Analysis of Volatile Compounds’ Changes in Rice Grain at Different Ripening Stages via HS-SPME-GC–MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rice Materials
2.2. Reagents
2.3. Sample Preparation and Treatment
2.4. HS-SPME Conditions
2.5. GC-MS Conditions
2.6. Qualitative and Relative Quantitative Analysis of VOC Components
2.7. Calculation of rOAV
2.8. Statistical Analysis
3. Results and Discussion
3.1. Analysis of VOC Components During the Ripening of Rice Grains
3.2. Chemometric Analysis of VOCs
3.3. Analysis of Differential VOCs at Various Ripeness Levels of Rice Grains
3.4. Differential VOCs’ Analysis in Aromatic and Non-Aromatic Brown Rice
3.5. Odor Profiles of Grain During the Ripening of Rice
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.Q.; Lu, L.; Guo, Z.L.; Zhu, Z.W. Volatile compounds, affecting factors and evaluation methods for rice aroma: A review. Trends Food Sci. Tech. 2020, 97, 136–146. [Google Scholar] [CrossRef]
- Verma, D.K.; Srivastav, P.P. A paradigm of volatile aroma compounds in rice and their product with extraction and identification methods: A comprehensive review. Food Res. Int. 2020, 130, 108924. [Google Scholar] [CrossRef] [PubMed]
- Hinge, V.R.; Patil, H.B.; Nadaf, A.B. Aroma volatile analyses and 2AP characterization at various developmental stages in Basmati and non-Basmati scented rice (Oryza sativa L.) cultivars. Rice 2016, 9, 38. [Google Scholar] [CrossRef]
- Van Gemert, L. Compilations of Odour Threshold Values in Air, Water and Other Media; Oliemans Punter & Partners BV: Utrecht, The Netherlands, 2011. [Google Scholar]
- Setyaningsih, W.; Majchrzak, T.; Dymerski, T.; Namieśnik, J.; Palma, M. Key-Marker Volatile Compounds in Aromatic Rice (Oryza sativa) Grains: An HS-SPME Extraction Method Combined with GC×GC-TOFMS. Molecules 2019, 24, 4180. [Google Scholar] [CrossRef]
- Yuan, H.; Cao, G.; Hou, X.; Huang, M.; Du, P.; Tan, T.; Zhang, Y.; Zhou, H.; Liu, X.; Liu, L.; et al. Development of a widely targeted volatilomics method for profiling volatilomes in plants. Mol. Plant 2022, 15, 189–202. [Google Scholar] [CrossRef]
- Zhou, Y.; Gao, S.; Wei, J.; Chen, X.; Zhu, S.; Zhou, X. Systematical construction of rice flavor types based on HS-SPME-GC-MS and sensory evaluation. Food Chem. 2023, 413, 135604. [Google Scholar] [CrossRef]
- Zhao, Q.; Xi, J.; Xu, X.; Yin, Y.; Xu, D.; Jin, Y.; Tong, Q.; Dong, L.; Wu, F. Volatile fingerprints and biomarkers of Chinese fragrant and non-fragrant japonica rice before and after cooking obtained by untargeted GC/MS-based metabolomics. Food Biosci. 2022, 47, 101764. [Google Scholar] [CrossRef]
- Hu, X.; Fang, C.; Lu, L.; Hu, Z.; Zhang, W.; Chen, M. Dynamic Changes in Volatiles, Soluble Sugars, and Fatty Acids in Glutinous Rice during Cooking. Foods 2023, 12, 1700. [Google Scholar] [CrossRef]
- Lu, L.; Hu, Z.; Fang, C.; Hu, X. Characteristic Flavor Compounds and Functional Components of Fragrant Rice with Different Flavor Types. Foods 2023, 12, 2185. [Google Scholar] [CrossRef]
- Mi, Y.; Wang, Z.; Guan, L.; Zhang, M.; Li, S.; Ye, G.; Ren, X.; Liang, S. Analysis of volatile compounds in rice porridge of different japonica rice varieties in Northeast China. J. Cereal Sci. 2023, 113, 103749. [Google Scholar] [CrossRef]
- Zhang, P.; Piergiovanni, M.; Franceschi, P.; Mattivi, F.; Vrhovsek, U.; Carlin, S. Application of Comprehensive 2D Gas Chromatography Coupled with Mass Spectrometry in Beer and Wine VOC Analysis. Analytica 2023, 4, 347–373. [Google Scholar] [CrossRef]
- Zhu, J.; Chai, X. Some Recent Developments in Headspace Gas Chromatography. Curr. Anal. Chem. 2005, 1, 79–83. [Google Scholar] [CrossRef]
- Pico, J.; Tapia, J.; Bernal, J.; Gomez, M. Comparison of different extraction methodologies for the analysis of volatile compounds in gluten-free flours and corn starch by GC/QTOF. Food Chem. 2018, 267, 303–312. [Google Scholar] [CrossRef]
- Gao, C.; Li, Y.; Pan, Q.; Fan, M.; Wang, L.; Qian, H. Analysis of the key aroma volatile compoundsin rice bran during storage and processing via HS-SPME GC/MS. J. Cereal Sci. 2021, 99, 103178. [Google Scholar] [CrossRef]
- Wimonmuang, K.; Lee, Y. Absolute contents of aroma-affecting volatiles in cooked rice determined by one-step rice cooking and volatile extraction coupled with standard-addition calibration using HS-SPME/GC-MS. Food Chem. 2024, 440, 138271. [Google Scholar] [CrossRef]
- Xiao, Y.; Huang, Y.; Chen, Y.; Xiao, L.; Zhang, X.; Yang, C.; Li, Z.; Zhu, M.; Liu, Z.; Wang, Y. Discrimination and characterization of the volatile profiles of five Fu brick teas from different manufacturing regions by using HS-SPME/GC-MS and HS-GC-IMS. Curr. Res. Food Sci. 2022, 5, 1788–1807. [Google Scholar] [CrossRef]
- Li, C.; Xin, M.; Li, L.; He, X.; Yi, P.; Tang, Y.; Li, J.; Zheng, F.; Liu, G.; Sheng, J.; et al. Characterization of the aromatic profile of purple passion fruit (Passiflora edulis Sims) during ripening by HS-SPME-GC/MS and RNA sequencing. Food Chem 2021, 355, 129685. [Google Scholar] [CrossRef]
- Fei, X.; Qi, Y.; Lei, Y.; Wang, S.; Hu, H.; Wei, A. Transcriptome and Metabolome Dynamics Explain Aroma Differences between Green and Red Prickly Ash Fruit. Foods 2021, 10, 391. [Google Scholar] [CrossRef]
- Lu, C.; Zhang, Y.; Zhan, P.; Wang, P.; Tian, H. Characterization of the key aroma compounds in four varieties of pomegranate juice by gas chromatographymass spectrometry, gas chromatography-olfactometry, odor activity value, aroma recombination, and omission tests. Food Sci. Hum. Wellness 2023, 12, 151–160. [Google Scholar] [CrossRef]
- Xi, B.N.; Zhang, J.J.; Xu, X.; Li, C.; Shu, Y.; Zhang, Y.; Shi, X.; Shen, Y. Characterization and metabolism pathway of volatile compounds in walnut oil obtained from various ripening stages via HS-GC-IMS and HS-SPME-GC-MS. Food Chem. 2024, 435, 137547. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhu, C.; Tian, C.; Xu, K.; Huang, L.; Shi, B.; Lai, Z.; Lin, Y.; Guo, Y. Integrated volatile metabolome, multi-flux full-length sequencing, and transcriptome analyses provide insights into the aroma formation of postharvest jasmine (Jasminum sambac) during flowering. Postharvest Biol. Technol. 2022, 18, 111726. [Google Scholar] [CrossRef]
- Xiong, Y.; Zheng, X.; Tian, X.; Wang, C.; Chen, J.; Zhou, L.; Xu, D.; Jingyi Wang, J.; Gilard, V.; Wu, M.; et al. Comparative study of volatile organic compound profiles in aromatic and non-aromatic rice cultivars using HS-GC-IMS and their correlation with sensory evaluation. LWT 2024, 203, 116321. [Google Scholar] [CrossRef]
- Ma, Y.; Yin, J.; Wang, J.; Liu, X.; He, J.; Zhang, R.; Rao, S.; Cong, X.; Xiong, Y.; Wu, M. Selenium speciation and volatile flavor compound profiles in the edible flowers, stems, and leaves of selenium-hyperaccumulating vegetable Cardamine violifolia. Food Chem. 2023, 427, 136710. [Google Scholar] [CrossRef]
- Schieberle, P. Odour-active compounds in moderately roasted sesame. Food Chem. 1996, 55, 145–152. [Google Scholar] [CrossRef]
- Tan, F.; Wang, P.; Zhan, P.; Tian, H. Characterization of key aroma compounds in flat peach juice based on gas chromatography-mass spectrometry-olfactometry (GC-MS-O), odor activity value (OAV), aroma recombination, and omission experiments. Food Chem. 2022, 366, 130604. [Google Scholar] [CrossRef]
- Zhao, Q.; Xue, Y.; Shen, Q. Changes in the major aroma-active compounds and taste components of Jasmine rice during storage. Food Res. Int. 2020, 133, 109160. [Google Scholar] [CrossRef]
- Ye, Y.; Zheng, S.; Wang, Y. Analysis of aroma components changes in Gannan navel orange at different growth stages by HS-SPME-GC-MS, OAV, and multivariate analysis. Food Res. Int. 2024, 175, 113622. [Google Scholar] [CrossRef]
- Yuan, H.; Jiangfang, Y.; Liu, Z.; Su, R.; Li, Q.; Fang, C.; Huang, S.; Liu, X.; Fernie, A.R.; Luo, J. WTV2.0: A high-coverage plant volatilomics method with a comprehensive selective ion monitoring acquisition mode. Mol. Plant 2024, 17, 972–985. [Google Scholar] [CrossRef]
- Xu, Y.; Bi, S.; Xiong, C.; Dai, Y.; Zhou, Q.; Liu, Y. Identification of aroma active compounds in walnut oil by monolithic material adsorption extraction of RSC18 combined with gas chromatography-olfactory-mass spectrometry. Food Chem. 2022, 402, 134303. [Google Scholar] [CrossRef]
- Huang, W.; Fang, S.; Wang, J.; Zhuo, C.; Luo, Y.; Yu, Y.; Li, L.; Wang, Y.; Deng, W.; Ning, J. Sensomics analysis of the effect of the withering method on the aroma components of Keemun black tea. Food Chem. 2022, 395, 133549. [Google Scholar] [CrossRef] [PubMed]
- Chambers, E., 4th; Koppel, K. Associations of volatile compounds with sensory aroma and flavor: The complex nature of flavor. Molecules 2013, 18, 4887–4905. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Shewfelt, R.; Lee, K.; Keys, S. Comparison of odor-active compounds from six distinctly different rice flavor types. J. Agric. Food. Chem 2008, 56, 2780–2787. [Google Scholar] [CrossRef] [PubMed]
- Caputi, L.; Aprea, E. Use of terpenoids as natural flavouring compounds in food industry. Recent Pat. Food Nutr. Agric. 2011, 3, 9–16. [Google Scholar] [CrossRef]
- Eriksson, L.; Kettanehwold, N.; Trygg, J.; Wikström, C.; Wold, S. Multi- and Megavariate Data Analysis: Part I: Basic Principles and Applications; Umetrics Inc.: Umeaa, Sweden, 2006. [Google Scholar]
- Chen, Y.; Zhang, R.; Song, Y.; He, J.; Sun, J.; Bai, J.; An, Z.; Dong, L.; Zhan, Q.; Abliz, Z. RRLC-MS/MS-based metabonomics combined with in-depth analysis of metabolic correlation network: Finding potential biomarkers for breast cancer. Analyst 2009, 134, 2003–2011. [Google Scholar] [CrossRef]
- Thévenot, E.; Roux, A.; Xu, Y.; Ezan, E.; Junot, C. Analysis of the Human Adult Urinary Metabolome Variations with Age, Body Mass Index, and Gender by Implementing a Comprehensive Workflow for Univariate and OPLS Statistical Analyses. J. Proteome Res. 2015, 14, 3322–3335. [Google Scholar] [CrossRef]
- Lehner, T.; Siegmund, B. The impact of ventilation during postharvest ripening on the development of flavour compounds and sensory quality of mangoes (Mangifera indica L.) cv. Kent. Food Chem. 2020, 320, 126608. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, F.; Wang, L.; Niu, Y.; Yu, D.; Shu, C.; Chen, H.; Wang, H.; Xiao, Z. Comparison of Aroma-Active Volatiles in Oolong Tea Infusions Using GC-Olfactometry, GC-FPD, and GC-MS. J. Agric. Food Chem. 2015, 63, 7499–7510. [Google Scholar] [CrossRef]
- Mathure, S.; Jawali, N.; Thengane, R.; Nadaf, A. Comparative quantitative analysis of headspace volatiles and their association with BADH2 marker in non-basmati scented, basmati and non-scented rice (Oryza sativa L.) cultivars of India. Food Chem. 2014, 142, 383–391. [Google Scholar] [CrossRef]
- Sansenya, S.; Hua, Y.; Chumanee, S. The correlation between 2-Acetyl-1-pyrroline content, biological compounds and molecular characterization to the aroma intensities of Thai local rice. J. Oleo Sci. 2018, 67, 893–904. [Google Scholar] [CrossRef]
- Sungeun, C.; Stanley, J. Aroma- active compounds of wild rice (Zizania palustris L.). Food Res. Int. 2013, 54, 1463–1470. [Google Scholar]
- Van Beilen, M.; Bult, H.; Renken, R.; Stieger, M.; Thumfart, S.; Cornelissen, F.; Kooijman, V. Effects of visual priming on taste-odor interaction. PLoS ONE 2011, 6, 23857. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ha, J. Determination of hexanal in rice using an automated dynamic headspace sampler coupled to a gas chromatograph-mass spectrometer. J. Chromatogr. Sci. 2013, 51, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Zhang, H.; Chen, J.; Zhang, T.; Matsunaga, R. Flavor Volatiles of Rice During Cooking Analyzed by Modified Headspace SPME/GC-MS. Cereal Chem. 2008, 85, 140–145. [Google Scholar] [CrossRef]
- Guan, L.; Zhang, M. Formation and release of cooked rice aroma. J. Cereal Sci. 2022, 107, 103523. [Google Scholar]
- Liyanaarachchi, G.; Kottearachchi, N.; Samarasekera, R. Volatile profiles of traditional aromatic rice varaieties in Sri Lanka. J Natl. Sci. Found. 2014, 42, 87–93. [Google Scholar]
Compounds | Log2FC | Odor | ||
---|---|---|---|---|
MXZ2 vs. YX430 | YJSM2 vs. YX430 | YJSM2 vs. MXZ2 | ||
Terpenoids | ||||
β-Cubebene | 1.41 | ns | −2.39 | Citrus, fruity, radish |
Para-menth-3-en-1-ol | 1.28 | ns | −3.24 | Dry, woody, musty |
Isoledene | 1.08 | −1.16 | −2.24 | - |
Cis-p-menthan-1-ol | 1.06 | −1.00 | −2.06 | - |
α-Calacorene | ns | −1.72 | −2.50 | Woody |
Calamenene | ns | −2.30 | −2.88 | Herbal, spice |
(8R,8aS)-8,8a-Dimethyl-2-(propan-2-ylidene)-1,2,3,7,8,8a-hexahydronaphthalene | ns | −2.37 | −3.02 | - |
Cis-Cyclohexanol, 1-methyl-4-(1-methylethyl) | ns | ns | −1.54 | - |
Hydrocarbons | ||||
4-Methyltetradecane | −1.62 | ns | 1.38 | - |
Tetradecane | −1.79 | ns | 1.12 | Mild, waxy |
Pentadecane | −1.57 | ns | 1.32 | Waxy |
Hexadecane | −1.50 | ns | 1.12 | Alkane |
(E)-2-Tetradecene | −1.52 | ns | 1.13 | - |
Tetradecane, 2-methyl- | −1.55 | ns | 1.18 | - |
Bicyclo(3.3.1)non-2-ene | ns | −1.17 | ns | - |
Heterocyclic compound | ||||
Platynecin | −1.22 | ns | 1.05 | - |
5-Aminotetrazole | −1.46 | ns | 1.23 | - |
2-Acetyl-1-pyrroline | ns | −3.68 | −3.39 | Popcorn, toasted, grain |
1,5,6-Trimethyl-azacyclohexan-3-one | ns | ns | −1.68 | - |
6-Methyl-6-(5-methylfuran-2-yl)heptan-2-one | −2.33 | ns | 2.03 | - |
4-Acetyl-pyrazol | ns | ns | −1.20 | - |
1,2,4,5-Tetrazin-3-Amine | ns | ns | −1.23 | - |
Ketone | ||||
Tetrahydrogeranylacetone | −1.60 | ns | ns | Dry, musty |
2-keto-1,1,10-trimethyl-Δ8-octalin | −1.65 | ns | 1.53 | - |
Dihydro-beta-ionone | −2.73 | ns | 2.58 | Earthy, woody |
Ester- | ||||
δ-Decalactone | −1.82 | ns | 1.41 | Creamy, coconut, fruity |
Alcohol | ||||
1-Nonanol | ns | −1.60 | −1.01 | Fresh, floral, rose |
2-Octanol | 1.01 | ns | −1.09 | Fresh, herbal, earthy |
Acid | ||||
Undecylenic acid | −1.63 | ns | ns | Sweet, woody |
Compounds | Log2FC | Odor | ||
MXZ2 vs. YX430 | YJSM2 vs. YX430 | YJSM2 vs. MXZ2 | ||
Aldehyde | ||||
Heptanal | ns | −2.55 | −2.45 | Fresh, fatty, green, |
Cyclohexanecarboxaldehyde | ns | −1.07 | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Pan, Z.; Lu, Z.; Wang, S.; Liu, W.; Wang, X.; Wu, H.; Chen, H.; Chen, T.; Hu, J.; et al. Analysis of Volatile Compounds’ Changes in Rice Grain at Different Ripening Stages via HS-SPME-GC–MS. Foods 2024, 13, 3776. https://doi.org/10.3390/foods13233776
Zhang L, Pan Z, Lu Z, Wang S, Liu W, Wang X, Wu H, Chen H, Chen T, Hu J, et al. Analysis of Volatile Compounds’ Changes in Rice Grain at Different Ripening Stages via HS-SPME-GC–MS. Foods. 2024; 13(23):3776. https://doi.org/10.3390/foods13233776
Chicago/Turabian StyleZhang, Liting, Zhaoyang Pan, Zhanhua Lu, Shiguang Wang, Wei Liu, Xiaofei Wang, Haoxiang Wu, Hao Chen, Tengkui Chen, Juan Hu, and et al. 2024. "Analysis of Volatile Compounds’ Changes in Rice Grain at Different Ripening Stages via HS-SPME-GC–MS" Foods 13, no. 23: 3776. https://doi.org/10.3390/foods13233776
APA StyleZhang, L., Pan, Z., Lu, Z., Wang, S., Liu, W., Wang, X., Wu, H., Chen, H., Chen, T., Hu, J., & He, X. (2024). Analysis of Volatile Compounds’ Changes in Rice Grain at Different Ripening Stages via HS-SPME-GC–MS. Foods, 13(23), 3776. https://doi.org/10.3390/foods13233776