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Abstract: Salted duck eggs are a popular food in China and a key ingredient in pastries such
as mooncakes, valued for their unique flavors. In this study, we examined the influence of brining
processes on duck eggs, focusing on salt concentration and the effect of added wine. Four experimental
groups were established: 18% salt, 25% salt, and 18% or 25% salt with added wine. The results from
egg yolks suggest that increasing the salt concentration or adding 10% wine (53% alcohol) accelerates
the brining process, while the Raman spectra of egg whites remain remarkably stable throughout
brining. Our findings suggest that the traditional 30-day brining period can be reduced to 20–25 days
with a higher salt concentration or the addition of wine, after which the egg yolk structure becomes
largely stable.
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1. Introduction

Eggs are widely used in breakfasts, home meal preparation, cooking, and as an
ingredient in many foods due to their richness in proteins, lipids, and essential vitamins
and minerals [1]. They also have a wide range of functional food properties including
solubility, water retention capacity, emulsification, fat binding, foaming, and gelling [2].
Hen and duck eggs are the most consumed egg products because they provide complete
proteins containing all essential amino acids for humans, along with several vital vitamins
and minerals. Moreover, eggs are one of the most affordable single food sources of complete
protein [3,4].

To maintain the quality and extend the shelf life of eggs, processing and preservation
methods are necessary. One common preservation technique is salting, which primarily
uses sodium chloride as a preservative [5]. Sodium chloride is key in reducing the growth
of internal microorganisms and prolonging the shelf life of eggs. During the salting process,
sodium chloride gradually diffuses into the egg white and yolk through the pores and
membranes of the shell [6]. Because of the unique properties and flavor of salted eggs,
salted egg yolk is widely used as ingredient in pastries and bakery products, such as
mooncakes [7].

Salted eggs are generally made from duck eggs due to their desirable properties
compared to hen eggs [8]. Duck eggs have several advantages that make them more
suitable for salted egg production. Firstly, they have larger yolks and more albumen
than hen eggs, which facilitates easier production and results in a richer yolk portion that
enhances the flavor of the salted egg [9]. Secondly, duck eggs secrete more oil, further
contributing to the taste. The shell of a duck egg is also harder and more resistant to damage
during storage and transportation, making it a more durable choice. Furthermore, a duck
egg’s shell has a higher density of holes per square centimeter on average compared to a
hen egg’s shell, allowing for better salt diffusion into the egg [10]. There are two common
methods used in the egg-salting process: brining and dry-curing [6]. The former refers to
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the method where the eggs are soaked in salt solutions, which may or may not contain
alcohol, whereas the latter refers to the method where the eggs are packed in damp and
salted charcoal.

In this study, we investigate the former method, brining. This method was chosen
because it offers better hygiene control and more precise monitoring of preservation condi-
tions than dry-curing. Brining is also easier to standardize, which means our findings can
be more readily applied to improve commercial production processes.

A duck egg consists of a shell with a horny (keratinous) layer, egg white, and yolk.
Duck egg white makes up 60% of the whole egg; it consists of approximately 88% water
and about 11% protein, with the remaining 1% consisting of minerals, trace amounts of
fats, and glucose [11,12]. The proteins in egg whites primarily include ovalbumin (~54%),
ovotransferrin (~12%), ovomucoid (~11%), lysozyme (~3.5%), ovomucin (~3.5%), and
globulins (~8%) [13]. The yolk, an emulsified liquid, is the central part of the duck egg.
The yolk is primarily composed of 50% water, 15 to 17% proteins, and 31% to 33% lipids;
lipids include triglycerides (~65%), phospholipids (~31%), cholesterol (~4%), and trace
amounts of minor lipids such as ceruloplasmin or glycolipids [13,14]. Egg yolks also contain
pigments (carotenoids and riboflavin), which are responsible for regulating the color of the
yolk. Finally, egg yolks contain minerals, with phosphorus having the highest content [11].

Raman spectroscopy is a powerful tool in food science due to its non-destructive
nature and ability to provide detailed molecular structural information [15]. In food science,
Raman spectroscopy was used successfully to monitor various types of food processes,
including protein denaturation and lipid oxidation [16,17]. Recent advances in Raman
spectroscopic methods also allow it to offer widespread food safety assessment in a non-
destructive, sensitive, and rapid manner [18]. Surface-enhanced Raman spectroscopy is
also being used to detect toxins, bacteria, or contaminants in food [19–21].

There are other analytical and spectroscopic methods used to study food processes
such as salting. For example, ultrasonic spectroscopy is often used to monitor the dry-
salting of meat [22,23], and Fourier-transform infrared (FTIR) spectroscopy was used to
monitor the salting process of salmon [24,25]. However, Raman spectroscopy offers several
advantages. It is rapid, requires minimal sample preparation, and most importantly, has
very weak water interference, whereas both ultrasonic and FTIR spectroscopy are affected
by water content. This makes Raman spectroscopy especially suitable for the study of duck
eggs, which contain about 70% water.

In this study, we present a comprehensive Raman spectroscopic analysis of the duck
egg brining process, monitoring structural changes in both egg whites and yolks over time.
Four different brining solutions were prepared to systematically investigate the effects
of salt concentration and wine addition on the molecular-level changes during brining.
Traditional salted duck egg production relies on empirical knowledge and extended brining
periods; however, Raman spectroscopy, supported by advanced spectral preprocessing
methods, offers a new analytical framework for understanding the actual timeline of
structural modifications. Through quantitative analysis of characteristic peak intensities,
this study aims to establish a scientific basis for optimizing brining duration and conditions
in salted duck egg production.

2. Materials and Methods
2.1. Experimental Design

This study investigated the effects of salt concentration and Chinese wine (baijiu)
addition on duck egg brining using Raman spectroscopy at room temperature (25 ◦C). Four
groups were used:

• L1: 18% salt solution;
• L2: 18% salt solution with 10% baijiu;
• L3: 25% salt solution;
• L4: 25% salt solution with 10% baijiu.
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The salt concentrations were carefully selected based on both practical and technical
considerations. The 18% concentration was chosen as it represents the midpoint of tradi-
tional brining concentrations (typically ranging from 16.7% to 20%), while 25% was selected
as it approaches but remains slightly below the salt saturation point at room temperature,
ensuring solution stability throughout the brining period. The addition of 10% baijiu was
based on traditional Chinese culinary practices, where the alcohol is believed to enhance
flavor development through improved penetration of salt into the eggs.

2.2. Materials

The duck eggs, salt, and wine used in this study were purchased from a local super-
market. Each egg weighed between 65 g and 85 g; eggs of different sizes were distributed
evenly between the four brining conditions. The salt used was food-grade refined iodized
salt. Chinese baijiu (a type of Chinese wine commonly used for drinking or for brining and
fermentation purposes) was added to two groups of brining solutions; the baijiu used in
this study contains 53% alcohol. Sealed pickle jars were used as containers to pickle the
duck eggs, and the water used for brining was tap water from China Jiliang University’s
laboratory floor.

2.3. Sample Preparation

In this study, a total of four brining solutions were prepared: 18% salt solution (L1),
18% salt solution with 10% added baijiu (L2), 25% salt solution (L3), and 25% salt solution
with 10% added baijiu (L4). First, the two salt solutions (18% and 25%) were prepared
separately. These salt solutions were then boiled and filtered to remove microorganisms
such as bacteria, viruses, and parasites from the water. Boiling also ensured that the food-
grade salt solids were thoroughly dissolved in the water, improving the homogeneity of
the salt solutions. After boiling, the salt solutions were placed in an air-conditioned room
to cool. Once cooled, baijiu was added to the corresponding salt solutions to create the L2
and L4 brining solutions, respectively.

Fresh duck eggs were cleaned and treated before brining. First, the surface dirt on the
fresh duck eggs was manually cleaned and removed, and water stains on the surface were
wiped away. Next, the cleaned duck eggs were dried under room temperature for one hour.
After drying, the duck eggs were equally divided into four groups and placed into the L1,
L2, L3, and L4 brining solutions to begin the brining process at room temperature. The
weight ratio of duck eggs to brining solution was maintained at 1:1. The room temperature
for both drying and brining was maintained at 25 ◦C.

2.4. Raman Experiments

Data Collection: Raman spectra were collected at 5-day intervals over a 40-day period.
On each sampling day, four eggs from each treatment group (L1, L2, L3, and L4) were
analyzed. For each egg, Raman spectra were collected at 5 points in the egg white and
5 points in the egg yolk, yielding 20 spectra per component (white/yolk) per treatment
group per day. As a baseline, four fresh eggs were analyzed following the same protocol
prior to brining (day 0).

Before testing, the duck eggs were first removed from the brining solutions, and the
water stains on the surface were wiped clean. The eggshells were then cracked, and the
egg white and yolk contents were carefully separated and placed into labeled centrifuge
tubes, ensuring that the whites and yolks from different eggs were kept separate.

To prepare the samples for Raman spectroscopy, the whites or yolks in each cen-
trifuge tube were thoroughly stirred to ensure homogeneity and then placed on a clean
glass slide. All measurements were performed using a Horiba LabRAM HR Evolution
Raman spectrometer (Horiba Jobin Yvon, Kyoto, Japan) with a 50× long-focal-length
objective (NA = 0.75). Egg yolks were measured using a 633 nm laser at 100% power
(spot diameter ~1.03 µm), while egg whites were measured using a 532 nm laser at 10%
power (spot diameter ~0.86 µm). For both samples, spectra were acquired with a
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600 grooves/mm grating, 30 s exposure time, and two accumulations to improve the
signal-to-noise ratio. The spectral resolution was approximately 3–4 cm−1 and 2–3 cm−1

for yolks and whites, respectively.
The Raman system was wavelength-calibrated using a silicon wafer (520.7 cm−1). For

each sample, the Raman spectra were collected for 30 s and accumulated twice to improve
the signal-to-noise ratio.

2.5. Raman Spectral Pre-Processing for Egg Yolk Spectra

Spectral pre-processing, most notably baseline correction and smoothing, is necessary
when obtaining the Raman spectra of eggs. Egg whites and yolks are complex biological
matrices containing various proteins, lipids, and other biomolecules, which can contribute
to intrinsic fluorescence and background noise in the Raman spectra. These interfering
signals can obscure the true Raman peaks and make it difficult to identify and quantify the
chemical components of interest.

Smoothing is used to reduce the noise and improve the signal-to-noise ratio of the
spectral signal. Smoothing methods commonly used for Raman spectra include mov-
ing window averaging, Savitzky–Golay filtering (SG filtering), Whittaker smoother, and
wavelet transform [26]. The primary function of baseline correction is to reduce or re-
move fluorescence backgrounds. Typical baseline correction methods include polynomial
fitting, wavelet transform, spline curve fitting, iterative smoothing, and penalized least
squares [27,28].

In this study, the algorithms of SG filtering (window n = 7; the polynomial order is
second-order) and adaptive iterative reweighted penalized least squares (air-PLS) with
higher accuracy [29] were implemented using MATLAB R2024a to successively complete
the smoothing and baseline calibration processing of the raw Raman data for the duck eggs.
To ensure that fluctuations in Raman intensity do not impact the results, the spectra were
also normalized. The egg yolk spectra were normalized using the 2852 cm−1 CH2 peak as a
reference, whereas the egg white spectra were normalized using the 1004 cm−1 symmetric
ring breathing/phenylalanine peak as reference.

3. Results
3.1. Peak Assignment of Duck Egg Spectra

During the brining process, the moisture, protein, lipid, and other components within
duck eggs undergo temporal changes, contributing to the distinctive quality and flavor
profile of salted duck eggs. Numerous studies have employed various analytical methods
to monitor these changes, focusing on parameters such as lipid content, moisture levels,
and yolk hardening [30,31]. In this study, changes to Raman spectral peaks during brining
were analyzed. Here, Table 1 presents the peak assignments for the most prominent Raman
bands observed in the spectra of duck egg whites and yolks.

During the brining process, while the peak positions mostly remain unchanged,
the intensity ratio between different peaks changes, showing alterations in the relative
concentrations of various molecular components within the duck eggs. These spectral
changes reflect the complex biochemical transformations occurring during brining, such as
protein denaturation, lipid content alteration, and salt penetration.

3.2. Spectral Changes During the Brining Process for Egg Yolks

The flavor, quality, and stability of salted duck eggs are significantly influenced by
variations in curing environments and durations [34–36]. We first examine the spectral
changes to egg yolks during the brining process. As discussed in the previous section, the
yolk spectra were normalized using the 2852 cm−1 CH2 peak as the reference.

The L1 group was first used as an example. During the brining process, the intensity of
other lipid peaks, such as 1660 cm−1 and 2913~2938 cm−1, did not have significant changes
with respect to the 2852 cm−1 CH2 peak. This suggests that the overall lipid content and
structure are relatively unchanged during brining. This result is the same for the L3 group.
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Figure 1 shows the spectral progression from 0 days (before brining) to 40 days for groups
L1 and L3, where each spectrum represents the mean of 20 measurements (5 spots per egg
× 4 eggs) taken under identical conditions (same day and treatment group). The labels of
the figures in this manuscript are explained in Appendix A.

Notable changes were observed in the Raman spectra at 1445 cm−1. The 1445 cm−1

peak is relatively wide and contains two peaks: the cholesterol and CH2 scissoring peak at
1440 cm−1 and the collagen and phospholipids peak at 1455 cm−1. This peak showed a
significant decrease in intensity relative to the reference 2852 cm−1 CH2 peak during the
salting process for both the L1 (18% salt) and L3 (25% salt) groups.
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Table 1. Peak attribution of duck egg spectra [32,33].

Wavenumber Assignment

718 cm−1 CN−(CH3)3 symmetric stretch (lipids)
875 cm−1 Characteristic for phospholipids
880 cm−1 Tryptophan, δ(ring)
1004 cm−1 νs(C-C), symmetric ring breathing, phenylalanine (protein)
1084 cm−1 νs(C-C) Phospholipid backbone
1156 cm−1 Carotenoids
1206 cm−1 Tyrosine (collagen)
1270 cm−1 =C-H in-plane deformation (phospholipids)
1305 cm−1 CH2 twisting (fatty acids)/proteins and phospholipids
1335 cm−1 CH3CH2 wagging mode of collagen
1440 cm−1 δ(CH2) scissoring (fatty acids, cholesterol)
1455 cm−1 δ(CH2) bending (collagen and phospholipids)
1520 cm−1 -C=C- (carotene)
1657 cm−1 ν(C=C) cis (phospholipids)
1660 cm−1 Amide I (C=O stretch)/C=C (lipids)
2852 cm−1 νs(CH2) symmetric stretch (fatty acids)
2885 cm−1 νs(CH3) symmetric stretch (fatty acids)
2913 cm−1 νas(CH2) asymmetric stretch (fatty acids)
2938 cm−1 νas(CH3) asymmetric stretch (fatty acids)

Possible reasons for this change may include alterations in cholesterol content or
conformation, structural modifications of phospholipids and collagen, or changes in their
interactions with the surrounding environment due to salt-induced dehydration. The
relative increase in lipid-related peaks at 2852 cm−1, 1660 cm−1, and 2913~2938 cm−1

could also be attributed to a concentration effect as water is drawn out of the yolk, or to
conformational changes in lipids leading to enhanced Raman signals.

Figure 2 shows the trend of the 1445 cm−1 peak intensity when the 2852 cm−1 peak
is normalized to 1000 a.u. intensity for groups L1 and L3. The L3 group (25% salt)
shows a more rapid initial decrease compared to the L1 group (18% salt), especially in
the first 15 days. This faster rate of change in the L3 group indicates that higher salt
concentrations accelerate the structural modifications in egg yolk lipids during the early
stages of the process.

The difference between the L1 and L3 groups is most pronounced during days 5 to
15, where the separation between curves is statistically significant as demonstrated by
non-overlapping error bars (p < 0.05). After day 20, structural modifications slow down
considerably as the system approaches equilibrium, and error bars start to overlap. Both
groups converge to similar values around 400 to 450 a.u.
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Both the L1 and L3 groups reach a plateau around 20–25 days and converge to similar
end-point values for the 1445 cm−1 peak intensity (around 400 to 450 a.u.). This indicates
that while salt concentration affects the rate of the salting process, especially in the early
stages, it does not significantly alter the final equilibrium state of lipid structures in the
egg yolk.

The effect of added wine is examined with groups L2 and L4. The averaged spectra
of the L2 and L4 groups from day 0 to day 40 are shown in Figure 3. The trend of the
1445 cm−1 peak for all four groups is shown in Figure 4. Groups L2 and L4 are the groups
with wine added during the brining process. The first derivative spectra of all four groups
are also shown in Figure S1.
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A rapid decrease in peak intensity is observed during the first 15 days for all groups.
During the first 15 days, the presence of alcohol appears to accelerate the salting process;
however, the effect of higher salt concentration is more significant than that of added wine.
The trend of the L2 group (18W in Figure 4) sits mostly below the trend of the L1 group
(18N in Figure 4), and the trend of the L4 group also sits mostly below that of the L3
group. For all four groups, the changes to the 1445 cm−1 peak start to slow down from day
15 onwards.

The enhanced rate of change in the presence of wine could be attributed to the alcohol
content facilitating salt penetration into the egg yolk, or to organic compounds in the wine
interacting with yolk lipids to promote structural changes. Despite the faster kinetics, the
wine-added groups appeared to approach similar end-point values for the 1445 cm−1 peak.

We then investigated the effect of brining on anti-oxidants in egg yolks. The trends
of carotenoid peaks at 1156 and 1520 cm−1 are shown in Figure S2. The results show that
in the initial stages of brining the intensity of the carotenoid peaks decreases, with a very
sharp decrease from day 0 to 5, and then a smaller decrease from day 5 to 10. Both trends
are then followed by fluctuations around relatively stable mean values. This may suggest
that major changes in carotenoid structure occur within the first 10 days, after which the
protective effect of brining appears to stabilize the system. The subsequent fluctuations
likely represent experimental variations.

Last but not least, there also does not appear to be any extra ethanol-specific peak
(such as at 883 cm−1) in either group L2 or L4 in Figure 3 compared to groups L1 and L3 in
Figure 1. This means no ethanol residues were detected using Raman spectroscopy.

3.3. Spectral Changes During the Brining Process for Egg Whites

In the previous section, egg yolks showed significant spectral changes during brining.
We next examined whether similar modifications occurred in egg whites.

Figure 5 shows the averaged spectra of the egg whites of group L1 from day 0 to day
40 with shaded error regions. The averaged spectra of every testing day, when normalized
with respect to the 1004 cm−1 peak, remain consistent from day 0 to day 40 with minimal
changes. The peak positions stay consistent over the entire brining process, and the relative
intensity of each peak remains stable. The averaged spectra of egg whites of groups L2,
L3, and L4 over the 40-day brining process are very similar to Figure 5 and are shown in
Figure S3. The first derivative spectra of the egg whites of all groups from day 0 to day 40
are shown in Figure S4.

Egg whites primarily consist of water (88%) and proteins (11%), with ovalbumin
being the most abundant protein. In order to monitor potential structural changes during
brining and verify the spectral consistency over the brining process, we focused on three
characteristic protein peaks that are commonly used to assess protein conformational
changes. These three protein peaks are Amide I at 1660 cm−1 (C=O stretching), CH2/CH3
deformation at 1445 cm−1 (protein side chains), and Amide III at 1305 cm−1 (C-N stretching
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and N-H bending). Unlike egg yolks, where the 1445 cm−1 peak includes contributions
from both proteins and lipids, in egg whites, this peak primarily reflects protein side chain
vibrations due to the negligible lipid content.
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The trends of the three protein peaks are shown in Figure 6. All three characteristic
protein peaks remain consistent over the 40-day brining process, regardless of salt concen-
tration or the addition of wine. This stability contrasts markedly with egg yolks, which
undergo obvious structural changes throughout the brining process, suggesting that the
protein structures in egg whites experience minimal modification during brining.
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The stability of the egg white spectra in all four groups suggests that the brining
process has relatively little effect on the molecular structures of proteins in egg whites.
Brining causes dehydration and increased firmness in egg whites, and egg whites taste
significantly saltier after brining. However, these physical and sensory changes appear to
occur without substantial alterations to the protein structure.

4. Discussion

By investigating the 1445 cm−1 peak of egg yolks, which contains contributions
from cholesterol, CH2 scissoring, collagen, and phospholipids, we found that the brining
process causes this peak to decrease significantly compared to the 2852 cm−1 peak. This
decrease suggests structural reorganization of lipids in the egg yolks, with both higher salt
concentration and wine addition accelerating these changes. All four groups eventually
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converge to similar end-point values (400–450 a.u.) at around 20–25 days, indicating a
common equilibrium state regardless of treatment conditions.

In contrast, the Raman spectra of egg whites show remarkable stability throughout
the brining process. The Raman spectra of egg whites, including the three characteristic
protein peaks (Amide I at 1660 cm−1, CH2/CH3 deformation at 1445 cm−1, and Amide III
at 1305 cm−1), maintain consistent intensities across all treatment conditions. This suggests
that the physical changes in egg whites during brining occur without significant alterations
to protein structure. This stability persists regardless of salt concentration or wine addition.

In the spectra of both yolks and whites, adding wine does not appear to leave alcohol
residues that can be detected with Raman spectroscopy. The carotenoid peaks at 1156 and
1520 cm−1 also suggest that brining may have a protective effect in preserving carotenoids
after the first 5–10 days.

The findings from this study may have important implications for commercial pro-
duction. While traditional brining practices typically extend to 30 days, our spectral
analysis suggests this duration could be reduced by up to 10 days when using a higher salt
concentration or adding wine. However, further studies are required to ensure that the
shortened brining process still produces salted duck eggs with optimal structural, taste,
and texture properties.

Recent studies have also employed Raman spectroscopy to study egg properties,
mostly with different focuses such as examining egg freshness, or the detection of rotten
eggs or antibiotics. For example, Davari et al. used Raman spectroscopy to assess egg
freshness by measuring both egg shells and yolks [37]; Tan et al. and Zhang et al. used
surface-enhanced Raman spectroscopy (SERS) to detect hydrogen sulfide and antibiotic
residues in eggs, respectively [38,39].

In contrast to these mostly assessment or detection focused studies, our work demon-
strates Raman spectroscopy’s capability for continuous monitoring of the brining process
through the 1445 cm−1 to 2852 cm−1 peak ratio in yolks. Because of the thick shell of
duck eggs, non-invasive monitoring of the Raman spectra of duck eggs is challenging.
Still, the spectral changes observed in this study are consistent. This means methods to
monitor the brining, salting, or general curing of egg-based products can be established if
the relationship between Raman intensity and the curing process can be revealed.

5. Conclusions

This study demonstrates that Raman spectroscopy can be used to effectively monitor
molecular structural changes during the duck egg brining process. We observed that egg
yolks undergo notable structural alterations as a result of brining, whereas the proteins
in egg whites remain largely unchanged. Higher salt concentration (25% vs. 18%) and
wine addition accelerate these structural changes, particularly in the first 10–15 days, as
evidenced by changes in the 1445 cm−1 peak relative to the 2852 cm−1 peak. The structural
modifications in egg yolks largely stabilize after 20–25 days of brining, suggesting that
a higher salt concentration and/or added wine could potentially reduce the traditional
30-day brining period to 15–20 days. Additionally, the behavior of carotenoid peaks
indicates an initial rapid change followed by stabilization, suggesting a potential protective
effect of brining against further oxidation. These findings provide new insights into the
molecular processes during egg brining and may have practical implications for optimizing
commercial production processes.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/foods13233775/s1: Figure S1: First derivative spectra of egg yolks
(averaged; with error shades) of all four groups. (a–d) represent groups L1 to L4, respectively.;
Figure S2: Trends of carotenoid peaks at (a) 1156cm−1 and (b) 1520cm−1 in the brining duck eggs
from day 0 to day 40.; Figure S3: Averaged spectra of salted egg whites from day 0 to day 40 for
groups (a) L2, (b) L3 and (c) L4. Offset is added for clarity. Top to bottom is from day 0 to day 40 for
all samples.; Figure S4: First derivative spectra of egg whites (averaged; with error shades) of all four
groups. (a–d) represent groups L1 to L4, respectively.
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Appendix A

Here, we explain the labels in the figures in this manuscript as well as in the Supple-
mentary Materials. In the spectral figures, offset is added to the spectra for clarity. The
labels of the spectra are the filenames we used when acquiring the data. The prefixes of the
labels (0D to 40D) are the days of brining (0D_Ref means before brining), and the suffixes
include the salt concentration (18 or 25 means 18% or 25% salt concentration), with the
final letter “W” meaning baijiu was added to the brining solution, and “N” meaning baijiu
was not added. For example, 5D_18W means day 5, 18% salt concentration, and that baijiu
was added to the brining solution. Additionally, data from day 0 to day 40 are typically
arranged from top to bottom for all spectra figures.
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