observations in the Model | p-Value * |
---|---|---|
Pasteurised semi-mature | 155 | 0.021 |
Pasteurised mature | 142 | 0.991 |
Soft | 242 | 0.008 |
Sheep’s milk semi-mature | 92 | 0.31 |
Cow’s milk semi-mature | 58 | 0.701 |
Mixed milk semi-mature | 252 | <0.001 |
Goat’s milk mature | 200 | 0.396 |
Sheep’s milk mature | 123 | 0.745 |
Cow’s milk mature | 82 | 0.122 |
Mixed milk mature | 275 | <0.001 |
Mixed coagulants | 300 | 0.037 |
Vegetable coagulant | 213 | 0.502 |
Goat’s milk semi-mature | 157 | 0.189 |
Year | Number Observations by Model | p-Value * |
---|---|---|
2019 | 575 | <0.001 |
2020 | 602 | <0.001 |
2021 | 632 | 0.015 |
2022 | 482 | 0.237 |
2019 | |||
---|---|---|---|
2020 | 3.71 (−4.76; 12.2) | 2020 | |
2021 | 9.03 (0.79; 17.3) | 5.32 (−2.44; 13.1) | 2021 |
2022 | 2.47 (−6.54; 11.5) | −1.24 (−10.2; 7.7) | −6.56 (−15.6; 2.48) |
Cheese Variety | Year | Intraclass Correlation (IC) | p-Value * |
---|---|---|---|
Mixed coagulants | |||
2019 | −0.051 | 0.565 | |
2020 | −0.196 | 0.946 | |
2021 | 0.333 | 0.026 | |
2022 | 0.348 | 0.021 | |
Vegetable coagulant | |||
2019 | 0.075 | 0.277 | |
2020 | −0.121 | 0.713 | |
2021 | 0.164 | 0.18 | |
2022 | 0.43 | 0.03 |
Cheese Variety | |||||
---|---|---|---|---|---|
Mixed Coagulants | Vegetable Coagulant | ||||
Marker | Year | IC | p-Value | IC | p-Value |
Odour | 2019 | −0.09 | 0.677 | −0.224 | 0.968 |
2020 | −0.207 | 0.964 | −0.201 | 0.92 | |
2021 | −0.156 | 0.857 | 0.082 | 0.274 | |
2022 | 0.318 | 0.03 | 0.246 | 0.113 | |
Texture | 2019 | 0.258 | 0.057 | 0.09 | 0.254 |
2020 | 0.053 | 0.311 | −0.214 | 0.948 | |
2021 | 0.498 | 0.003 | 0.429 | 0.03 | |
2022 | 0.147 | 0.157 | 0.28 | 0.091 | |
Flavour | 2019 | −0.076 | 0.636 | 0.25 | 0.083 |
2020 | −0.138 | 0.81 | 0.047 | 0.327 | |
2021 | 0.263 | 0.055 | 0.113 | 0.235 | |
2022 | 0.333 | 0.025 | 0.407 | 0.036 | |
Overall impression | 2019 | −0.098 | 0.7 | 0.274 | 0.068 |
2020 | −0.128 | 0.783 | −0.189 | 0.891 | |
2021 | 0.239 | 0.07 | 0.167 | 0.178 | |
2022 | 0.366 | 0.017 | 0.353 | 0.055 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Arencibia, P.; Saavedra, P.; Carrascosa Iruzubieta, C.; Monzón, E.; Sanjuán, E. Taste Panellists’ Evaluations in Official Cheese Competitions: Analysis for Improvement Proposals. Foods 2024, 13, 3769. https://doi.org/10.3390/foods13233769
Hernández-Arencibia P, Saavedra P, Carrascosa Iruzubieta C, Monzón E, Sanjuán E. Taste Panellists’ Evaluations in Official Cheese Competitions: Analysis for Improvement Proposals. Foods. 2024; 13(23):3769. https://doi.org/10.3390/foods13233769
Chicago/Turabian StyleHernández-Arencibia, Patricia, Pedro Saavedra, Conrado Carrascosa Iruzubieta, Elizardo Monzón, and Esther Sanjuán. 2024. "Taste Panellists’ Evaluations in Official Cheese Competitions: Analysis for Improvement Proposals" Foods 13, no. 23: 3769. https://doi.org/10.3390/foods13233769
APA StyleHernández-Arencibia, P., Saavedra, P., Carrascosa Iruzubieta, C., Monzón, E., & Sanjuán, E. (2024). Taste Panellists’ Evaluations in Official Cheese Competitions: Analysis for Improvement Proposals. Foods, 13(23), 3769. https://doi.org/10.3390/foods13233769