Effects of High Pressure on In Vitro Bioavailability of Curcumin Loaded in Whey Protein Isolate/Carrageenan Composite Emulsion Gel: In Vitro Digestion Coupled with Cell Culture Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of HPP-Induced WPI/κ-CG Composite Emulsion Gel Loaded with CUR
2.2.1. Preparation of WPI/κ-CG Compound Solution
2.2.2. Formulation of CUR-Enriched O/W Emulsion
2.2.3. High-Pressure Treatment
2.3. In Vitro Static Simulated Digestion
2.4. Size Distribution
2.5. Free Fatty Acid Release
2.6. Free Amino Acid Release
2.7. Curcumin Release Rate
2.8. Microstructure
2.9. Cell-Based Assays
2.9.1. Cell Monolayer Model
2.9.2. Cytotoxicity Assay
2.9.3. Cellular Curcumin Uptake
2.10. Statistical Analysis
3. Results and Discussion
3.1. Size Distribution
3.2. Free Fatty Acid Release
3.3. Free Amino Acid Release
3.4. Curcumin Release Rate
3.5. Microstructure
3.6. Cytotoxicity Assay
3.7. Cellular Curcumin Uptake
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Pressler, M.; Devinsky, J.; Duster, M.; Lee, J.H.; Glick, C.S.; Wiener, S.; Laze, J.; Friedman, D.; Roberts, T.; Devinsky, O. Dietary Transitions and Health Outcomes in Four Populations—Systematic Review. Front. Nutr. 2022, 9, 748305. [Google Scholar] [CrossRef] [PubMed]
- Jedli, O.; Ben-Nasr, H.; Zammel, N.; Rebai, T.; Saoudi, M.; Elkahoui, S.; Jamal, A.; Siddiqui, A.J.; Sulieman, A.E.; Alreshidi, M.M.; et al. Attenuation of ovalbumin-induced inflammation and lung oxidative injury in asthmatic rats by Zingiber officinale extract: Combined in silico and in vivo study on antioxidant potential, STAT6 and TNF-α pathways. 3 Biotech. 2022, 12, 191. [Google Scholar] [CrossRef] [PubMed]
- Badraoui, R.; Ben-Nasr, H.; Bardakçi, F.; Rebai, T. Pathophysiological impacts of exposure to an endocrine disruptor (tetradifon) on α–amylase and lipase activities associated metabolic disorders. Pestic. Biochem. Phys. 2020, 167, 104606. [Google Scholar] [CrossRef] [PubMed]
- Antonella, A. Natural Compounds and Healthy Foods: Useful Tools against Onset and Progression of Chronic Diseases. Nutrients 2023, 15, 2898. [Google Scholar]
- Silvia, V.; Chiara, C.; Michele, T.; Federica, G.; Michael, T.A.; Concettina, F. Polyphenols: A route from bioavailability to bioactivity addressing potential health benefits to tackle human chronic diseases. Arch. Toxicol. 2022, 97, 3–38. [Google Scholar]
- Munekata, P.E.; Pateiro, M.; Zhang, W.; Dominguez, R.; Xing, L.; Fierro, E.M.; Lorenzo, J.M. Health benefits, extraction and development of functional foods with curcuminoids. J. Funct. Foods. 2021, 79, 104392. [Google Scholar] [CrossRef]
- Atefeh, J.; Farid, D.; Hossein, A.; Farzaneh, F.; Zarshenas, M. A pharmacology-based comprehensive review on medicinal plants and phytoactive constituents possibly effective in the management of COVID-19. Phytother. Res. Ptr. 2020, 35, 1925–1938. [Google Scholar]
- Saber-Moghaddam, N.; Salari, S.; Hejazi, S.; Amini, M.; Taherzadeh, Z.; Eslami, S.; Rezayat, S.M.; Jaafari, M.R.; Elyasi, S. Oral nano-curcumin formulation efficacy in management of mild to moderate hospitalized coronavirus disease-19 patients: An open label nonrandomized clinical trial. Phytother. Res. 2021, 35, 2616–2623. [Google Scholar] [CrossRef]
- Saeedi, F.; Farkhondeh, T.; Roshanravan, B.; Amirabadizadeh, A.; Ashrafizadeh, M.; Samarghandian, S. Curcumin and blood lipid levels: An updated systematic review and meta-analysis of randomised clinical trials. Arch. Physiol. Biochem. 2020, 128, 1–10. [Google Scholar] [CrossRef]
- Mohammad, P.A.; Tahereh, F.; Milad, A.; Marjan, T.; Saeed, S. Curcumin and cardiovascular diseases: Focus on cellular targets and cascades. Biomed. Pharmacother. 2021, 136, 111214. [Google Scholar]
- Bideshki, M.V.; Jourabchi-Ghadim, N.; Radkhah, N.; Behzadi, M.; Asemani, S.; Jamilian, P.; Zarezadeh, M. The efficacy of curcumin in relieving osteoarthritis: A meta-analysis of meta-analyses. Phytother. Res. 2024, 38, 2875–2891. [Google Scholar] [CrossRef] [PubMed]
- Zoi, V.; Galani, V.; Lianos, G.D.; Voulgaris, S.; Kyritsis, A.P.; Alexiou, G.A. The Role of Curcumin in Cancer Treatment. Biomedicines 2021, 9, 110172. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Liu, H.; Yu, Y.; Peng, S.; Zhu, S. Role of Curcuma longae Rhizoma in medical applications: Research challenges and opportunities. Front. Pharmacol. 2024, 15, 1430284. [Google Scholar] [CrossRef] [PubMed]
- Ayub, H.; Islam, M.; Saeed, M.; Ahmad, H.; Al-Asmari, F.; Ramadan, M.F.; Alissa, M.; Arif, M.A.; Rana, M.; Subtain, M.; et al. On the health effects of curcumin and its derivatives. Food Sci. Nutr. 2024. [Google Scholar] [CrossRef]
- Pacelik, J.K.; Biel, W. Turmeric and Curcumin—Health-Promoting Properties in Humans versus Dogs. Int. J. Mol. Sci. 2023, 24, 14561. [Google Scholar] [CrossRef]
- Dhasaiyan, M.; Karuppaiah, A.; Rahman, H. Design and Development of Gastro-retentive Gel Forming System Comprising Curcumin Loaded Nanostructured Lipid Carrier for Stomach Specific Delivery. J. Clust. Sci. 2024, 35, 2899–2912. [Google Scholar] [CrossRef]
- Zhang, B.; Long, S.; Feng, R.; Yu, M.J.; Xu, B.C.; Tao, H. Thiolated dextrin nanoparticles for curcumin delivery: Stability, in vitro release, and binding mechanism. Food Chem. 2024, 463, 141501. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Y.; Liu, X.; Liu, F. Enhancing the effects of curcumin on oxidative stress injury in brain vascular endothelial cells using lactoferrin peptide nano-micelles: Antioxidant activity and mechanism. J. Sci. Food Agr. 2024, 105, 372–381. [Google Scholar] [CrossRef]
- Kristýna, O.; Barbora, L.; Lubomír, L.; Shweta, G.; Tomáš, V.; Peng, L. Physico-Chemical Study of Curcumin and Its Application in O/W/O Multiple Emulsion. Foods 2023, 12, 1394. [Google Scholar] [CrossRef]
- Guo, H.; Feng, Y.; Deng, Y.; Yan, T.; Liang, Z.; Zhou, Y.; Zhang, W.; Xu, E.; Liu, D.; Wang, W. Continuous flow modulates zein nanoprecipitation solvent environment to obtain colloidal particles with high curcumin loading. Food Hydrocolloids 2023, 134, 108089. [Google Scholar] [CrossRef]
- Bi, C.; Wang, P.; Sun, D.; Yan, Z.; Liu, Y.; Huang, Z.; Gao, F. Effect of high-pressure homogenization on gelling and rheological properties of soybean protein isolate emulsion gel. J. Food Eng. 2020, 277, 109923. [Google Scholar] [CrossRef]
- Yiu, C.C.Y.; Liang, S.W.; Mukhtar, K.; Kim, W.; Wang, Y.; Selomulya, C. Food Emulsion Gels from Plant-Based Ingredients: Formulation, Processing, and Potential Applications. Gels 2023, 9, 366. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Liang, X.; Yan, J., Zhao; Liu, X.; Ngai, T.; McClements, J.D. Tailoring the properties of double-crosslinked emulsion gels using structural design principles: Physical characteristics, stability, and delivery of lycopene. Biomaterials 2022, 280, 121265. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Li, S.; Yin, Y.; Xu, W.; Xue, T.; Wang, Y.; Liu, X.; Liu, F. Preparation, characterization, formation mechanism and stability of allicin-loaded emulsion gel. LWT 2022, 161, 113389. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, W.; Zhou, X.; Deng, Q.; Dong, X.; Yang, C.; Huang, F. Astaxanthin-loaded emulsion gels stabilized by Maillard reaction products of whey protein and flaxseed gum: Physicochemical characterization and in vitro digestibility. Food Res. Int. 2021, 144, 110321. [Google Scholar] [CrossRef]
- Abdullah; Lang, L.; Umer, J.H.; Jie, X. Engineering Emulsion Gels as Functional Colloids Emphasizing Food Applications: A Review. Front. Nutr. 2022, 9, 890188. [Google Scholar]
- Guo, Y.; Chen, X.; Gong, P.; Chen, F.; Cui, D.; Wang, M. Advances in the in vitro digestion and fermentation of polysaccharides. Int. J. Food Sci. Technol. 2021, 56, 4970–4982. [Google Scholar]
- Yang, Q.; Chang, S.; Zhang, X.; Luo, F.; Li, W.; Ren, J. The fate of dietary polysaccharides in the digestive tract. Trends Food Sci. Tech. 2024, 150, 104606. [Google Scholar] [CrossRef]
- Huang, C.; Blecker, C.; Wei, X.; Xie, X.; Li, S.; Chen, L.; Zhang, D. Effects of different plant polysaccharides as fat substitutes on the gel properties, microstructure and digestion characteristics of myofibrillar protein. Food Hydrocolloids 2024, 150, 109717. [Google Scholar] [CrossRef]
- Costa, F.M.; Ramalho, P.F.; de Figueiredo, F.G.; Dupas, H.M. Co-encapsulation of paprika and cinnamon oleoresin by spray drying using whey protein isolate and maltodextrin as wall material: Development, characterization and storage stability. Food Res. Int. 2022, 162, 112164. [Google Scholar]
- Meigui, H.; Hui, L.; Mehraj, A.; Ruifeng, Y. WPI-coated liposomes as a delivery vehicle for enhancing the thermal stability and antioxidant activity of luteolin. Food Chem. 2023, 437, 137786. [Google Scholar]
- Ma, P.; Zeng, Q.; Tai, K.; He, X.; Yao, Y.; Hong, X.; Yuan, F. Development of stable curcumin nanoemulsions: Effects of emulsifier type and surfactant-to-oil ratios. J. Food Sci. Technol. 2018, 55, 3485–3497. [Google Scholar] [CrossRef] [PubMed]
- André, B.; Lotti, E.; Marie, A.; Paula, A.; Ricardo, A.; Simon, B.; Torsten, B.; Claire, B.; Rachel, B.; Frédéric, C.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar]
- Meng, R.; Wu, Z.; Xie, Q.; Zhang, B.; Li, X.; Liu, W.; Tao, H.; Li, P. Zein/carboxymethyl dextrin nanoparticles stabilized pickering emulsions as delivery vehicles: Effect of interfacial composition on lipid oxidation and in vitro digestion. Food Hydrocolloids 2020, 108, 106020. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, W.; Nie, K.; Gao, Z.; Fang, Y.; Nishinari, K.; Phillips, G.O.; Jiang, F. Effect of Gum Arabic, Gum Ghatti and Sugar Beet Pectin as Interfacial Layer on Lipid Digestibility in Oil-in-Water Emulsions. Food Biophys. 2016, 11, 292–301. [Google Scholar] [CrossRef]
- Guo, Q.; Bellissimo, N.; Rousseau, D. Role of gel structure in controlling in vitro intestinal lipid digestion in whey protein emulsion gels. Food Hydrocolloids 2017, 69, 264–272. [Google Scholar] [CrossRef]
- Sokolova, E.V.; Kravchenko, A.O.; Sergeeva, N.V.; Davydova, V.N.; Bogdanovich, L.N.; Yermak, I.M. Effect of carrageenans on some lipid metabolism components in vitro. Carbohyd. Polym. 2020, 230, 115629. [Google Scholar] [CrossRef]
- Nguyen, T.T.P.; Bhandari, B.; Cichero, J.; Prakash, S. Gastrointestinal digestion of dairy and soy proteins in infant formulas: An in vitro study. Food Res. Int. 2015, 76, 348–358. [Google Scholar] [CrossRef]
- De Maria, S.; Ferrari, G.; Maresca, P. Effects of high hydrostatic pressure on the conformational structure and the functional properties of bovine serum albumin. Innov. Food Sci. Emerg. Technol. 2016, 33, 67–75. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Zhu, D.; Hu, S.; Kang, Z.; Ma, H. Effect of dynamic ultra-high pressure homogenization on the structure and functional properties of whey protein. J. Food Sci. Technol. 2020, 57, 1301–1309. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, Z.; Wang, Y.; Gao, J.; Yuan, Q.; Mao, X. Effects of high hydrostatic pressure treatment on the antigenicity, structural and digestive properties of whey protein. LWT 2023, 178, 114628. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, R.; Zou, L.; Chen, L.; Ahmed, Y.; Bishri, W.A.; Balamash, K.; McClements, D.J. Encapsulation of curcumin in polysaccharide-based hydrogel beads: Impact of bead type on lipid digestion and curcumin bioaccessibility. Food Hydrocolloids 2016, 58, 160–170. [Google Scholar] [CrossRef]
- Chen, W.; Jin, W.; Ma, X.; Wen, H.; Xu, G.; Xu, P.; Cheng, H. Impact of κ-Carrageenan on the Freshwater Mussel (Solenaia oleivora) Protein Emulsion Gels: Gel Formation, Stability, and Curcumin Delivery. Gels 2024, 10, 659. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jiang, Y.; Shi, J. Novel Pickering emulsion stabilized by glycated casein embedding curcumin: Stability, bioaccessibility and antioxidant properties. LWT 2024, 194, 115796. [Google Scholar] [CrossRef]
- Ochoa-Flores, A.A.; Hernández-Becerra, J.A.; Cavazos-Garduño, A.; Soto-Rodríguez, I.; Guadalupe Sanchez-Otero, M.; Vernon-Carter, E.J.; García, H.S. Enhanced Bioavailability of Curcumin Nanoemulsions Stabilized with Phosphatidylcholine Modified with Medium Chain Fatty Acids. Curr. Drug Deliv. 2017, 14, 377–385. [Google Scholar] [CrossRef]
- Silva, H.D.; Poejo, J.; Pinheiro, A.C.; Donsì, F.; Serra, A.T.; Duarte, C.M.M.; Ferrari, G.; Cerqueira, M.A.; Vicente, A.A. Evaluating the behaviour of curcumin nanoemulsions and multilayer nanoemulsions during dynamic in vitro digestion. J. Funct. Foods. 2018, 48, 605–613. [Google Scholar] [CrossRef]
- Shikinaka, K.; Nakamura, M.; Navarro, R.R.; Otsuka, Y. Plant-Based Antioxidant Nanoparticles without Biological Toxicity. Chemistryopen 2018, 7, 709–712. [Google Scholar] [CrossRef]
- Penn, A.H.; Altshuler, A.E.; Small, J.W.; Taylor, S.F.; Dobkins, K.R.; Schmid-Schönbein, G.W. Effect of digestion and storage of human milk on free fatty acid concentration and cytotoxicity. J. Pediatr. Gastr. Nutr. 2014, 59, 365–373. [Google Scholar] [CrossRef]
- Yu, H.; Huang, Q. Investigation of the cytotoxicity of food-grade nanoemulsions in Caco-2 cell monolayers and HepG2 cells. Food Chem. 2013, 141, 29–33. [Google Scholar] [CrossRef]
- Rodriguez-Rosales, R.J.; Yao, Y. Phytoglycogen, a natural dendrimer-like glucan, improves the soluble amount and Caco-2 monolayer permeation of curcumin and enhances its efficacy to reduce HeLa cell viability. Food Hydrocolloids 2020, 100, 105442. [Google Scholar] [CrossRef]
- Lihua, L.; Zhanli, Z.; Xin, W.; Ke, X.; Xinyu, S.; Hui, Z.; Mengna, D.; Jiao, W.; Ruixia, L.; Shuying, W.; et al. Self-assembled emulsion gel based on modified chitosan and gelatin: Anti-inflammatory and improving cellular uptake of lipid-soluble actives. Int. J. Biol. Macromol. 2023, 231, 123300. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Zhang, X.; Huang, Y.; Tan, Y.; Ren, S.; Yuan, F. Effects of High Pressure on In Vitro Bioavailability of Curcumin Loaded in Whey Protein Isolate/Carrageenan Composite Emulsion Gel: In Vitro Digestion Coupled with Cell Culture Model. Foods 2024, 13, 3782. https://doi.org/10.3390/foods13233782
Zhao J, Zhang X, Huang Y, Tan Y, Ren S, Yuan F. Effects of High Pressure on In Vitro Bioavailability of Curcumin Loaded in Whey Protein Isolate/Carrageenan Composite Emulsion Gel: In Vitro Digestion Coupled with Cell Culture Model. Foods. 2024; 13(23):3782. https://doi.org/10.3390/foods13233782
Chicago/Turabian StyleZhao, Jiayue, Xinmeng Zhang, Yanan Huang, Yan Tan, Shuang Ren, and Fang Yuan. 2024. "Effects of High Pressure on In Vitro Bioavailability of Curcumin Loaded in Whey Protein Isolate/Carrageenan Composite Emulsion Gel: In Vitro Digestion Coupled with Cell Culture Model" Foods 13, no. 23: 3782. https://doi.org/10.3390/foods13233782
APA StyleZhao, J., Zhang, X., Huang, Y., Tan, Y., Ren, S., & Yuan, F. (2024). Effects of High Pressure on In Vitro Bioavailability of Curcumin Loaded in Whey Protein Isolate/Carrageenan Composite Emulsion Gel: In Vitro Digestion Coupled with Cell Culture Model. Foods, 13(23), 3782. https://doi.org/10.3390/foods13233782