Anti-Aging Effect of Traditional Plant-Based Food: An Overview
Abstract
:1. Introduction
2. Plant-Based Supplements with Potential to Prevent Aging
2.1. Plants
2.1.1. Bacopa monnieri (L.) Wettst
2.1.2. Curcuma longa L.
2.1.3. Emblica officinalis Gaertn. (Synonym of Phyllanthus emblica L.)
2.1.4. Ginkgo biloba L.
2.1.5. Glycyrrhiza glabra L.
2.1.6. Panax ginseng C.A.Mey
2.2. Prepared Foods
2.2.1. Tempeh
2.2.2. Kimchi
2.2.3. Chungkookjang
3. Plant-Based Metabolites with Healthy and Restorative Effects
3.1. Polyphenols
3.2. Flavonoids (Phlorizin)
3.3. Tea Catechins and Theaflavins
3.4. Black Rice Anthocyanins
3.5. Carotene
3.6. Vitamins
3.7. PUFAs or “Polyunsaturated Fatty Acids”
3.7.1. Omega-3 Polyunsaturated Fatty Acid
3.7.2. Omega-6 Polyunsaturated Fat
3.8. Additional Organic Ingredients from Herbs
4. Molecular Processes Behind the Actions of Plant-Based Foods and Dietary Additives and Mechanism of Anti-Aging Effects
5. Pre-Clinical and Clinical Studies on Anti-Aging Effects of Traditional Plant-Based Foods
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, S.; Duan, E. Fighting against skin aging: The way from bench to bedside. Cell Transplant. 2018, 27, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Bocheva, G.; Slominski, R.M.; Slominski, A.T. Neuroendocrine aspects of skin aging. Int. J. Mol. Sci. 2019, 20, 2798. [Google Scholar] [CrossRef] [PubMed]
- Sarnak, M.J. A patient with heart failure and worsening kidney function. Clin. J. Am. Soc. Nephrol. 2014, 9, 1790–1798. [Google Scholar] [CrossRef] [PubMed]
- Booth, F.W.; Roberts, C.K.; Laye, M.J. Lack of exercise is a major cause of chronic diseases. Compr. Physiol. 2012, 2, 1143. [Google Scholar]
- Schagen, S.K.; Zampeli, V.A.; Makrantonaki, E.; Zouboulis, C.C. Discovering the link between nutrition and skin aging. Dermato-Endocrinology 2012, 4, 298–307. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118. [Google Scholar] [CrossRef]
- Alam, I.; Almajwal, A.M.; Alam, W.; Alam, I.; Ullah, N.; Abulmeaaty, M.; Razak, S.; Khan, S.; Pawelec, G.; Paracha, P.I. The immune-nutrition interplay in aging–facts and controversies. Nutr. Healthy Aging 2019, 5, 73–95. [Google Scholar] [CrossRef]
- Chauhan, B.; Kumar, G.; Kalam, N.; Ansari, S.H. Current concepts and prospects of herbal nutraceutical: A review. J. Adv. Pharm. Technol. Res. 2013, 4, 4–8. [Google Scholar]
- Liu, Z.; Ren, Z.; Zhang, J.; Chuang, C.-C.; Kandaswamy, E.; Zhou, T.; Zuo, L. Role of ROS and nutritional antioxidants in human diseases. Front. Physiol. 2018, 9, 360203. [Google Scholar] [CrossRef]
- Saleem, S.; Muhammad, G.; Hussain, M.A.; Bukhari, S.N.A. A comprehensive review of phytochemical profile, bioactives for pharmaceuticals, and pharmacological attributes of Azadirachta indica. Phytother. Res. 2018, 32, 1241–1272. [Google Scholar] [CrossRef]
- Khuntia, A.; Martorell, M.; Ilango, K.; Bungau, S.G.; Radu, A.-F.; Behl, T.; Sharifi-Rad, J. Theoretical evaluation of Cleome species’ bioactive compounds and therapeutic potential: A literature review. Biomed. Pharmacother. 2022, 151, 113161. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Chauhan, N.; Tyagi, B.; Yadav, P.; Samanta, A.K.; Tyagi, A.K. Exploring bioactive compounds and antioxidant properties of twenty-six Indian medicinal plant extracts: A correlative analysis for potential therapeutic insights. Food Humanit. 2023, 1, 1670–1679. [Google Scholar] [CrossRef]
- Conlon, M.A.; Bird, A.R. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 2014, 7, 17–44. [Google Scholar] [CrossRef] [PubMed]
- Kasote, D.M.; Katyare, S.S.; Hegde, M.V.; Bae, H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int. J. Biol. Sci. 2015, 11, 982. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 9, 7204. [Google Scholar] [CrossRef]
- Liao, L.-Y.; He, Y.-F.; Li, L.; Meng, H.; Dong, Y.-M.; Yi, F.; Xiao, P.-G. A preliminary review of studies on adaptogens: Comparison of their bioactivity in TCM with that of ginseng-like herbs used worldwide. Chin. Med. 2018, 13, 57. [Google Scholar] [CrossRef]
- Wagner, H.; Nörr, H.; Winterhoff, H. Plant adaptogens. Phytomedicine 1994, 1, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Panossian, A.; Wikman, G.; Wagner, H. Plant adaptogens III. Earlier and more recent aspects and concepts on their mode of action. Phytomedicine 1999, 6, 287–300. [Google Scholar] [CrossRef]
- Oliynyk, S.; Oh, S. The pharmacology of actoprotectors: Practical application for improvement of mental and physical performance. Biomol. Ther. 2012, 20, 446. [Google Scholar] [CrossRef]
- Todorova, V.; Ivanov, K.; Delattre, C.; Nalbantova, V.; Karcheva-Bahchevanska, D.; Ivanova, S. Plant adaptogens—History and future perspectives. Nutrients 2021, 13, 2861. [Google Scholar] [CrossRef]
- Gupta, V.; Gupta, A.; Saggu, S.; Divekar, H.M.; Grover, K.; Kumar, R. Anti-stress and Adaptogenic Activity of l-Arginine Supplementation. Evid. Based Complement. Altern. Med. 2005, 2, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, N.; Jaggi, A.S.; Singh, N.; Anand, P.; Dhawan, R. Adaptogenic potential of curcumin in experimental chronic stress and chronic unpredictable stress-induced memory deficits and alterations in functional homeostasis. J. Nat. Med. 2011, 65, 532–543. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.K.; Jain, G.; Das, B.K.; Patil, U. Biomolecules from plants as an adaptogen. Med. Aromat. Plants 2017, 6, 307. [Google Scholar]
- Wang, R.; Xu, Y.; Wu, H.-L.; Li, Y.-B.; Li, Y.-H.; Guo, J.-B.; Li, X.-J. The antidepressant effects of curcumin in the forced swimming test involve 5-HT1 and 5-HT2 receptors. Eur. J. Pharmacol. 2008, 578, 43–50. [Google Scholar] [CrossRef]
- Lotankar, A.R.; Wankhede, S.; Sharma, J.B.; Momin, A.J. Anti-Stress Activity of Flavonoids Rutin and Quercetin Isolated from the Leaves of Ficusbenghalensis. Int. J. Phar. Pharmac. Res. 2016, 5, 5–19. [Google Scholar]
- Hernandez-Leon, A.; González-Trujano, M.E.; Fernández-Guasti, A. The anxiolytic-like effect of rutin in rats involves GABAA receptors in the basolateral amygdala. Behav. Pharmacol. 2017, 28, 303–312. [Google Scholar] [CrossRef]
- Fernandez-Moriano, C.; Gonzalez-Burgos, E.; Iglesias, I.; Lozano, R.; Gómez-Serranillos, M.P. Evaluation of the adaptogenic potential exerted by ginsenosides Rb1 and Rg1 against oxidative stress-mediated neurotoxicity in an in vitro neuronal model. PLoS ONE 2017, 12, e0182933. [Google Scholar] [CrossRef]
- Dhingra, D.; Sharma, A. Evaluation of antidepressant-like activity of glycyrrhizin in mice. Indian J. Pharmacol. 2005, 37, 390–394. [Google Scholar] [CrossRef]
- Patidar, G.; Shaikh, A. Antistress potential of glycyrrhizin in chronic immobilization stress. Biomed. Pharmacol. J. 2015, 5, 273–283. [Google Scholar] [CrossRef]
- Gilhotra, N.; Dhingra, D. Possible involvement of GABAergic and nitriergic systems for antianxiety-like activity of piperine in unstressed and stressed mice. Pharmacol. Rep. 2014, 66, 885–891. [Google Scholar] [CrossRef]
- Li, S.; Wang, C.; Li, W.; Koike, K.; Nikaido, T.; Wang, M.-W. Antidepressant-like effects of piperine and its derivative, antiepilepsirine. J. Asian Nat. Prod. Res. 2007, 9, 421–430. [Google Scholar] [CrossRef]
- Garabadu, D.; Shah, A.; Ahmad, A.; Joshi, V.B.; Saxena, B.; Palit, G.; Krishnamurthy, S. Eugenol as an anti-stress agent: Modulation of hypothalamic–pituitary–adrenal axis and brain monoaminergic systems in a rat model of stress. Stress 2011, 14, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Thakur, A.K.; Chatterjee, S.S.; Kumar, V. Adaptogenic potential of andrographolide: An active principle of the king of bitters (Andrographis paniculata). J. Tradit. Complement. Med. 2015, 5, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Yadav, D.K.; Siripurapu, K.B.; Palit, G.; Maurya, R. Constituents of Ocimum sanctum with antistress activity. J. Nat. Prod. 2007, 70, 1410–1416. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.-A.; Choi, H.J.; Kim, N.J.; Kim, D.-H. Anti-stress effect of astragaloside IV in immobilized mice. J. Ethnopharmacol. 2014, 153, 928–932. [Google Scholar] [CrossRef]
- Wan, C.-P.; Gao, L.-X.; Hou, L.-F.; Yang, X.-Q.; He, P.-L.; Yang, Y.-F.; Tang, W.; Yue, J.-M.; Li, J.; Zuo, J.-P. Astragaloside II triggers T cell activation through regulation of CD45 protein tyrosine phosphatase activity. Acta Pharmacol. Sin. 2013, 34, 522–530. [Google Scholar] [CrossRef]
- Nazir, N.; Koul, S.; Qurishi, M.A.; Taneja, S.C.; Ahmad, S.F.; Bani, S.; Qazi, G.N. Immunomodulatory effect of bergenin and norbergenin against adjuvant-induced arthritis—A flow cytometric study. J. Ethnopharmacol. 2007, 112, 401–405. [Google Scholar] [CrossRef]
- Cho, J.Y.; Nam, K.H.; Kim, A.R.; Park, J.; Yoo, E.S.; Baik, K.U.; Yu, Y.H.; Park, M.H. In-vitro and in-vivo immunomodulatory effects of syringin. J. Pharm. Pharmacol. 2001, 53, 1287–1294. [Google Scholar] [CrossRef]
- Lee, B.; Sur, B.; Yeom, M.; Shim, I.; Lee, H.; Hahm, D.-H. Effect of berberine on depression-and anxiety-like behaviors and activation of the noradrenergic system induced by development of morphine dependence in rats. Korean J. Physiol. Pharmacol. 2012, 16, 379–386. [Google Scholar] [CrossRef]
- Peng, W.-H.; Wu, C.-R.; Chen, C.-S.; Chen, C.-F.; Leu, Z.-C.; Hsieh, M.-T. Anxiolytic effect of berberine on exploratory activity of the mouse in two experimental anxiety models: Interaction with drugs acting at 5-HT receptors. Life Sci. 2004, 75, 2451–2462. [Google Scholar] [CrossRef]
- Guzmán-Gutiérrez, S.L.; Bonilla-Jaime, H.; Gómez-Cansino, R.; Reyes-Chilpa, R. Linalool and β-pinene exert their antidepressant-like activity through the monoaminergic pathway. Life Sci. 2015, 128, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Lappas, C.M. The plant hormone zeatin riboside inhibits T lymphocyte activity via adenosine A2A receptor activation. Cell. Mol. Immunol. 2015, 12, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Capra, J.C.; Cunha, M.P.; Machado, D.G.; Zomkowski, A.D.; Mendes, B.G.; Santos, A.R.S.; Pizzolatti, M.G.; Rodrigues, A.L.S. Antidepressant-like effect of scopoletin, a coumarin isolated from Polygala sabulosa (Polygalaceae) in mice: Evidence for the involvement of monoaminergic systems. Eur. J. Pharmacol. 2010, 643, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Marcilhac, A.; Dakine, N.; Bourhim, N.; Guillaume, V.; Grino, M.; Drieu, K.; Oliver, C. Effect of chronic administration of Ginkgo biloba extract or Ginkgolide on the hypothalamic-pituitary-adrenal axis in the rat. Life Sci. 1998, 62, 2329–2340. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Liu, H.-L.; Fang, J.; Yu, C.-H.; Xiong, Y.-K.; Yuan, K. Anti-fatigue and vasoprotective effects of quercetin-3-O-gentiobiose on oxidative stress and vascular endothelial dysfunction induced by endurance swimming in rats. Food Chem. Toxicol. 2014, 68, 290–296. [Google Scholar] [CrossRef]
- Chhillar, R.; Dhingra, D. Antidepressant-like activity of gallic acid in mice subjected to unpredictable chronic mild stress. Fundam. Clin. Pharmacol. 2013, 27, 409–418. [Google Scholar] [CrossRef]
- Jung, H.Y.; Yoo, D.Y.; Nam, S.M.; Kim, J.W.; Choi, J.H.; Yoo, M.; Lee, S.; Yoon, Y.S.; Hwang, I.K. Valerenic acid protects against physical and psychological stress by reducing the turnover of serotonin and norepinephrine in mouse hippocampus-amygdala region. J. Med. Food 2015, 18, 1333–1339. [Google Scholar] [CrossRef]
- Becker, A.; Felgentreff, F.; Schröder, H.; Meier, B.; Brattström, A. The anxiolytic effects of a Valerian extract is based on valerenic acid. BMC Complement. Altern. Med. 2014, 14, 267. [Google Scholar] [CrossRef]
- Smit, H.; Kroes, B.; Van den Berg, A.; Van der Wal, D.; Van den Worm, E.; Beukelman, C.; Van Dijk, H.; Labadie, R. Immunomodulatory and anti-inflammatory activity of Picrorhiza scrophulariiflora. J. Ethnopharmacol. 2000, 73, 101–109. [Google Scholar] [CrossRef]
- Zhu, L.; Nang, C.; Luo, F.; Pan, H.; Zhang, K.; Liu, J.; Zhou, R.; Gao, J.; Chang, X.; He, H. Esculetin attenuates lipopolysaccharide (LPS)-induced neuroinflammatory processes and depressive-like behavior in mice. Physiol. Behav. 2016, 163, 184–192. [Google Scholar] [CrossRef]
- Lee, B.; Sur, B.; Kwon, S.; Yeom, M.; Shim, I.; Lee, H.; Hahm, D.-H. Chronic administration of catechin decreases depression and anxiety-like behaviors in a rat model using chronic corticosterone injections. Biomol. Ther. 2013, 21, 313. [Google Scholar] [CrossRef]
- Liang, X.; Huang, Y.N.; Chen, S.W.; Wang, W.J.; Xu, N.; Cui, S.; Liu, X.H.; Zhang, H.; Liu, Y.N.; Liu, S. Antidepressant-like effect of asiaticoside in mice. Pharmacol. Biochem. Behav. 2008, 89, 444–449. [Google Scholar] [CrossRef]
- Liao, J.-C.; Tsai, J.-C.; Liu, C.-Y.; Huang, H.-C.; Wu, L.-Y.; Peng, W.-H. Antidepressant-like activity of turmerone in behavioral despair tests in mice. BMC Complement. Altern. Med. 2013, 13, 299. [Google Scholar] [CrossRef]
- Perfumi, M.; Mattioli, L. Adaptogenic and central nervous system effects of single doses of 3% rosavin and 1% salidroside Rhodiola rosea L. extract in mice. Phytother. Res. 2007, 21, 37–43. [Google Scholar] [CrossRef]
- Pise, M.V.; Rudra, J.A.; Upadhyay, A. Immunomodulatory potential of shatavarins produced from Asparagus racemosus tissue cultures. J. Nat. Sci. Biol. Med. 2015, 6, 415. [Google Scholar] [CrossRef]
- Ma, L.; Cai, D.; Li, H.; Tong, B.; Wang, Y.; Pei, S. Protective effects of salidroside on oxidative damage in fatigue mice. J. Chin. Integr. Med. 2009, 7, 237–241. [Google Scholar] [CrossRef]
- Aguirre-Hernández, E.; Rosas-Acevedo, H.; Soto-Hernández, M.; Martínez, A.L.; Moreno, J.; González-Trujano, M.E. Bioactivity-guided isolation of β-sitosterol and some fatty acids as active compounds in the anxiolytic and sedative effects of Tilia americana var. mexicana. Planta Med. 2007, 73, 1148–1155. [Google Scholar] [CrossRef]
- Dhingra, D.; Chhillar, R. Antidepressant-like activity of ellagic acid in unstressed and acute immobilization-induced stressed mice. Pharmacol. Rep. 2012, 64, 796–807. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Luo, D.; Liang, Z.; Lao, L.; Rong, J. Plant natural product puerarin ameliorates depressive behaviors and chronic pain in mice with spared nerve injury (SNI). Mol. Neurobiol. 2017, 54, 2801–2812. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.-K.; Zhang, G.-H.; Zhong, D.-S.; He, J.-L.; Liu, X.; Chen, J.-S.; Wei, D.-N. Puerarin ameliorated the behavioral deficits induced by chronic stress in rats. Sci. Rep. 2017, 7, 6266. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Chen, H.; Li, H.; Tang, Y.; Yang, L.; Cao, S.; Qin, D. Antidepressant potential of chlorogenic acid-enriched extract from Eucommia ulmoides Oliver bark with neuron protection and promotion of serotonin release through enhancing synapsin I expression. Molecules 2016, 21, 260. [Google Scholar] [CrossRef] [PubMed]
- Machado, D.; Neis, V.; Balen, G.; Colla, A.; Cunha, M.; Dalmarco, J.; Pizzolatti, M.; Prediger, R.; Rodrigues, A. Antidepressant-like effect of ursolic acid isolated from Rosmarinus officinalis L. in mice: Evidence for the involvement of the dopaminergic system. Pharmacol. Biochem. Behav. 2012, 103, 204–211. [Google Scholar] [CrossRef]
- Pereira, P.; De Oliveira, P.A.; Ardenghi, P.; Rotta, L.; Henriques, J.A.P.; Picada, J.N. Neuropharmacological analysis of caffeic acid in rats. Basic Clin. Pharmacol. Toxicol. 2006, 99, 374–378. [Google Scholar] [CrossRef]
- Takeda, H.; Tsuji, M.; Miyamoto, J.; Masuya, J.; Iimori, M.; Matsumiya, T. Caffeic acid produces antidepressive-and/or anxiolytic-like effects through indirect modulation of the α1A-adrenoceptor system in mice. Neuroreport 2003, 14, 1067–1070. [Google Scholar]
- Wu, S.; Gao, Q.; Zhao, P.; Gao, Y.; Xi, Y.; Wang, X.; Liang, Y.; Shi, H.; Ma, Y. Sulforaphane produces antidepressant-and anxiolytic-like effects in adult mice. Behav. Brain Res. 2016, 301, 55–62. [Google Scholar] [CrossRef]
- Kour, K.; Bani, S. Augmentation of immune response by chicoric acid through the modulation of CD28/CTLA-4 and Th1 pathway in chronically stressed mice. Neuropharmacology 2011, 60, 852–860. [Google Scholar] [CrossRef]
- Kour, K.; Bani, S. Chicoric acid regulates behavioral and biochemical alterations induced by chronic stress in experimental Swiss albino mice. Pharmacol. Biochem. Behav. 2011, 99, 342–348. [Google Scholar] [CrossRef]
- Kawashima, K.; Miyako, D.; Ishino, Y.; Makino, T.; Saito, K.-I.; Kano, Y. Anti-stress effects of 3, 4, 5-trimethoxycinnamic acid, an active constituent of roots of Polygala tenuifolia (Onji). Biol. Pharm. Bull. 2004, 27, 1317–1319. [Google Scholar] [CrossRef] [PubMed]
- Leem, Y.-H.; Oh, S. 3, 4, 5-Trimethoxycinnamin acid ameliorates restraint stress-induced anxiety and depression. Neurosci. Lett. 2015, 585, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.; Tysca, D.; Oliveira, P.; da Silva Brum, L.F.; Picada, J.N.; Ardenghi, P. Neurobehavioral and genotoxic aspects of rosmarinic acid. Pharmacol. Res. 2005, 52, 199–203. [Google Scholar]
- Singh, M.; Das, B.; Trivedi, R. In vivo evaluation of immunomodulatory potential of ferulic acid. Int. Res. J. Pharm. 2016, 7, 12–17. [Google Scholar] [CrossRef]
- Tan, P.H.; Sagoo, P.; Chan, C.; Yates, J.B.; Campbell, J.; Beutelspacher, S.C.; Foxwell, B.M.J.; Lombardi, G.; George, A.J.T. Inhibition of NF-κB and Oxidative Pathways in Human Dendritic Cells by Antioxidative Vitamins Generates Regulatory T Cells1. J. Immunol. 2005, 174, 7633–7644. [Google Scholar] [CrossRef]
- Zaknun, D.; Schroecksnadel, S.; Kurz, K.; Fuchs, D. Potential Role of Antioxidant Food Supplements, Preservatives and Colorants in the Pathogenesis of Allergy and Asthma. Int. Arch. Allergy Immunol. 2011, 157, 113–124. [Google Scholar] [CrossRef]
- Isolauri, E.; Huurre, A.; Salminen, S.; Impivaara, O. The allergy epidemic extends beyond the past few decades. Clin. Exp. Allergy 2004, 34, 1007–1010. [Google Scholar] [CrossRef]
- Fuchs, D. Antioxidant intake and allergic disease. Clin. Exp. Allergy 2012, 42, 1420–1422. [Google Scholar] [CrossRef]
- Aguiar, S.; Borowski, T. Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation Res. 2013, 16, 313–326. [Google Scholar] [CrossRef]
- Jain, P.K.; Das, D.; Kumar Jain, P. Pharmacognostic comparison of Bacopa monnieri, Cyperus rotundus, and Emblica officinalis. Innov. J. Ayurvedic Sci. 2016, 4, 16–26. [Google Scholar]
- Tewari, I.; Sharma, L.; Gupta, G.L. Synergistic antioxidant activity of three medicinal plants Hypericum perforatum, Bacopa monnieri, and Camellia sinensis. Indo Am. J. Pharm. Res. 2014, 4, 2563–2568. [Google Scholar]
- Vollala, V.R.; Upadhya, S.; Nayak, S. Effect of Bacopa monniera Linn. (brahmi) extract on learning and memory in rats: A behavioral study. J. Vet. Behav. 2010, 5, 69–74. [Google Scholar] [CrossRef]
- Shinomol, G.K.; Bharath, M.S.; Muralidhara. Neuromodulatory propensity of Bacopa monnieri leaf extract against 3-nitropropionic acid-induced oxidative stress: In vitro and in vivo evidences. Neurotox. Res. 2012, 22, 102–114. [Google Scholar] [CrossRef]
- Kumar, N.; Abichandani, L.; Thawani, V.; Gharpure, K.; Naidu, M.; Venkat Ramana, G. Efficacy of standardized extract of Bacopa monnieri (Bacognize®) on cognitive functions of medical students: A six-week, randomized placebo-controlled trial. Evid. Based Complement. Altern. Med. 2016, 2016, 4103423. [Google Scholar] [CrossRef] [PubMed]
- Kocaadam, B.; Şanlier, N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr. 2017, 57, 2889–2895. [Google Scholar] [CrossRef]
- Prasad, S.; Aggarwal, B.B. Turmeric, the Golden Spice: From Traditional Medicine to Modern Medicine. In Herbal Medicine: Biomolecular and Clinical Aspects, 2nd ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2011; Chapter 13. [Google Scholar]
- Tomeh, M.A.; Hadianamrei, R.; Zhao, X. A review of curcumin and its derivatives as anticancer agents. Int. J. Mol. Sci. 2019, 20, 1033. [Google Scholar] [CrossRef]
- Desai, S.J.; Prickril, B.; Rasooly, A. Mechanisms of phytonutrient modulation of cyclooxygenase-2 (COX-2) and inflammation related to cancer. Nutr. Cancer 2018, 70, 350–375. [Google Scholar] [CrossRef] [PubMed]
- Engwa, G.A. Free Radicals and the Role of Plant Phytochemicals as Antioxidants Against Oxidative Stress-Related Diseases. In Phytochemicals: Source of Antioxidants and Role in Disease Prevention; Asao, T., Asaduzzaman, M.D., Eds.; IntechOpen: London, UK, 2018; Volume 7, pp. 49–74. [Google Scholar] [CrossRef]
- Lima, C.F.; Pereira-Wilson, C.; Rattan, S.I.S. Curcumin induces heme oxygenase-1 in normal human skin fibroblasts through redox signaling: Relevance for anti-aging intervention. Mol. Nutr. Food Res. 2011, 55, 430–442. [Google Scholar] [CrossRef]
- Soh, J.-W.; Marowsky, N.; Nichols, T.J.; Rahman, A.M.; Miah, T.; Sarao, P.; Khasawneh, R.; Unnikrishnan, A.; Heydari, A.R.; Silver, R.B. Curcumin is an early-acting stage-specific inducer of extended functional longevity in Drosophila. Exp. Gerontol. 2013, 48, 229–239. [Google Scholar] [CrossRef]
- Shen, L.R.; Parnell, L.D.; Ordovas, J.M.; Lai, C.Q. Curcumin and aging. Biofactors 2013, 39, 133–140. [Google Scholar] [CrossRef]
- Lee, K.S.; Lee, B.S.; Semnani, S.; Avanesian, A.; Um, C.Y.; Jeon, H.J.; Seong, K.M.; Yu, K.; Min, K.J.; Jafari, M. Curcumin Extends life span, improves health span, and modulates the expression of age-associated aging genes in Drosophila melanogaster. Rejuvenation Res. 2010, 13, 561–570. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yue, Y.; Zheng, X.; Zhang, K.; Chen, S.; Du, Z. Curcumin, inflammation, and chronic diseases: How are they linked? Molecules 2015, 20, 9183–9213. [Google Scholar] [CrossRef]
- Swamy, A.V.; Gulliaya, S.; Thippeswamy, A.; Koti, B.C.; Manjula, D.V. Cardioprotective effect of curcumin against doxorubicin-induced myocardial toxicity in albino rats. Indian J. Pharmacol. 2012, 44, 73–77. [Google Scholar] [CrossRef]
- Ryan, J.L.; Heckler, C.E.; Ling, M.; Katz, A.; Williams, J.P.; Pentland, A.P.; Morrow, G.R. Curcumin for radiation dermatitis: A randomized, double-blind, placebo-controlled clinical trial of thirty breast cancer patients. Radiat. Res. 2013, 180, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Hamidie, R.D.R.; Yamada, T.; Ishizawa, R.; Saito, Y.; Masuda, K. Curcumin treatment enhances the effect of exercise on mitochondrial biogenesis in skeletal muscle by increasing cAMP levels. Metabolism 2015, 64, 1334–1347. [Google Scholar] [CrossRef] [PubMed]
- Cox, K.H.; Pipingas, A.; Scholey, A.B. Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J. Psychopharmacol. 2015, 29, 642–651. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.S.; Singh, M.K.; Singh, P.K.; Kumar, V. Traditional knowledge to clinical trials: A review on therapeutic actions of Emblica officinalis. Biomed. Pharmacother. 2017, 93, 1292–1302. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.; Sharma, N.; Oladeji, O.S.; Sourirajan, A.; Dev, K.; Zengin, G.; El-Shazly, M.; Kumar, V. Traditional uses, bioactive composition, pharmacology, and toxicology of Phyllanthus emblica fruits: A comprehensive review. J. Ethnopharmacol. 2022, 282, 114570. [Google Scholar] [CrossRef]
- Kapoor, M.P.; Suzuki, K.; Derek, T.; Ozeki, M.; Okubo, T. Clinical evaluation of Emblica Officinalis Gatertn (Amla) in healthy human subjects: Health benefits and safety results from a randomized, double-blind, crossover placebo-controlled study. Contemp. Clin. Trials Commun. 2020, 17, 100499. [Google Scholar] [CrossRef]
- Wilson, D.W.; Nash, P.; Buttar, H.S.; Griffiths, K.; Singh, R.; De Meester, F.; Horiuchi, R.; Takahashi, T. The role of food antioxidants, benefits of functional foods, and influence of feeding habits on the health of the older person: An overview. Antioxidants 2017, 6, 81. [Google Scholar] [CrossRef]
- Hasan, M.R.; Islam, M.N.; Islam, M.R. Phytochemistry, pharmacological activities and traditional uses of Emblica officinalis: A review. Int. Curr. Pharm. J. 2016, 5, 14–21. [Google Scholar] [CrossRef]
- Lauer, A.-C.; Groth, N.; Haag, S.F.; Darvin, M.E.; Lademann, J.; Meinke, M.C. Dose-dependent vitamin C uptake and radical scavenging activity in human skin measured with in vivo electron paramagnetic resonance spectroscopy. Skin Pharmacol. Physiol. 2013, 26, 147–154. [Google Scholar] [CrossRef]
- Dhingra, D.; Joshi, P.; Gupta, A.; Chhillar, R. Possible involvement of monoaminergic neurotransmission in antidepressant-like activity of Emblica officinalis fruits in mice. CNS Neurosci. Ther. 2012, 18, 419–425. [Google Scholar] [CrossRef]
- Isah, T. Rethinking Ginkgo biloba L.: Medicinal uses and conservation. Pharmacogn. Rev. 2015, 9, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Mashayekh, A.; Pham, D.L.; Yousem, D.M.; Dizon, M.; Barker, P.B.; Lin, D.D. Effects of Ginkgo biloba on cerebral blood flow assessed by quantitative MR perfusion imaging: A pilot study. Neuroradiology 2011, 53, 185–191. [Google Scholar] [CrossRef]
- Zuo, W.; Yan, F.; Zhang, B.; Li, J.; Mei, D. Advances in the studies of Ginkgo biloba leaves extract on aging-related diseases. Aging Dis. 2017, 8, 812–826. [Google Scholar] [CrossRef] [PubMed]
- Van Beek, T.A. Chemical analysis of Ginkgo biloba leaves and extracts. J. Chromatogr. A 2002, 967, 21–55. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-Z.; Luo, Y.-J.; Wang, L.; Cai, K.-Y. Effect of Ginkgo biloba extract on livers in aged rats. World J. Gastroenterol. 2005, 11, 132–135. [Google Scholar] [CrossRef]
- Belviranlı, M.; Okudan, N. The effects of Ginkgo biloba extract on cognitive functions in aged female rats: The role of oxidative stress and brain-derived neurotrophic factor. Behav. Brain Res. 2015, 278, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Ye, M.; Guo, H. An updated review of randomized clinical trials testing the improvement of cognitive function of Ginkgo biloba extract in healthy people and Alzheimer’s patients. Front. Pharmacol. 2020, 10, 1688. [Google Scholar] [CrossRef] [PubMed]
- Pastorino, G.; Cornara, L.; Soares, S.; Rodrigues, F.; Oliveira, M.B.P. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytother. Res. 2018, 32, 2323–2339. [Google Scholar] [CrossRef]
- Frattaruolo, L.; Carullo, G.; Brindisi, M.; Mazzotta, S.; Bellissimo, L.; Rago, V.; Curcio, R.; Dolce, V.; Aiello, F.; Cappello, A.R. Antioxidant and anti-inflammatory activities of flavanones from Glycyrrhiza glabra L. (licorice) leaf phytocomplexes: Identification of licoflavanone as a modulator of NF-kB/MAPK pathway. Antioxidants 2019, 8, 186. [Google Scholar] [CrossRef]
- Grodzicki, W.; Dziendzikowska, K. The role of selected bioactive compounds in the prevention of Alzheimer’s disease. Antioxidants 2020, 9, 229. [Google Scholar] [CrossRef]
- Ciganović, P.; Jakimiuk, K.; Tomczyk, M.; Zovko Končić, M. Glycerolic licorice extracts as active cosmeceutical ingredients: Extraction optimization, chemical characterization, and biological activity. Antioxidants 2019, 8, 445. [Google Scholar] [CrossRef] [PubMed]
- Balmus, I.-M.; Ciobica, A. Main plant extracts’ active properties effective on scopolamine-induced memory loss. Am. J. Alzheimers Dis. Other Dement. 2017, 32, 418–428. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, D.; Parle, M.; Kulkarni, S. Memory enhancing activity of Glycyrrhiza glabra in mice. J. Ethnopharmacol. 2004, 91, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Rokot, N.T.; Kairupan, T.S.; Cheng, K.-C.; Runtuwene, J.; Kapantow, N.H.; Amitani, M.; Morinaga, A.; Amitani, H.; Asakawa, A.; Inui, A. A role of ginseng and its constituents in the treatment of central nervous system disorders. Evid. Based Complement. Altern. Med. 2016, 2016, 2614742. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhao, J.; You, J.; Li, J.; Ma, H.; Chen, X. Factors influencing cultivated ginseng (Panax ginseng CA Meyer) bioactive compounds. PLoS ONE 2019, 14, e0223763. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.P.; Khanum, F. Neuroprotective potential of phytochemicals. Pharmacogn. Rev. 2012, 6, 81–90. [Google Scholar] [CrossRef]
- Wee, J.J.; Park, K.M.; Chung, A.-S. Biological Activities of Ginseng and Its Application to Human Health. In Herbal Medicine: Biomolecular and Clinical Aspects, 2nd ed.; Benzie, I.F.F., Wachtel-Galor, S., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2011; Chapter 8. [Google Scholar]
- Lee, Y.-M.; Yoon, H.; Park, H.-M.; Song, B.C.; Yeum, K.-J. Implications of red Panax ginseng in oxidative stress associated chronic diseases. J. Ginseng Res. 2017, 41, 113–119. [Google Scholar] [CrossRef]
- Caldwell, L.K.; DuPont, W.H.; Beeler, M.K.; Post, E.M.; Barnhart, E.C.; Hardesty, V.H.; Anders, J.P.; Borden, E.C.; Volek, J.S.; Kraemer, W.J. The effects of a Korean ginseng, GINST15, on perceptual effort, psychomotor performance, and physical performance in men and women. J. Sports Sci. Med. 2018, 17, 92–100. [Google Scholar]
- Kim, J.; Cho, S.Y.; Kim, S.H.; Cho, D.; Kim, S.; Park, C.-W.; Shimizu, T.; Cho, J.Y.; Seo, D.B.; Shin, S.S. Effects of Korean ginseng berry on skin antipigmentation and antiaging via FoxO3a activation. J. Ginseng Res. 2017, 41, 277–283. [Google Scholar] [CrossRef]
- Hwang, E.; Park, S.-Y.; Jo, H.; Lee, D.-G.; Kim, H.-T.; Kim, Y.M.; Yin, C.S.; Yi, T.H. Efficacy and safety of enzyme-modified Panax ginseng for anti-wrinkle therapy in healthy skin: A single-center, randomized, double-blind, placebo-controlled study. Rejuvenation Res. 2015, 18, 449–457. [Google Scholar] [CrossRef]
- Das, G.; Paramithiotis, S.; Sivamaruthi, B.S.; Wijaya, C.H.; Suharta, S.; Sanlier, N.; Shin, H.-S.; Patra, J.K. Traditional fermented foods with anti-aging effect: A concentric review. Food Res. Int. 2020, 134, 109269. [Google Scholar] [CrossRef] [PubMed]
- Kusumorini, N.; Manalu, W.; Maheshwari, H. The Potential of Tempeh Extract as an Antiaging Using Female Rats as Animal Models. Ph.D. Thesis, IPB University, Bogor, Indonesia, 2013. [Google Scholar]
- Jung, S.-J.; Chae, S.-W.; Shin, D.-H. Fermented foods of Korea and their functionalities. Fermentation 2022, 8, 645. [Google Scholar] [CrossRef]
- Kim, B.; Park, K.Y.; Kim, H.Y.; Ahn, S.C.; Cho, E.J. Anti-aging effects and mechanisms of kimchi during fermentation under stress-induced premature senescence cellular system. Food Sci. Biotechnol. 2011, 20, 643–649. [Google Scholar] [CrossRef]
- Ko, J.; Kim, W.; Park, H. Effects of microencapsulated Allyl isothiocyanate (AITC) on the extension of the shelf-life of Kimchi. Int. J. Food Microbiol. 2012, 153, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.; Kim, G.-H. Glucosinolate and isothiocyabate contents according to processing of Kimchi cabbage (Brassica rapa L. ssp. pekinensis). Korean J. Food Preserv. (Food Sci. Preserv.) 2017, 24, 367–373. [Google Scholar] [CrossRef]
- Kwak, C.S.; Lee, M.S.; Park, S.C. Higher antioxidant properties of Chungkookjang, a fermented soybean paste, may be due to increased aglycone and malonylglycoside isoflavone during fermentation. Nutr. Res. 2007, 27, 719–727. [Google Scholar] [CrossRef]
- Fusco, D.; Colloca, G.; Monaco, M.R.L.; Cesari, M. Effects of antioxidant supplementation on the aging process. Clin. Interv. Aging 2007, 2, 377–387. [Google Scholar]
- Adebo, J.A.; Njobeh, P.B.; Gbashi, S.; Oyedeji, A.B.; Ogundele, O.M.; Oyeyinka, S.A.; Adebo, O.A. Fermentation of cereals and legumes: Impact on nutritional constituents and nutrient bioavailability. Fermentation 2022, 8, 63. [Google Scholar] [CrossRef]
- Jeong, D.-Y.; Ryu, M.S.; Yang, H.-J.; Park, S. γ-PGA-rich chungkookjang, short-term fermented soybeans: Prevents memory impairment by modulating brain insulin sensitivity, neuro-inflammation, and the gut–microbiome–brain axis. Foods 2021, 10, 221. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Food 2015, 18, 820–897. [Google Scholar]
- Quero, J.; Mármol, I.; Cerrada, E.; Rodríguez-Yoldi, M.J. Insight into the potential application of polyphenol-rich dietary intervention in degenerative disease management. Food Funct. 2020, 11, 2805–2825. [Google Scholar] [CrossRef]
- Dunaway, S.; Odin, R.; Zhou, L.; Ji, L.; Zhang, Y.; Kadekaro, A.L. Natural antioxidants: Multiple mechanisms to protect skin from solar radiation. Front. Pharmacol. 2018, 9, 392. [Google Scholar] [CrossRef] [PubMed]
- D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV radiation and the skin. Int. J. Mol. Sci. 2013, 14, 12222–12248. [Google Scholar] [CrossRef]
- Adhikari, B.; Dhungana, S.K.; Ali, M.W.; Adhikari, A.; Kim, I.-D.; Shin, D.-H. Antioxidant activities, polyphenol, flavonoid, and amino acid contents in peanut shell. J. Saudi Soc. Agric. Sci. 2019, 18, 437–442. [Google Scholar] [CrossRef]
- Camins, A.; Junyent, F.; Verdaguer, E.; Beas-Zarate, C.; Rojas-Mayorquín, A.E.; Ortuño-Sahagún, D.; Pallàs, M. Resveratrol: An antiaging drug with potential therapeutic applications in treating diseases. Pharmaceutical 2009, 2, 194–205. [Google Scholar] [CrossRef]
- Salehi, B.; Mishra, A.P.; Nigam, M.; Sener, B.; Kilic, M.; Sharifi-Rad, M.; Fokou, P.V.T.; Martins, N.; Sharifi-Rad, J. Resveratrol: A double-edged sword in health benefits. Biomedicines 2018, 6, 91. [Google Scholar] [CrossRef] [PubMed]
- Gomes, B.A.Q.; Silva, J.P.B.; Romeiro, C.F.R.; Dos Santos, S.M.; Rodrigues, C.A.; Gonçalves, P.R.; Sakai, J.T.; Mendes, P.F.S.; Varela, E.L.P.; Monteiro, M.C. Neuroprotective mechanisms of resveratrol in Alzheimer’s disease: Role of SIRT1. Oxid. Med. Cell. Longev. 2018, 2018, 8152373. [Google Scholar] [CrossRef] [PubMed]
- Bastianetto, S.; Dumont, Y.; Duranton, A.; Vercauteren, F.; Breton, L.; Quirion, R. Protective action of resveratrol in human skin: Possible involvement of specific receptor binding sites. PLoS ONE 2010, 5, e12935. [Google Scholar] [CrossRef]
- Giardina, S.; Michelotti, A.; Zavattini, G.; Finzi, S.; Ghisalberti, C.; Marzatico, F. Efficacy study in vitro: Assessment of the properties of resveratrol and resveratrol+ N-acetyl-cysteine on proliferation and inhibition of collagen activity. Minerva Ginecol. 2010, 62, 195–201. [Google Scholar] [PubMed]
- Giovannelli, L.; Pitozzi, V.; Jacomelli, M.; Mulinacci, N.; Laurenzana, A.; Dolara, P.; Mocali, A. Protective effects of resveratrol against senescence-associated changes in cultured human fibroblasts. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2011, 66, 9–18. [Google Scholar] [CrossRef] [PubMed]
- López-Lluch, G.; Irusta, P.M.; Navas, P.; de Cabo, R. Mitochondrial biogenesis and healthy aging. Exp. Gerontol. 2008, 43, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 2006, 127, 1109–1122. [Google Scholar] [CrossRef]
- Kschonsek, J.; Wolfram, T.; Stöckl, A.; Böhm, V. Polyphenolic compounds analysis of old and new apple cultivars and contribution of polyphenolic profile to the in vitro antioxidant capacity. Antioxidants 2018, 7, 20. [Google Scholar] [CrossRef] [PubMed]
- Boyer, J.; Liu, R.H. Apple phytochemicals and their health benefits. Nutr. J. 2004, 3, 5. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Chan, H.Y.E.; Huang, Y.; Yu, H.; Chen, Z.-Y. Apple polyphenols extend the mean lifespan of Drosophila melanogaster. J. Agric. Food Chem. 2011, 59, 2097–2106. [Google Scholar] [CrossRef]
- Peng, C.; Wang, X.; Chen, J.; Jiao, R.; Wang, L.; Li, Y.M.; Zuo, Y.; Liu, Y.; Lei, L.; Ma, K.Y.; et al. Biology of ageing and role of dietary antioxidants. BioMed Res. Int. 2014, 2014, 831841. [Google Scholar] [CrossRef]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: A mini-review. Front. Nutr. 2018, 5, 370438. [Google Scholar] [CrossRef]
- Kalt, W.; Cassidy, A.; Howard, L.R.; Krikorian, R.; Stull, A.J.; Tremblay, F.; Zamora-Ros, R. Recent research on the health benefits of blueberries and their anthocyanins. Adv. Nutr. 2020, 11, 224–236. [Google Scholar] [CrossRef]
- Joseph, J.A.; Shukitt-Hale, B.; Casadesus, G. Reversing the deleterious effects of aging on neuronal communication and behavior: Beneficial properties of fruit polyphenolic compounds. Am. J. Clin. Nutr. 2005, 81, 313S–316S. [Google Scholar] [CrossRef]
- Galli, R.L.; Bielinski, D.F.; Szprengiel, A.; Shukitt-Hale, B.; Joseph, J.A. Blueberry supplemented diet reverses age-related decline in hippocampal HSP70 neuroprotection. Neurobiol. Aging 2006, 27, 344–350. [Google Scholar] [CrossRef]
- Peng, C.; Zuo, Y.; Kwan, K.M.; Liang, Y.; Ma, K.Y.; Chan, H.Y.E.; Huang, Y.; Yu, H.; Chen, Z.-Y. Blueberry extract prolongs lifespan of Drosophila melanogaster. Exp. Gerontol. 2012, 47, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.-Y.; Li, Q.; Bi, K.-S. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci. 2018, 13, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Antika, L.D.; Lee, E.-J.; Kim, Y.-H.; Kang, M.-K.; Park, S.-H.; Kim, D.Y.; Oh, H.; Choi, Y.-J.; Kang, Y.-H. Dietary phlorizin enhances osteoblastogenic bone formation through enhancing β-catenin activity via GSK-3β inhibition in a model of senile osteoporosis. J. Nutr. Biochem. 2017, 49, 42–52. [Google Scholar] [CrossRef]
- Makarova, E.; Górnaś, P.; Konrade, I.; Tirzite, D.; Cirule, H.; Gulbe, A.; Pugajeva, I.; Seglina, D.; Dambrova, M. Acute anti-hyperglycaemic effects of an unripe apple preparation containing phlorizin in healthy volunteers: A preliminary study. J. Sci. Food Agric. 2015, 95, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Laiteerapong, N.; Karter, A.J.; Liu, J.Y.; Moffet, H.H.; Sudore, R.; Schillinger, D.; John, P.M.; Huang, E.S. Correlates of quality of life in older adults with diabetes: The diabetes & aging study. Diabetes Care 2011, 34, 1749–1753. [Google Scholar]
- Ayaz, M.; Sadiq, A.; Junaid, M.; Ullah, F.; Ovais, M.; Ullah, I.; Ahmed, J.; Shahid, M. Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Front. Aging Neurosci. 2019, 11, 155. [Google Scholar] [CrossRef] [PubMed]
- Musial, C.; Kuban-Jankowska, A.; Gorska-Ponikowska, M. Beneficial properties of green tea catechins. Int. J. Mol. Sci. 2020, 21, 1744. [Google Scholar] [CrossRef]
- Yan, Z.; Zhong, Y.; Duan, Y.; Chen, Q.; Li, F. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim. Nutr. 2020, 6, 115–123. [Google Scholar] [CrossRef] [PubMed]
- OyetakinWhite, P.; Tribout, H.; Baron, E. Protective mechanisms of green tea polyphenols in skin. Oxidative Med. Cell. Longev. 2012, 2012, 560682. [Google Scholar] [CrossRef]
- Elmets, C.A.; Singh, D.; Tubesing, K.; Matsui, M.; Katiyar, S.; Mukhtar, H. Cutaneous photoprotection from ultraviolet injury by green tea polyphenols. J. Am. Acad. Dermatol. 2001, 44, 425–432. [Google Scholar] [CrossRef]
- Chiu, A.E.; Chan, J.L.; Kern, D.G.; Kohler, S.; Rehmus, W.E.; Kimball, A.B. Double-blinded, placebo-controlled trial of green tea extracts in the clinical and histologic appearance of photoaging skin. Dermatol. Surg. 2005, 31, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, R.; Pund, M.; Dawane, A.; Iliyas, S. Evaluation of anticancer, antioxidant, and possible anti-inflammatory properties of selected medicinal plants used in Indian traditional medication. J. Tradit. Complement. Med. 2014, 4, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, J.; Fernandes, I.; Faria, A.; Oliveira, J.; Fernandes, A.; de Freitas, V.; Mateus, N. Antioxidant properties of anthocyanidins, anthocyanidin-3-glucosides and respective portisins. Food Chem. 2010, 119, 518–523. [Google Scholar] [CrossRef]
- Zuo, Y.; Peng, C.; Liang, Y.; Ma, K.Y.; Yu, H.; Chan, H.Y.E.; Chen, Z.-Y. Black rice extract extends the lifespan of fruit flies. Food Funct. 2012, 3, 1271–1279. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhao, S.; Jin, L.; Huang, L.; He, X.; Wei, Q. Anti-aging effect of black rice in subacute aging model mice. Chin. J. Clin. Rehabil. 2006, 10, 82–84. [Google Scholar]
- Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academies Press: Washington, DC, USA, 2000. [Google Scholar] [CrossRef]
- Zhou, X.; Cao, Q.; Orfila, C.; Zhao, J.; Zhang, L. Systematic Review and Meta-Analysis on the Effects of Astaxanthin on Human Skin Ageing. Nutrients 2021, 13, 2917. [Google Scholar] [CrossRef]
- Eggersdorfer, M.; Wyss, A. Carotenoids in human nutrition and health. Arch. Biochem. Biophys. 2018, 652, 18–26. [Google Scholar] [CrossRef]
- Amengual, J. Bioactive Properties of Carotenoids in Human Health. Nutrients 2019, 11, 2388. [Google Scholar] [CrossRef]
- Moran, N.E.; Mohn, E.S.; Hason, N.; Erdman, J.W.; Johnson, E.J. Intrinsic and Extrinsic Factors Impacting Absorption, Metabolism, and Health Effects of Dietary Carotenoids. Adv. Nutr. 2018, 9, 465–492. [Google Scholar] [CrossRef]
- Metibemu, D.S.; Ogungbe, I.V. Carotenoids in Drug Discovery and Medicine: Pathways and Molecular Targets Implicated in Human Diseases. Molecules 2022, 27, 6005. [Google Scholar] [CrossRef]
- Bakac, E.R.; Percin, E.; Gunes-Bayir, A.; Dadak, A. A Narrative Review: The Effect and Importance of Carotenoids on Aging and Aging-Related Diseases. Int. J. Mol. Sci. 2023, 24, 15199. [Google Scholar] [CrossRef]
- Stahl, W.; Sies, H. β-Carotene and other carotenoids in protection from sunlight. Am. J. Clin. Nutr. 2012, 96, 1179S–1184S. [Google Scholar] [CrossRef]
- Pritwani, R.; Mathur, P. β-carotene content of some commonly consumed vegetables and fruits available in Delhi, India. J. Nutr. Food Sci. 2017, 7, 5. [Google Scholar] [CrossRef]
- Jaswir, I.; Noviendri, D.; Hasrini, R.F.; Octavianti, F. Carotenoids: Sources, medicinal properties and their application in food and nutraceutical industry. J. Med. Plants Res. 2011, 5, 7119–7131. [Google Scholar]
- Parrado, C.; Philips, N.; Gilaberte, Y.; Juarranz, A.; González, S. Oral photoprotection: Effective agents and potential candidates. Front. Med. 2018, 5, 188. [Google Scholar] [CrossRef]
- Boccardi, V.; Arosio, B.; Cari, L.; Bastiani, P.; Scamosci, M.; Casati, M.; Ferri, E.; Bertagnoli, L.; Ciccone, S.; Rossi, P.D.; et al. Beta-carotene, telomerase activity and Alzheimer’s disease in old age subjects. Eur. J. Nutr. 2020, 59, 119–126. [Google Scholar] [CrossRef]
- Evans, J.A.; Johnson, E.J. The role of phytonutrients in skin health. Nutrients 2010, 2, 903–928. [Google Scholar] [CrossRef]
- Ascenso, A.; Pedrosa, T.; Pinho, S.; Pinho, F.; Oliveira, J.M.P.F.D.; Cabral Marques, H.; Oliveira, H.; Simões, S.; Santos, C. The effect of lycopene preexposure on UV-B-irradiated human keratinocytes. Oxid. Med. Cell Longev. 2016, 2016, 8214631. [Google Scholar] [CrossRef]
- Przybylska, S. Lycopene–a bioactive carotenoid offering multiple health benefits: A review. Int. J. Food Sci. Technol. 2020, 55, 11–32. [Google Scholar] [CrossRef]
- Darvin, M.E.; Sterry, W.; Lademann, J.; Vergou, T. The role of carotenoids in human skin. Molecules 2011, 16, 10491–10506. [Google Scholar] [CrossRef]
- Cheng, J.; Miller, B.; Balbuena, E.; Eroglu, A. Lycopene protects against smoking-induced lung cancer by inducing base excision repair. Antioxidants 2020, 9, 643. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res. Int. 2020, 132, 109114. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.C.; Maggini, S. Vitamin C and immune function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef]
- Hemilä, H. Vitamin C and infections. Nutrients 2017, 9, 339. [Google Scholar] [CrossRef]
- Galli, F.; Azzi, A.; Birringer, M.; Cook-Mills, J.M.; Eggersdorfer, M.; Frank, J.; Cruciani, G.; Lorkowski, S.; Özer, N.K. Vitamin E: Emerging aspects and new directions. Free Radic. Biol. Med. 2017, 102, 16–36. [Google Scholar] [CrossRef]
- Brickley, M.B.; Ives, R.; Mays, S. The Bioarchaeology of Metabolic Bone Disease; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Souyoul, S.A.; Saussy, K.P.; Lupo, M.P. Nutraceuticals: A review. Dermatol. Ther. 2018, 8, 5–16. [Google Scholar] [CrossRef]
- Sivakanesan, R. Antioxidants for Health and Longevity. In Molecular Basis and Emerging Strategies for Anti-Aging Interventions; Rizvi, S.I., Çakatay, U., Eds.; Springer: Singapore, 2018; pp. 323–341. [Google Scholar]
- Keen, M.A.; Hassan, I. Vitamin E in dermatology. Indian. Dermatol. Online J. 2016, 7, 311–315. [Google Scholar] [CrossRef]
- Eberlein-König, B.; Ring, J. Relevance of vitamins C and E in cutaneous photoprotection. J. Cosmet. Dermatol. 2005, 4, 4–9. [Google Scholar] [CrossRef]
- Ubeda, N.; Achón, M.; Varela-Moreiras, G. Omega 3 fatty acids in the elderly. Br. J. Nutr. 2012, 107, S137–S151. [Google Scholar] [CrossRef]
- Molfino, A.; Gioia, G.; Fanelli, F.R.; Muscaritoli, M. The role for dietary omega-3 fatty acids supplementation in older adults. Nutrients 2014, 6, 4058–4072. [Google Scholar] [CrossRef]
- Huang, T.-H.; Wang, P.-W.; Yang, S.-C.; Chou, W.-L.; Fang, J.-Y. Cosmetic and therapeutic applications of fish oil’s fatty acids on the skin. Mar. Drugs 2018, 16, 256. [Google Scholar] [CrossRef] [PubMed]
- Denis, I.; Potier, B.; Vancassel, S.; Heberden, C.; Lavialle, M. Omega-3 fatty acids and brain resistance to ageing and stress: Body of evidence and possible mechanisms. Ageing Res. Rev. 2013, 12, 579–594. [Google Scholar] [CrossRef]
- Xie, S.-H.; Li, H.; Jiang, J.-J.; Quan, Y.; Zhang, H.-Y. Multi-omics interpretation of anti-aging mechanisms for ω-3 fatty acids. Genes 2021, 12, 1691. [Google Scholar] [CrossRef] [PubMed]
- De Magalhães, J.P.; Müller, M.; Rainger, G.E.; Steegenga, W. Fish oil supplements, longevity and aging. Aging 2016, 8, 1578. [Google Scholar] [CrossRef]
- Pedersen, A.M. Calanus® Oil. Utilization, Composition and Digestion. Ph.D. Thesis, UiT The Arctic University of Norway, Tromsø, Norway, 2016. [Google Scholar]
- Park, K. Role of micronutrients in skin health and function. Biomol. Ther. 2015, 23, 207. [Google Scholar] [CrossRef] [PubMed]
- Denis, I.; Potier, B.; Heberden, C.; Vancassel, S. Omega-3 polyunsaturated fatty acids and brain aging. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Cutuli, D.; Pagani, M.; Caporali, P.; Galbusera, A.; Laricchiuta, D.; Foti, F.; Neri, C.; Spalletta, G.; Caltagirone, C.; Petrosini, L. Effects of omega-3 fatty acid supplementation on cognitive functions and neural substrates: A voxel-based morphometry study in aged mice. Front. Aging Neurosci. 2016, 8, 38. [Google Scholar] [CrossRef]
- Gellert, S.; Schuchardt, J.P.; Hahn, A. Low long chain omega-3 fatty acid status in middle-aged women. Prostaglandins Leukot. Essent. Fat. Acids 2017, 117, 54–59. [Google Scholar] [CrossRef]
- Budinsky, A.; Wolfram, R.; Oguogho, A.; Efthimiou, Y.; Stamatopoulos, Y.; Sinzinger, H. Regular ingestion of Opuntia robusta lowers oxidation injury. Prostaglandins Leukot. Essent. Fat. Acids 2001, 65, 45–50. [Google Scholar] [CrossRef]
- Cutuli, D. Functional and structural benefits induced by omega-3 polyunsaturated fatty acids during aging. Curr. Neuropharmacol. 2017, 15, 534–542. [Google Scholar] [CrossRef]
- Maltais, M.; de Souto Barreto, P.; Bowman, G.; Smith, A.; Cantet, C.; Andrieu, S.; Rolland, Y.; Group, M.D.S. Omega-3 supplementation for the prevention of cognitive decline in older adults: Does it depend on homocysteine levels? J. Nutr. Health Aging 2022, 26, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Andrieu, S.; Guyonnet, S.; Coley, N.; Cantet, C.; Bonnefoy, M.; Bordes, S.; Bories, L.; Cufi, M.-N.; Dantoine, T.; Dartigues, J.-F. Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT): A randomised, placebo-controlled trial. Lancet Neurol. 2017, 16, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Hooper, C.; De Souto Barreto, P.; Coley, N.; Cantet, C.; Cesari, M.; Andrieu, S.; Vellas, B.; Group, M.D.S. Cognitive changes with omega-3 polyunsaturated fatty acids in non-demented older adults with low omega-3 index. J. Nutr. Health Aging 2017, 21, 988–993. [Google Scholar] [CrossRef]
- O’Rourke, E.J.; Kuballa, P.; Xavier, R.; Ruvkun, G. ω-6 Polyunsaturated fatty acids extend life span through the activation of autophagy. Genes. Dev. 2013, 27, 429–440. [Google Scholar] [CrossRef]
- Lapierre, L.R.; Meléndez, A.; Hansen, M. Autophagy links lipid metabolism to longevity in C. elegans. Autophagy 2012, 8, 144–146. [Google Scholar] [CrossRef]
- Wang, K.; Zhong, Y.; Yang, F.; Hu, C.; Liu, X.; Zhu, Y.; Yao, K. Causal effects of N-6 polyunsaturated fatty acids on age-related macular degeneration: A mendelian randomization study. J. Clin. Endocrinol. Metab. 2021, 106, e3565–e3572. [Google Scholar] [CrossRef]
- Patterson, E.; Wall, R.; Fitzgerald, G.; Ross, R.; Stanton, C. Health implications of high dietary omega-6 polyunsaturated fatty acids. J. Nutr. Metab. 2012, 2012, 539426. [Google Scholar] [CrossRef] [PubMed]
- Boyd, J.T.; LoCoco, P.M.; Furr, A.R.; Bendele, M.R.; Tram, M.; Li, Q.; Chang, F.-M.; Colley, M.E.; Samenuk, G.M.; Arris, D.A. Elevated dietary ω-6 polyunsaturated fatty acids induce reversible peripheral nerve dysfunction that exacerbates comorbid pain conditions. Nat. Metab. 2021, 3, 762–773. [Google Scholar] [CrossRef]
- Maccioni, R.B.; Calfío, C.; González, A.; Lüttges, V. Novel nutraceutical compounds in Alzheimer prevention. Biomolecules 2022, 12, 249. [Google Scholar] [CrossRef]
- Corrêa, R.C.; Peralta, R.M.; Haminiuk, C.W.; Maciel, G.M.; Bracht, A.; Ferreira, I.C. New phytochemicals as potential human anti-aging compounds: Reality, promise, and challenges. Crit. Rev. Food Sci. Nutr. 2018, 58, 942–957. [Google Scholar] [CrossRef] [PubMed]
- Bjørklund, G.; Dadar, M.; Martins, N.; Chirumbolo, S.; Goh, B.H.; Smetanina, K.; Lysiuk, R. Brief Challenges on Medicinal Plants: An Eye-Opening Look at Ageing-Related Disorders. Basic Clin. Pharmacol. Toxicol. 2018, 122, 539–558. [Google Scholar] [CrossRef] [PubMed]
- Yasin, Z.A.; Ibrahim, F.; Rashid, N.N.; Razif, M.F.; Yusof, R. The importance of some plant extracts as skin anti-aging resources: A review. Curr. Pharm. Biotechnol. 2017, 18, 864–876. [Google Scholar] [CrossRef]
- Zeb, I.; Ahmadi, N.; Kadakia, J.; Larijani, V.N.; Flores, F.; Li, D.; Budoff, M.J.; Nasir, K. Aged garlic extract and coenzyme Q10 have favorable effect on inflammatory markers and coronary atherosclerosis progression: A randomized clinical trial. J. Cardiovasc. Dis. Res. 2012, 3, 185–190. [Google Scholar] [CrossRef]
- Chen, P.H.; Chang, C.H.; Lin, W.S.; Nagabhushanam, K.; Ho, C.T.; Pan, M.H. S-Allylcysteine Ameliorates Aging Features via Regulating Mitochondrial Dynamics in Naturally Aged C57BL/6J Mice. Mol. Nutr. Food Res. 2022, 66, 2101077. [Google Scholar] [CrossRef]
- Zhu, S.Y.; Dong, Y.; Tu, J.; Zhou, Y.; Zhou, X.H.; Xu, B. Silybum marianum oil attenuates oxidative stress and ameliorates mitochondrial dysfunction in mice treated with D-galactose. Pharmacogn. Mag. 2014, 10, S92. [Google Scholar]
- Shahidi, F. Nutraceuticals, functional foods and dietary supplements in health and disease. J. Food Drug Anal. 2012, 20, 78. [Google Scholar] [CrossRef]
- Dhandevi, P.; Jeewon, R. Fruit and vegetable intake: Benefits and progress of nutrition education interventions-narrative review article. Iran. J. Public Health 2015, 44, 1309. [Google Scholar]
- Petruk, G.; Del Giudice, R.; Rigano, M.M.; Monti, D.M. Antioxidants from plants protect against skin photoaging. Oxid. Med. Cell. Longev. 2018, 2018, 1454936. [Google Scholar] [CrossRef] [PubMed]
- Zemour, K.; Labdelli, A.; Adda, A.; Dellal, A.; Talou, T.; Merah, O. Phenol content and antioxidant and antiaging activity of safflower seed oil (Carthamus tinctorius L.). Cosmetics 2019, 6, 55. [Google Scholar] [CrossRef]
- Itoh, S.; Yamaguchi, M.; Shigeyama, K.; Sakaguchi, I. The anti-aging potential of extracts from Chaenomeles sinensis. Cosmetics 2019, 6, 21. [Google Scholar] [CrossRef]
- Kim, D.-B.; Shin, G.-H.; Kim, J.-M.; Kim, Y.-H.; Lee, J.-H.; Lee, J.S.; Song, H.-J.; Choe, S.Y.; Park, I.-J.; Cho, J.-H. Antioxidant and anti-ageing activities of citrus-based juice mixture. Food Chem. 2016, 194, 920–927. [Google Scholar] [CrossRef] [PubMed]
- Apraj, V.D.; Pandita, N.S. Evaluation of skin anti-aging potential of Citrus reticulata blanco peel. Pharmacogn. Res. 2016, 8, 160. [Google Scholar] [CrossRef] [PubMed]
- Nema, N.K.; Maity, N.; Sarkar, B.; Mukherjee, P.K. Cucumis sativus fruit-potential antioxidant, anti-hyaluronidase, and anti-elastase agent. Arch. Dermatol. Res. 2011, 303, 247–252. [Google Scholar] [CrossRef]
- Cimino, F.; Cristani, M.; Saija, A.; Bonina, F.P.; Virgili, F. Protective effects of a red orange extract on UVB-induced damage in human keratinocytes. Biofactors 2007, 30, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Shailaja, M.; Gowda, K.D.; Vishakh, K.; Kumari, N.S. Anti-aging role of curcumin by modulating the inflammatory markers in albino wistar rats. J. Nat. Med. Assoc. 2017, 109, 9–13. [Google Scholar] [CrossRef]
- Shimizu, C.; Wakita, Y.; Inoue, T.; Hiramitsu, M.; Okada, M.; Mitani, Y.; Segawa, S.; Tsuchiya, Y.; Nabeshima, T. Effects of lifelong intake of lemon polyphenols on aging and intestinal microbiome in the senescence-accelerated mouse prone 1 (SAMP1). Sci. Rep. 2019, 9, 3671. [Google Scholar] [CrossRef]
- Xiong, L.-G.; Chen, Y.-J.; Tong, J.-W.; Gong, Y.-S.; Huang, J.-A.; Liu, Z.-H. Epigallocatechin-3-gallate promotes healthy lifespan through mitohormesis during early-to-mid adulthood in Caenorhabditis elegans. Redox Biol. 2018, 14, 305–315. [Google Scholar] [CrossRef]
- Ratnasooriya, W.D.; Abeysekera, W.K.; Muthunayake, T.B.; Ratnasooriya, C.D. In vitro antiglycation and cross-link breaking activities of Sri Lankan low-grown orthodox orange pekoe grade black tea (Camellia sinensis L). Trop. J. Pharm. Res. 2014, 13, 567–571. [Google Scholar] [CrossRef]
- Lee, M.J.; Jeong, N.H.; Jang, B.S. Antioxidative activity and antiaging effect of carrot glycoprotein. J. Ind. Eng. Chem. 2015, 25, 216–221. [Google Scholar] [CrossRef]
- Adil, M.D.; Kaiser, P.; Satti, N.K.; Zargar, A.M.; Vishwakarma, R.A.; Tasduq, S.A. Effect of Emblica officinalis (fruit) against UVB-induced photo-aging in human skin fibroblasts. J. Ethnopharmacol. 2010, 132, 109–114. [Google Scholar] [CrossRef]
- Fujii, T.; Wakaizumi, M.; Ikami, T.; Saito, M. Amla (Emblica officinalis Gaertn.) extract promotes procollagen production and inhibits matrix metalloproteinase-1 in human skin fibroblasts. J. Ethnopharmacol. 2008, 119, 53–57. [Google Scholar] [CrossRef]
- Wang, X.; Gong, X.; Zhang, H.; Zhu, W.; Jiang, Z.; Shi, Y.; Li, L. In vitro anti-aging activities of Ginkgo biloba leaf extract and its chemical constituents. Food. Sci. Technol. Campinas. 2020, 40, 476–482. [Google Scholar] [CrossRef]
- Lourith, N.; Kanlayavattanakul, M.; Chaikul, P.; ChaNsriNiyoM, C.; Bunwatcharaphansakun, P. In vitro and cellular activities of the selected fruits residues for skin aging treatment. An. Acad. Bras. Ciênc. 2017, 89, 577–589. [Google Scholar] [CrossRef]
- Yoo, D.S.; Min, J.J.; Jeong Choi, M.; Sang Lee, H.; Woo Cheon, J.; Hoi Kim, S.; Ryu Ju, S. Potential anti-wrinkle effects of M. spaientum L. leaves extract. BioEvolution 2015, 2, 56–61. [Google Scholar]
- Cao, X.; Sun, Y.; Lin, Y.; Pan, Y.; Farooq, U.; Xiang, L.; Qi, J. Antiaging of cucurbitane glycosides from fruits of Momordica charantia L. Oxid. Med. Cell. Longev. 2018, 2018, 1538632. [Google Scholar] [CrossRef]
- Widowati, W.; Fauziah, N.; Herdiman, H.; Afni, M.; Afifah, E.; Kusuma, H.S.W.; Nufus, H.; Arumwardana, S.; Rihibiha, D.D. Antioxidant and anti aging assays of Oryza sativa extracts, vanillin and coumaric acid. J. Nat. Remedies 2016, 16, 88–99. [Google Scholar] [CrossRef]
- Shin, S.; Lee, J.-A.; Son, D.; Park, D.; Jung, E. Anti-Skin-Aging Activity of a Standardized Extract from Panax ginseng Leaves In Vitro and In Human Volunteer. Cosmetics 2017, 4, 18. [Google Scholar] [CrossRef]
- Foolad, N.; Vaughn, A.R.; Rybak, I.; Burney, W.A.; Chodur, G.M.; Newman, J.W.; Steinberg, F.M.; Sivamani, R.K. Prospective randomized controlled pilot study on the effects of almond consumption on skin lipids and wrinkles. Phytother. Res. 2019, 33, 3212–3217. [Google Scholar] [CrossRef] [PubMed]
- Shoko, T.; Maharaj, V.J.; Naidoo, D.; Tselanyane, M.; Nthambeleni, R.; Khorombi, E.; Apostolides, Z. Anti-aging potential of extracts from Sclerocarya birrea (A. Rich.) Hochst and its chemical profiling by UPLC-Q-TOF-MS. BMC Complement. Altern. Med. 2018, 18, 54. [Google Scholar] [CrossRef] [PubMed]
- Girsang, E.; Lister, I.N.E.; Ginting, C.N.; Khu, A.; Samin, B.; Widowati, W.; Wibowo, S.; Rizal, R. Chemical constituents of snake fruit (Salacca zalacca (Gaert.) Voss) peel and in silico anti-aging analysis. Mol. Cell. Biomed. Sci. 2019, 3, 122–128. [Google Scholar] [CrossRef]
- Sianipar, R.N.R.; Suryanegara, L.; Fatriasari, W.; Arung, E.T.; Kusuma, I.W.; Achmadi, S.S.; Azelee, N.I.W.; Hamid, Z.A.A. The role of selected flavonoids from bajakah tampala (Spatholobus littoralis Hassk.) stem on cosmetic properties: A review. Saudi Pharm. J. 2023, 31, 382–400. [Google Scholar] [CrossRef] [PubMed]
- Dhanjal, D.S.; Bhardwaj, S.; Sharma, R.; Bhardwaj, K.; Kumar, D.; Chopra, C.; Nepovimova, E.; Singh, R.; Kuca, K. Plant fortification of the diet for anti-ageing effects: A review. Nutrients 2020, 12, 3008. [Google Scholar] [CrossRef]
- Wang, L.; Cui, J.; Jin, B.; Zhao, J.; Xu, H.; Lu, Z.; Li, W.; Li, X.; Li, L.; Liang, E. Multifeature analyses of vascular cambial cells reveal longevity mechanisms in old Ginkgo biloba trees. Proc. Natl. Acad. Sci. USA 2020, 117, 2201–2210. [Google Scholar] [CrossRef] [PubMed]
- Anggraini, N.B.; Elya, B. Anti-Elastase, Antioxidant, Total Phenolic and Total Flavonoid Content of Macassar Kernels (Rhus javanica L.) from Pananjung Pangandaran Nature Tourism Park-Indonesia. J. Nat. Remed 2020, 20, 61–67. [Google Scholar] [CrossRef]
- Kwon, O.W.; Venkatesan, R.; Do, M.H.; Ji, E.; Cho, D.W.; Lee, K.W.; Kim, S.Y. Dietary supplementation with a fermented barley and soybean mixture attenuates UVB-induced skin aging and dehydration in hairless mouse skin. Food Sci. Biotechnol. 2015, 24, 705–715. [Google Scholar] [CrossRef]
- Hwang, E.; Park, S.-Y.; Yin, C.S.; Kim, H.-T.; Kim, Y.M.; Yi, T.H. Antiaging effects of the mixture of Panax ginseng and Crataegus pinnatifida in human dermal fibroblasts and healthy human skin. J. Ginseng Res. 2017, 41, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Lestari, U.; Muhaimin, M.; Chaerunisaa, A.Y.; Sujarwo, W. Anti-aging potential of plants of the anak dalam tribe, Jambi, Indonesia. Pharmaceuticals 2023, 16, 1300. [Google Scholar] [CrossRef]
- Choi, H.-R.; Nam, K.-M.; Lee, H.-S.; Yang, S.-H.; Kim, Y.-S.; Lee, J.; Date, A.; Toyama, K.; Park, K.-C. Phlorizin, an active ingredient of Eleutherococcus senticosus, increases proliferative potential of keratinocytes with inhibition of MiR135b and increased expression of type IV collagen. Oxid. Med. Cell. Longev. 2016, 2016, 3859721. [Google Scholar] [CrossRef]
- Ashokkumar, K.; Murugan, M.; Dhanya, M.; Pandian, A.; Warkentin, T.D. Phytochemistry and therapeutic potential of black pepper [Piper nigrum (L.)] essential oil and piperine: A review. Clin. Phytosci. 2021, 7, 52. [Google Scholar] [CrossRef]
- Sari, R.K.; Prayogo, Y.H.; Sari, R.A.L.; Asidah, N.; Rafi, M.; Wientarsih, I.; Darmawan, W. Intsia bijuga heartwood extract and its phytosome as tyrosinase inhibitor, antioxidant, and sun protector. Forests 2021, 12, 1792. [Google Scholar] [CrossRef]
- Martel, J.; Ojcius, D.M.; Ko, Y.F.; Chang, C.J.; Young, J.D. Antiaging effects of bioactive molecules isolated from plants and fungi. Med. Res. Rev. 2019, 39, 1515–1552. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, P. Genomic aging, clonal hematopoiesis, and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 2023, 43, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global cancer incidence and mortality rates and trends—An update. Cancer Epidemiol. Biomark. Prev. 2016, 25, 16–27. [Google Scholar] [CrossRef] [PubMed]
- López-Otín, C.; Pietrocola, F.; Roiz-Valle, D.; Galluzzi, L.; Kroemer, G. Meta-hallmarks of aging and cancer. Cell Metab. 2023, 35, 12–35. [Google Scholar] [CrossRef]
- Kenyon, C. The first long-lived mutants: Discovery of the insulin/IGF-1 pathway for ageing. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 9–16. [Google Scholar] [CrossRef]
- Lee, H.; Lee, S.-J.V. Recent progress in regulation of aging by insulin/IGF-1 signaling in Caenorhabditis elegans. Mol. Cells 2022, 45, 763–770. [Google Scholar] [CrossRef]
- Yuan, Y.; Kang, N.; Li, Q.; Zhang, Y.; Liu, Y.; Tan, P. Study of the effect of neutral polysaccharides from Rehmannia glutinosa on lifespan of Caenorhabditis elegans. Molecules 2019, 24, 4592. [Google Scholar] [CrossRef] [PubMed]
- Bourgeois, B.; Madl, T. Regulation of cellular senescence via the FOXO 4-p53 axis. FEBS Lett. 2018, 592, 2083–2097. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Xia, H.; Guo, Y.; Qian, X.; Zou, X.; Yang, H.; Yin, M.; Liu, H. Ginsenoside Rb1 retards aging process by regulating cell cycle, apoptotic pathway and metabolism of aging mice. J. Ethnopharmacol. 2020, 255, 112746. [Google Scholar] [CrossRef] [PubMed]
- Herzig, S.; Shaw, R.J. AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 2018, 19, 121–135. [Google Scholar] [CrossRef]
- Yang, F.; Qin, Y.; Wang, Y.; Meng, S.; Xian, H.; Che, H.; Lv, J.; Li, Y.; Yu, Y.; Bai, Y.; et al. Metformin inhibits the NLRP3 inflammasome via AMPK/mTOR-dependent effects in diabetic cardiomyopathy. Int. J. Biol. Sci. 2019, 15, 1010. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Shi, J.; Wang, X.; Zhang, R. Curcumin Alleviates D-Galactose-Induced Cardiomyocyte Senescence by Promoting Autophagy via the SIRT1/AMPK/mTOR Pathway. Evid. Based Complement. Altern. Med. 2022, 2022, 2990843. [Google Scholar] [CrossRef]
- Xu, W.; Luo, Y.; Yin, J.; Huang, M.; Luo, F. Targeting AMPK signaling by polyphenols: A novel strategy for tackling aging. Food Funct. 2023, 14, 56–73. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Feng, W.; Shen, Q.; Yu, N.; Yu, K.; Wang, S.; Chen, Z.; Shioda, S.; Guo, Y. Rhizoma coptidis and berberine as a natural drug to combat aging and aging-related diseases via anti-oxidation and AMPK activation. Aging Dis. 2017, 8, 760. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Xu, L.; Zhang, X.; Shi, C.; Qiao, S.; Ma, Z.; Yuan, J. Snapshot: Implications for mTOR in aging-related ischemia/reperfusion injury. Aging Dis. 2019, 10, 116. [Google Scholar] [CrossRef]
- Lamming, D.W.; Ye, L.; Sabatini, D.M.; Baur, J.A. Rapalogs and mTOR inhibitors as anti-aging therapeutics. J. Clin. Investig. 2013, 123, 980–989. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Hu, S.; Wang, J.; Zhang, X.; Yuan, D.; Zhang, C.; Liu, C.; Wang, T.; Zhou, Z. Icariin improves brain function decline in aging rats by enhancing neuronal autophagy through the AMPK/mTOR/ULK1 pathway. Pharm. Biol. 2021, 59, 181–189. [Google Scholar] [CrossRef]
- Johnson, S.C.; Rabinovitch, P.S.; Kaeberlein, M. mTOR is a key modulator of ageing and age-related disease. Nature 2013, 493, 338–345. [Google Scholar] [CrossRef]
- Golden, T.R.; Hinerfeld, D.A.; Melov, S. Oxidative stress and aging: Beyond correlation. Aging Cell 2002, 1, 117–123. [Google Scholar] [CrossRef]
- Harman, D. The free radical theory of aging. Antioxid. Redox Signal. 2003, 5, 557–561. [Google Scholar] [CrossRef]
- Pan, M.H.; Lai, C.S.; Tsai, M.L.; Wu, J.C.; Ho, C.T. Molecular mechanisms for anti-aging by natural dietary compounds. Mol. Nutr. Food Res. 2012, 56, 88–115. [Google Scholar] [CrossRef] [PubMed]
- Sinha, K.; Das, J.; Pal, P.B.; Sil, P.C. Oxidative stress: The mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch. Toxicol. 2013, 87, 1157–1180. [Google Scholar] [CrossRef] [PubMed]
- Uyeda, M. Oxidative Stress and Its Biological Significance. In Novel Therapeutic Approaches Targeting Oxidative Stress; Elsevier: Amsterdam, The Netherlands, 2022; pp. 27–76. [Google Scholar]
- Averill-Bates, D.A. The Antioxidant Glutathione. In Vitamins and Hormones; Elsevier: Amsterdam, The Netherlands, 2023; Volume 121, pp. 109–141. [Google Scholar]
- Carmo de Carvalho e Martins, M.D.; Martins; da Silva Santos Oliveira, A.S.; da Silva, L.A.A.; Primo, M.G.S.; de Carvalho Lira, V.B. Biological Indicators of Oxidative Stress [Malondialdehyde, Catalase, Glutathione Peroxidase, and Superoxide Dismutase] and Their Application in Nutrition. In Biomarkers in Nutrition; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–25. [Google Scholar]
- Sinbad, O.O.; Folorunsho, A.A.; Olabisi, O.L.; Ayoola, O.A.; Temitope, E.J. Vitamins as antioxidants. J. Food Sci. Nutr. Res. 2019, 2, 214–235. [Google Scholar]
- Kowalska, M.; Piekut, T.; Prendecki, M.; Sodel, A.; Kozubski, W.; Dorszewska, J. Mitochondrial and nuclear DNA oxidative damage in physiological and pathological aging. DNA Cell Biol. 2020, 39, 1410–1420. [Google Scholar] [CrossRef]
- Cui, H.; Kong, Y.; Zhang, H. Oxidative stress, mitochondrial dysfunction, and aging. J. Signal Transduct. 2012, 2012, 646354. [Google Scholar] [CrossRef]
- D’adda Di Fagagna, F. Living on a break: Cellular senescence as a DNA-damage response. Nat. Rev. Cancer 2008, 8, 512–522. [Google Scholar] [CrossRef]
- Forni, C.; Facchiano, F.; Bartoli, M.; Pieretti, S.; Facchiano, A.; D’Arcangelo, D.; Norelli, S.; Valle, G.; Nisini, R.; Beninati, S. Beneficial role of phytochemicals on oxidative stress and age-related diseases. BioMed Res. Int. 2019, 2019, 8748253. [Google Scholar] [CrossRef]
- Rolt, A.; Cox, L.S. Structural basis of the anti-ageing effects of polyphenolics: Mitigation of oxidative stress. BMC Chem. 2020, 14, 50. [Google Scholar] [CrossRef]
- Dama, A.; Shpati, K.; Daliu, P.; Dumur, S.; Gorica, E.; Santini, A. Targeting Metabolic Diseases: The Role of Nutraceuticals in Modulating Oxidative Stress and Inflammation. Nutrients 2024, 16, 507. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.A.; Faheem, H.I.; Hamid, A.; Yousaf, R.; Haris, M.; Saleem, U.; Shah, G.M.; Alhasani, R.H.; Althobaiti, N.A.; Alsharif, I. The entrancing role of dietary polyphenols against the most frequent aging-associated diseases. Med. Res. Rev. 2024, 44, 235–274. [Google Scholar] [CrossRef]
- Luo, J.-H.; Li, J.; Shen, Z.-C.; Lin, X.-F.; Chen, A.-Q.; Wang, Y.-F.; Gong, E.-S.; Liu, D.; Zou, Q.; Wang, X.-Y. Advances in health-promoting effects of natural polysaccharides: Regulation on Nrf2 antioxidant pathway. Front. Nutr. 2023, 10, 1102146. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Zhang, S. Anti-Aging Activity and Modes of Action of Compounds from Natural Food Sources. Biomolecules 2023, 13, 1600. [Google Scholar] [CrossRef]
- Hernandez, D.F.; Cervantes, E.L.; Luna-Vital, D.A.; Mojica, L. Food-derived bioactive compounds with anti-aging potential for nutricosmetic and cosmeceutical products. Crit. Rev. Food Sci. Nutr. 2021, 61, 3740–3755. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.-J.; Sun, W.-W.; Yang, J.; Shi, D.-D.; Dai, X.-F.; Li, X.-M. The effect of preventing oxidative stress and its mechanisms in the extract from Sonchus brachyotus DC. Based on the Nrf2-Keap1-ARE Signaling Pathway. Antioxidants 2023, 12, 1677. [Google Scholar] [CrossRef] [PubMed]
- Pandurangan, A.K.; Saadatdoust, Z.; Esa, N.M.; Hamzah, H.; Ismail, A. Dietary cocoa protects against colitis-associated cancer by activating the Nrf2/Keap1 pathway. Biofactors 2015, 41, 1–14. [Google Scholar] [CrossRef]
- Yoon, H.S.; Kim, J.R.; Park, G.Y.; Kim, J.E.; Lee, D.H.; Lee, K.W.; Chung, J.H. Cocoa Flavanol Supplementation Influences Skin Conditions of Photo-Aged Women: A 24-Week Double-Blind, Randomized, Controlled Trial. J. Nutr. 2016, 146, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Maruki-Uchida, H.; Morita, M.; Yonei, Y.; Sai, M. Effect of Passion Fruit Seed Extract Rich in Piceatannol on the Skin of Women: A Randomized, Placebo-Controlled, Double-Blind Trial. J. Nutr. Sci. Vitaminol. 2018, 64, 75–80. [Google Scholar] [CrossRef]
- Kim, J.E.; Song, D.; Kim, J.; Choi, J.; Kim, J.R.; Yoon, H.S.; Bae, J.S.; Han, M.; Lee, S.; Hong, J.S.; et al. Oral Supplementation with Cocoa Extract Reduces UVB-Induced Wrinkles in Hairless Mouse Skin. J. Investig. Dermatol. 2016, 136, 1012–1021. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.U.; Chung, H.C.; Kim, C.; Hwang, J.K. Oral intake of Boesenbergia pandurata extract improves skin hydration, gloss, and wrinkling: A randomized, double-blind, and placebo-controlled study. J. Cosmet. Dermatol. 2017, 16, 512–519. [Google Scholar] [CrossRef]
- Choi, S.Y.; Hong, J.Y.; Ko, E.J.; Kim, B.J.; Hong, S.W.; Lim, M.H.; Yeon, S.H.; Son, R.H. Protective effects of fermented honeybush (Cyclopia intermedia) extract (HU-018) against skin aging: A randomized, double-blinded, placebo-controlled study. J. Cosmet. Laser Ther. 2018, 20, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Im, A.R.; Kim, Y.M.; Chin, Y.W.; Chae, S. Protective effects of compounds from Garcinia mangostana L. (mangosteen) against UVB damage in HaCaT cells and hairless mice. Int. J. Mol. Med. 2017, 40, 1941–1949. [Google Scholar] [CrossRef] [PubMed]
- Kamila, M.Z.P.; Helena, R. The effectiveness of ferulic acid and microneedling in reducing signs of photoaging: A split-face comparative study. Dermatol. Ther. 2020, 33, e14000. [Google Scholar] [CrossRef]
- Costa, E.F.; Magalhães, W.V.; Di Stasi, L.C. Recent Advances in Herbal-Derived Products with Skin Anti-Aging Properties and Cosmetic Applications. Molecules 2022, 27, 7518. [Google Scholar] [CrossRef] [PubMed]
- Groten, K.; Marini, A.; Grether-Beck, S.; Jaenicke, T.; Ibbotson, S.H.; Moseley, H.; Ferguson, J.; Krutmann, J. Tomato phytonutrients balance UV response: Results from a double-blind, randomized, placebo-controlled study. Skin Pharmacol. Physiol. 2019, 32, 101–108. [Google Scholar] [CrossRef]
Phytoconstituent | Biological Effect | Tests/Models | Mechanism of Action | Ref. |
---|---|---|---|---|
Curcumin | Adaptogenic activity Antidepressant-like effects | Chronic stress, Chronic unpredictable stress and forced swimming | Alter functional homeostasis and memory deficit and cause normalization of the hyper-activated HPA axis with subsequent decrease in corticosterone secretion. Acts on the serotonergic system, which may be mediated by an interaction with 5-HT1A/1B and 5-HT2C receptors responsible for depression. | [22,24] |
Rutin | Anti-stress activity Anxiolytic-like activity | Forced swimming, Tail suspension, Elevated plus-maze Elevated plus-maze, Ambulatory activity | Modulates GABA receptors and also acts as an NMDA receptor antagonist. Cause inhibition of prostaglandin synthesis, thereby regulating HPA axis activity under basal and stress conditions. Modulates GABAergic neurotransmission in the basolateral amygdala. | [25,26] |
Ginsenosides Rb1 and Rg1 | Adaptogenic activity | Radical scavenging, Nrf2 activation, Mitochondrial dysfunction, BBB permeability | Attenuates oxidative stress and mitochondrial dysfunction, thus resulting in reduced apoptotic cell death. The promising effects are due to the activation of cytoprotective Nrf2 signaling and a mitochondrial-targeted protective action. | [27] |
Glycyrrhizin | Antidepressant-like activity and anti-stress activity | Forced swimming, Tail suspension, Immobilization stresses locomotor activity, Muscle co-ordination | Acts by interaction with α1-adrenergic and D2-receptors, thereby increasing the levels of norepinephrine and dopamine in brains, and also has MAO-inhibiting activity. Attenuates the HPA axis activation and free radical scavenging activity. | [28,29] |
Piperine | Antidepressant-like activity and anti-anxiety-like activity | Elevated plus-maze, Light and dark box, Social interaction, Tail suspension, Forced swimming, Open field test. | Possibly mediated through the benzodiazepine-GABA receptor and an increase in GABA levels and inhibition of neuronal nitric oxide synthase. Cause augmentation of the neurotransmitter synthesis or the reduction in the neurotransmitter reuptake and also mediated via the regulation of the serotonergic system. | [30,31] |
Eugenol | Anti-stress activity | Restraint stress model | Activity is mediated through the HPA axis and BMS pathways and also changes in brain noradrenergic, serotonergic, and dopaminergic systems in the hippocampus, hypothalamus, prefrontal cortex, and amygdala. | [32] |
Andrographolide | Adaptogenic activity | Stress-induced hyperthermia, Pentobarbital-induced hypnosis | Cause upregulation of the benzodiazepine site of GABA-A receptors, which are involved in stress-triggered physiological responses. | [33] |
Ocimumosides | Anti-stress activity | Restraint stress model | Anti-stress activity by normalizing acute stress-induced hyperglycemia, corticosterone levels, creatine kinase, and adrenal hypertrophy. | [34] |
Astragaloside IV | Anti-stress activity | Immobilized stressors, Elevated plus-maze | Astragaloside IV may ameliorate anxiety via serotonergic receptors and inflammation by decreasing serum levels of corticosterone, IL-6, and TNF-α. | [35] |
Astragaloside II | Immunomodulatory activity | Splenic T-lymphocyte activation, Cyclophosphamide-induced immunosuppression | Astragaloside II enhances T cell activation by regulating the activity of CD45 PTPase in primary T cells. Astragaloside II also increased IL-2 and IFN-γ secretion, upregulated IFN-γ and T-bet in primary splenocytes, and promoted primary CD4 + T cells. | [36] |
Bergenin | Immunomodulatory activity | Adjuvant-induced arthritis | Inhibits IL-2 production by CD4 + T-cells, which are regulators of immune response, stimulates the synthesis of IFN-ϒ in T-cells, and also induces the secretion of pro-inflammatory cytokines such as TNF-α by activated macrophages. The inhibition of IL-2 is possibly responsible for reduced IFN-ϒ secretion by CD8 + T cells and TNF-α by macrophages and also promotes IL-4 and IL-5 production. | [37] |
Syringin | Immunomodulatory activity | Croton oil and arachidonic acid-induced mouse ear edema | Inhibits TNF-α production and CTLL-2 cell proliferation and thus may possess anti-allergic activity. | [38] |
Berberine | Antidepressant and anti-anxiety-like activity | Forced swimming, Elevated plus-maze, Locomotor activity | Acts by modulating hypothalamic corticotrophin-releasing factor and the noradrenergic system in the CNS and decreasing serotonergic system activity by activating somatodendritic 5-HT1A and inhibiting postsynaptic 5-HT1A and 5-HT2 receptors. | [39,40] |
β-pinene | Antidepressant-like activity | Forced swimming | Acts through interaction with the serotonergic pathway through postsynaptic 5-HT1A receptors and also interacts with the adrenergic system through β-receptors and the dopaminergic systems through D1 receptors. | [41] |
Zeatin | Immunomodulatory activity | Thioglycollate-induced peritonitis | Modulates T lymphocyte activity via the adenosine A2A receptor, which induces the production of cAMP, potently inhibits the production of both TH1 and TH2 cytokines, and also modulates, either directly or indirectly, both humoral and cell-mediated responses. | [42] |
Scopoletin | Antidepressant-like activity | Forced swimming, Tail suspension, Open field test | Interact with the 5-HT2A/2C, α1, and α2, D1, and D2 receptor systems, thereby producing an antidepressant-like effect. | [43] |
Ginkgolide B | Adaptogenic and anti-stress activity | In situ hybridization of CRH and AVP mRNA | Acts at the hypothalamic level, modulating the monoaminergic inputs to the CRH-synthesizing cell bodies depending upon both the nature of stress and substance. | [44] |
Quercetin | Anti-fatigue activity | Forced swimming | Improves endurance capability to fatigue during exhaustion and also prevents endothelial dysfunction via enhancing the activities of antioxidant enzymes and attenuating the levels of inflammatory cytokines. | [45] |
Gallic acid | Antidepressant-like activity | Sucrose preference test and forced swimming | Inhibits MAO-A activity and increases levels of monoamine in the brain, reduces plasma nitrite levels, and reduces nitrosative stress, thus playing a key role in chronic stress-induced depression. | [46] |
Valerenic acid | Anti-stress activity Anxiolytic activity | Forced swimming and elevated plus-maze | Mitigate stress by decreasing the turnover of 5-HT to 5-hydroxyindoleacetic acid and NE to 3-methoxy-4-hydroxyphenylethyleneglycol sulfate in the hippocampus and amygdala. Modulates the GABA-A channel and possesses anxiolytic activity. | [47,48] |
Picracin | Immunomodulatory activity | Pro-inflammatory cytokine release, DTH response | Inhibits mitogen-induced proliferation of T cells and is a potent inhibitor of IL-2 release through induction of apoptosis. | [49] |
Esculetin | Anti-inflammatory and depressive-like activity | Tail suspension, Forced swimming, Open field test | Inhibits pro-inflammatory cytokines, including interleukin-6, interleukin-1β, and tumor necrosis factor-α, and also attenuates inducible nitric oxide synthase and cyclooxygenase-2 protein expression by inhibiting the nuclear factor-κB pathway in the hippocampus, causing upregulations of brain-derived neurotrophic factor and phosphorylated tyrosine kinase B protein expression in the hippocampus, which provides neuroprotection. | [50] |
Catechin | Anxiolytic activity | Forced swimming, Elevated plus-maze | Inhibits the HPA axis-associated psychological dysfunction induced by corticosterone and modulates hypothalamic CRF activity and the noradrenergic system within the CNS. | [51] |
Asiaticoside | Antidepressant-like activity | Tail suspension, Forced swimming | Regulates the α2-adrenergic receptor and increases the level of adrenaline in the brain. | [52] |
Tumerone | Antidepressant-like activity | Forced swimming, Tail suspension, Open field test | Increase the level of 5-HT in the cortex, striatum, hippocampus, and hypothalamus; the level of NE in the striatum and hippocampus; the level of 3-methoxy-4-hydroxyphenylglycol and 3,4-dihydroxyphenylacetic acid in the hypothalamus; the level of 5-hydroxyindoleacetic acid in the striatum; and the level of DA in the striatum, hippocampus, and hypothalamus. | [53] |
Rosavin | Adaptogenic activity | Forced swimming light/dark test, Tail-flick latencies | Modulates biogenic monoamines in the cerebral cortex, brain stem, and hypothalamus. In the cerebral cortex and brain stem, the levels of norepinephrine and dopamine decreased, while that of serotonin increased due to changes in monoamine levels, that is, the inhibition of monoamine oxidase and catechol-o-methyltransferase. | [54] |
Shatavarin | Immunomodulatory activity | Human peripheral blood lymphocyte stimulation assay | Stimulates immune cell proliferation, induces IgG and interleukin-12, and inhibits IL-6 production. It also had strong modulatory effects on the Th1/Th2 cytokine profile. | [55] |
Salidroside | Anti-fatigue activity | Forced swimming | Decrease the activities of CK and CK-MB and increase the GSH-Px and SOD activities, and also decrease the MDA content in liver tissue. | [56] |
β-sitosterol | Anxiolytic-sedative activity | Pentobarbital-induced sleeping time | Modulates the GABAA receptor and produces an anxiolytic effect similar to that of benzodiazepines. | [57] |
Ellagic Acid | Antidepressant and anti-anxiety activity | Novelty-suppressed feeding, Forced swimming, Sucrose intake test | Acts probably by interaction through adrenergic and serotonergic systems and causes inhibition of inducible NOS, thereby acting as an antidepressant. | [58] |
Puerarin | Antidepressant and anti-stress activity | Tail suspension, Forced swimming | Ameliorates depression and pain via activating ERK, CREB, and BDNF pathways, inhibits corticotropin-releasing hormone, corticosterone, and adrenocorticotropic hormone, and normalizes the activity of the serotonergic system, thereby preventing HPA axis dysfunction. | [59,60] |
Chlorogenic acid | Antidepressant activity | Tail suspension, Elevated plus-maze. | Crosses the blood-cerebrospinal barrier, exhibits neuroprotection, and promotes serotonin release through enhanced synapsin I expression. | [61] |
Ursolic acid | Antidepressant and anxiolytic-like activity | Tail suspension, Forced swimming, Open field test | Action is mediated by an interaction with the dopaminergic system through the activation of dopamine D1 and D2 receptors. | [62] |
Caffiec acid | Antidepressant and anxiolytic-like activity | Elevated plus-maze, Open field test | Indirectly modulates α1-adrenoceptors, that is, α1A-adrenoceptors in cortical membranes, and directly modulates second messengers acting through glutamate or GABAergic receptors, thereby being involved in the expression of its antidepressive and/or anxiolytic-like effects. | [63,64] |
Sulforaphane | Antidepressant and anxiolytic-like activity | Forced swimming, Tail suspension, Chronic stress, Open field test | Normalize the stress-induced HPA axis dysfunction and have inhibitory effects on the inflammatory response to stress. | [65] |
Chicoric acid | Antidepressant activity and immunomodulatory activity | Forced swimming, Learned helplessness Chronic restraint stress-induced altered T lymphocyte distribution | Modulates nor-adrenaline, dopamine, and 5-hydroxy tryptamine in chronically stressed conditions. Imparted immune stimulation by upregulating the expression of CD28 and CD80 and downregulating CTLA-4; stimulatory effect on IL-12, IFN-gamma, and IL-2; and suppression of the increased IL-10 and also lower corticosterone levels, thereby showing its normalizing effect on the HPA axis. | [66,67] |
3,4,5-trimethoxycinnamic acid | Anti-stress, anxiety, and depression-like activity | Repeated cold exposure test | Augment norepinephrine in the brain and also ameliorate chronic stress and induce ΔFosB protein and SC1 mRNA expression in a nucleus accumbens shell subregion. | [68,69] |
Rosmarinic acid | Anxiolytic-like activity | Elevated plus-maze, Step-down avoidance, Open field test | Involved in direct modulation of a second messenger through glutamate receptors, since these are directly involved in several CNS disorders, and the anxiolytic effect is seen at lower doses without affecting the short- and long-term memory retention or locomotion, exploration, and motivation. | [70] |
Ferulic Acid | Immunomodulatory activity | Carbon clearance, Neutrophil adhesion, Serum immunoglobulins, DTH response | Acts by stimulating cell-mediated immunity as well as humoral immunity by acting on B-cells and T-cells. | [71] |
Scientific Name | Common Name | Bioactive Compounds | Bioactivities | References |
---|---|---|---|---|
Carthamus tinctorius | Safflower seed oil | Phenol | Collagenase assay inhibition and suppression in the test for elastase | [227] |
Chaenomeles sinensis | Chinese quince | β-1,4-xyloglucan | Inhibition of cutaneous extracellular matrix proteases’ activity: collagenase and elastase | [228] |
Citrus unshiu Marcov; “Citrus sunki” Hort. Ex Tanaka; “Citrus reticulate” Blanco”; “Vitis vinifera L.”; Citrus sinensis Osbeck | Mandarin, grapes | Ascorbic acid, narirutin, hesperidin | A hairless mouse model exposed to UV radiation showed increased collagen levels, reduced skin layer thickness and wrinkling, and higher levels of enzymes fighting free radicals. | [229] |
“Citrus reticulate” Blanco | Mandarin orange | D-limonene and n-hexadecane. | Suppression of “elastase”, “collagenase”, and anti-enzyme activity | [230] |
“Cucumis sativus L.” | Cucumber | Ascorbate ascorbic acid | In vitro suppression of MMP-1, elastase, and hyaluronidase | [231] |
“Citrus sinensis L.” | Sweet orange | Flavanones, anthocyanins, ascorbic acid, and hydroxycinnamic acid | Translocation of “NF-B and AP-1” along with “cleavage of procaspase-3” | [232] |
“Curcuma longa” | Turmeric | Curcumin | Decrease in the anti-aging inflammatory marker C-reactive protein (CRP) levels | [233] |
“Citrus limon” | Lemon | Eriocitrin (polyphenols) | Delay in locomotor atrophy and raised aging-related scores | [234] |
“Camellia sinensis L.” | Green tea | EGCG (epigallocatechin-3-gallate) | Prolongation of life with reactive oxygen species (ROSs) | [235] |
“Camellia sinensis L.” | Orange Pekoe black tea | Epigallocatechin gallate | Elastase activity inhibition | [236] |
“Daucus carota L.” | “Carrot” | Carrot glycoprotein | Defense of “cell membranes” and neutralization of “reactive oxygen” | [237] |
“Emblica officinalis L.” | Indian gooseberry | Elaeocarpusin, gallic acid, ascorbic acid | “Procollagen 1” protected against “UVB-induced depletion” by inhibiting “UVB-induced collagenase-1”, “inhibited collagenase”, raising “tissue inhibitor of metalloproteinases level”, and induced cell cycle | [238] |
Emblica officinalis L. | Indian gooseberry | Vitamin C | Increased endopeptidase content and decreased levels of cutaneous fibroblast matrixins. | [239] |
“Ginkgo biloba L.” | Maidenhair tree | Isorhamnetin-3-O-glucoside, kaempferol 3-O-β-D-glucopyranoside, myricetin, bilobalide, ginkgolide A | Degradation of “oxidative stress (ROSs) and human interstitial collagenase (MMP-1) inhibition in “fibroblasts of human skin. | [240] |
Tamarindus indica; Nephelium lappaceum L.; Litchi chinensis; | Litchi, rambutan, tamarind | Epigallocatechin, gallic acid, ferulic acid | Tyrosinase and TRP-2 inhibition inhibit the synthesis of “melanin in B16F10 melanoma cells”; collagenase and elastase suppression are effective. | [241] |
“Musa spaientum” | Banana | Corosolic acid | Impact of inhibition on MMP activity | [242] |
“Momordica charantia L.” | Bitter gourd | Resveratrol | Increasing antioxidative stress and regulating the yeast genes’ expression like “UTH1”, “SKN7”, “SOD1”, and “SOD2”. | [243] |
“Oryza sativa” | Rice | Coumaric acid and vanillin | Inhibitory action of elastase | [244] |
Panax ginseng | Asian ginseng | Gingenoside | Stimulation of Transforming growth factor-beta (TGF-β)” in dermal fibroblast cells” promotes the synthesis of collagen. | [245] |
“Prunus dulcis” | Almonds | α-tocopherol | In postmenopausal women, wrinkle severity is reduced | [246] |
Sclerocarya birrea | Marula | Catechin, quinic acid, epicatechin gallate, and epigallocatechin gallate | Indicated actions to inhibit collagenase | [247] |
“S. zalacca (Gaert.) Voss” | Snake fruit | Coffee tannic acid and 3-caffeoylquinic acid | Collagenase suppression | [248] |
Compounds | Present in Plant | Mode of Action | References |
---|---|---|---|
Anthocyanins | Citrus sinensis L. | Translocation of NF-B and AP-1. Cleavage of procaspase-3 | [232] |
Apigenin | Spatholobus littoralis Hassk. | Elastase activity inhibition | [249] |
Ascorbic acid | Emblica ocinalis L.; Cucumis sativus L.; Citrus sunki Hort. Ex Tanaka; Citrus unshiu Marcov; Citrus sinensis Osbeck; Citrus reticulata Blanco; Vitis vinifera L. | Inhibited type-I collagen collagenase; Increased TIMP-1 level; Inhibited cellular proliferation; Protected procollagen 1 against UVB-induced depletion; Inhibited UVB-induced MMP-1; Promoted procollagen content; Inhibited matrix metalloproteinase levels in skin fibroblasts; Inhibited hyaluronidase, elastase, and MMP-1 | [229,231,238,239] |
ɑ-tocopherol | Prunus dulcis | Reduced wrinkles in postmenopausal women | [250] |
Bilobalide | Ginkgo biloba L. | Preventing ROS and MMP-1 breakdown in skin cells. | [251] |
Bruceine | Rhus javanica L. | Anti-elastase activity | [252] |
Brusatol | Rhus javanica L. | Potential anti-aging | [252] |
Catechin | Sclerocarya birrea Cosmos caudatus Kunth Spatholobus littoralis Hassk. | Collagenase inhibition Antioxidant potential; Inhibition of elastase activity; Prevents skin aging | [227,247,249] |
Chlorogenic acid | Salacca zalacca (Gaert.) Voss | MMP-1 inhibition; Acts as an antioxidant and anti-inflammatory agent; Prevents aging and toxicity; Having affinity for MMP1, NEP, and PPO3 | [248] |
Corosolic acid | Musa spaientum | MMPs Inhibition | [242] |
Coumaric acid | Oryza sativa | Elastase inhibition | [244] |
Curcumin | Curcuma longa | Lower C-reactive protein (CRP) levels, an anti-aging inflammatory marker | [233] |
Daidzein | Spatholobus littoralis Hassk. Glycine max (L.) Merr. | Inhibition of elastase | [249,253] |
D-Limonene | Citrus reticulata Blanco | Inhibit collagenase and elastase. | [230] |
Elaeocarpusin | Emblica ocinalis L. | Inhibited type-I collagen collagenase; Increased TIMP-1 level; Inhibited cellular proliferation; Protected procollagen 1 against UVB-induced depletion; Inhibited UVB-induced MMP-1 | [239] |
Epigallocatechin | Litchi chinensis; Nephelium lappaceum L.; Tamarindus indica Sclerocarya birrea Camellia sinensis L. | Melanin production suppression; Inhibit elastase and collagenase; Inhibit collagenase; Elastase activity inhibition | [235,236,241,247] |
Eriocitrin | Citrus limon | Delay in locomotor atrophy | [234] |
Ferulic acid | Litchi chinensis; Nephelium lappaceum L.; Tamarindus indica | Melanin production suppression; Inhibit elastase and collagenase; Inhibit collagenase; Elastase activity inhibition | [241] |
Formononetin | Spatholobus littoralis Hassk. | Prevent skin aging | [249] |
Gallic Acid | Emblica ocinalis L.; Litchi chinensis; Nephelium lappaceum L.; Tamarindus indica | Inhibited type-I collagen collagenase; Increased TIMP-1 level; Inhibited cellular proliferation; Protected procollagen 1 against UVB-induced depletion; Inhibited UVB-induced MMP-1; Melanin production suppression; Inhibit elastase and collagenase; Inhibit collagenase; Elastase activity inhibition | [229,239] |
Gingenoside | Panax ginseng Meyer; Crataegus pinnatifida | Promotion of collagen synthesis via TGF-activation in human skin fibroblast cells Protective effect against UVB-induced photoaging by regulating procollagen type 1 and MMP-1 expression in NHDFs | [245,254] |
Ginkgolide A | Ginkgo biloba L. | ROS and MMP-1 inhibition | [251] |
Glabridin | Glycyrrhiza glabra L. | Tyrosinase and elastase inhibition | [113] |
Glycitein | Spatholobus littoralis Hassk. | Inhibition of elastase activity | [249] |
Gnemonoside | Gnetum gnemon L. | Inhibits tyrosinase in the melanogenesis process | [255] |
Gnemonoside D | Gnetum gnemon L. | Inhibits tyrosinase in the melanogenesis process | [255] |
Gnetin C | Gnetum gnemon L. | Inhibits tyrosinase in the melanogenesis process | [255] |
Hesperetin | Spatholobus littoralis Hassk. | Prevent skin aging | [249] |
Hesperidin | Citrus sunki Hort. Ex Tanaka; Citrus unshiu Marcov; Citrus sinensis Osbeck; Citrus reticulata Blanco; Vitis vinifera L. | Increase antioxidant enzyme levels; Decrease skin thickness and wrinkles; Rise collagen levels | [229] |
hydroxycinnamic acid | Citrus sinensis L. | Translocate NF-κB and AP-1 translocation; Cleaved procaspase-3 | [232] |
Isoliquiritigenin | Glycyrrhiza glabra L. | Inhibition of tyrosinase and elastase | [113] |
Kaempferide | Spatholobus littoralis Hassk. | Prevent skin aging | [249] |
Kaempferol | Ginkgo biloba L. | Preventing ROS and MMP-1 breakdown in skin cells. | [251] |
Luteolin | Spatholobus littoralis Hassk. | Prevent skin aging | [249] |
Lycopene | Cosmos caudatus Kunth | Antioxidant activity | [249] |
Myoinositol | Cosmos caudatus Kunth | Antioxidant activity | [227] |
Myricetin | Ginkgo biloba L. | Preventing ROS and MMP-1 breakdown in skin cells. | [251] |
Naringenin | Spatholobus littoralis Hassk. | Inhibition of elastase activity | [249] |
Narirutin | Citrus sunki Hort. Ex Tanaka; Citrus unshiu Marcov; Citrus sinensis Osbeck; Citrus reticulata Blanco; Vitis vinifera L. | Increased antioxidant enzyme expression; Reduced skin thickness and wrinkles; Elevated collagen levels | [229] |
n-Hexadecanoic acid | Citrus reticulata Blanco | Collagenase and elastase inhibition | [230] |
Phlorizin | Eleutherococcus senticosus | miR135b suppression; Enhances microenvironment; Increases proliferative potential basal epidermal cells | [256] |
Piperine | Piper nigrum L. | Antioxidant activity | [257] |
Quinic acid | Sclerocarya birrea | Collagenase inhibition. | [247] |
Resveratrol | Momordica charantia L. | Antioxidant activity | [243] |
Robidanol | Intsia bijuga (Colebr.) | Antioxidant activity and antityrosinase enzyme inhibition | [258] |
Robinetin | Intsia bijuga (Colebr.) | Antioxidant activity and antityrosinase enzyme inhibition | [258] |
Vanillin | Oryza sativa | Elastase inhibition | [244] |
β-1,4-xyloglucan | Chaenomeles sinensis | Inhibit dermal proteases: elastase and collagenase. | [228] |
Compounds/Extracts Name | Source | Study Outcome | References |
---|---|---|---|
Flavanol from cocoa | Theobroma cacao | Enhanced the elasticity and reduced wrinkles in the skin. | [299] |
Boesenbergia pandurate extract | Boesenbergia pandurate | Enhancement of skin moisture, shine, overall elasticity, and reduction in wrinkles. | [300] |
Honeybush isolation | Cyclopia intermedia | Reduced skin, wrinkle roughness, improved skin hydration levels, and flexibility. | [301] |
ɑ-mangostin | Garcinia mangostana | Decrease in UV-triggered MMP-1/MMP-9 and wrinkles | [302] |
Ferulic acid | Litchi chinensis; Nephelium lappaceum L.; Tamarindus indica | Improving skin elasticity through activities such as bleaching, anti-redness, smoothing, and moisturizing. | [303,304] |
Passion fruit seed extract | Passiflora edulis | Boosting moisture for dry skin and relieving fatigue. | [298] |
Lycopene | Solanum lycopersicum | Protects against “erythema” caused by UVB rays and reduces pro-inflammatory cytokines such as “TNF-a” and “IL-6”. | [305] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, G.; Kameswaran, S.; Ramesh, B.; Bangeppagari, M.; Nath, R.; Das Talukdar, A.; Shin, H.-S.; Patra, J.K. Anti-Aging Effect of Traditional Plant-Based Food: An Overview. Foods 2024, 13, 3785. https://doi.org/10.3390/foods13233785
Das G, Kameswaran S, Ramesh B, Bangeppagari M, Nath R, Das Talukdar A, Shin H-S, Patra JK. Anti-Aging Effect of Traditional Plant-Based Food: An Overview. Foods. 2024; 13(23):3785. https://doi.org/10.3390/foods13233785
Chicago/Turabian StyleDas, Gitishree, Srinivasan Kameswaran, Bellamkonda Ramesh, Manjunatha Bangeppagari, Rajat Nath, Anupam Das Talukdar, Han-Seung Shin, and Jayanta Kumar Patra. 2024. "Anti-Aging Effect of Traditional Plant-Based Food: An Overview" Foods 13, no. 23: 3785. https://doi.org/10.3390/foods13233785
APA StyleDas, G., Kameswaran, S., Ramesh, B., Bangeppagari, M., Nath, R., Das Talukdar, A., Shin, H. -S., & Patra, J. K. (2024). Anti-Aging Effect of Traditional Plant-Based Food: An Overview. Foods, 13(23), 3785. https://doi.org/10.3390/foods13233785