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Abstract: Potatoes are a globally important crop with high nutritional value. Different potato varieties
display notable variations in color, texture, and nutrient composition. However, the influence of
cooking on tuber color, texture, and metabolites has not been comprehensively explored. This study
evaluated the color and texture of five potato varieties before and after cooking. Cooking significantly
altered tuber color, decreased hardness and adhesiveness, and increased springiness, particularly
after steaming. The metabolomic analysis of Zhongshu 49 (ZS49) and Shishu 3 (SH3) tubers was
conducted using gas chromatography–mass spectrometry (GC-MS) and ultra-high performance liquid
chromatography (UHPLC)-MS/MS. GC-MS identified 122 volatile metabolites, with 42 significantly
varying between cooking treatments, while UHPLC-MS/MS detected 755 nonvolatile metabolites,
445 of which showed significant differences. Compared to ZS49, SH3 exhibited a marked increase in
umami- and flavor-related metabolites, especially after cooking. This study provides new insights
into how cooking affects the quality, texture, and metabolite profiles of potato tubers.

Keywords: potato tuber; cooking treatment; color difference; texture; metabolome

1. Introduction

Potatoes are a critical global crop, and is rich in carbohydrates, vitamins, minerals,
phenolic acids, flavonoids, anthocyanins, and other bioactive substances. In China, fresh
table potatoes constitute a significant portion of the potatoes consumed. Typically, potatoes
require cooking, which alters their cellular structure and nutritional components, thereby
improving their absorption and utilization by the human body [1,2]. For consumers, color
and texture are indicators of food quality, with ripeness and sensory properties being
key factors influencing preferences, acceptance, and selection [3]. Despite the nutritional
importance of potatoes, the effects of cooking on the color, texture, and phytochemical
changes in different varieties remain inadequately documented.

Boiling and steaming are common methods for preparing fresh potatoes in China.
Unlike traditional home cooking, large food service systems face extended transportation
and storage times before cooking. Effective cooking processes are crucial for enhancing
the sensory and nutritional properties of potato tubers [4]. Color differences and surface
hardening during pretreatment are critical aspects [5]. The color of potato flesh and its
variations are linked to the composition and content of pigments, particularly carotenoids
and flavonoids [6,7]. Although examining the color differences and texture changes post-
cooking is important, few studies have addressed how different cooking methods impact
the levels of the relevant chemicals.
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High-throughput metabolomics techniques are increasingly utilized in food science for
safety [8] and quality assessments [9,10]. Previous studies have focused on the metabolic
profiling of potatoes, sweet potatoes, and other root tubers, examining volatile components
and gene expression in freshly cut potato shreds and baked potatoes [11,12]. The volatile
analysis revealed that alkanes were the most prevalent, followed by alcohols, aldehydes,
esters, furans, and quinones. Studies on the Cooperation 88, Shida 6, and Jianchuanhong
potato varieties indicated that the alkaloid content increased in damaged samples compared
to undamaged ones [13]. However, the impact of different cooking treatments on potato
tuber metabolites remains underexplored.

This study examined the effects of boiling and steaming on tuber color, texture, and
volatile and nonvolatile metabolites in different potato varieties. The aim of this study
was to improve the current understanding of the quality and metabolic alterations in
cooked potatoes.

2. Materials and Methods
2.1. Materials and Cooking Treatment

Five potato varieties—Zhongshu 27 (ZS27), Zhongshu 49 (ZS49), Zhongshuzao 35
(ZS35), Zhongshuzao 39 (ZS39), and Shishu 3 (SH3)—were cultivated using standard
agricultural practices at the Chabei Experimental Station (41◦29′ N, 115◦4′ E), Institute
of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Hebei Province,
China, in May 2023. The tubers were harvested in September 2023, stored in the dark
until use, and 5 kg of potatoes are prepared for cooking, with an average of 250–300 g
per tuber. For traditional cooking, the tubers were sliced into 4–5 mm thick pieces using
a slicer. Five potato slices with a uniform thickness and size were selected and boiled in
distilled water for 4.5 min. For steaming, the tubers were halved, placed in a steamer,
and steamed for 45 min. The cooking times were selected to balance the sensory quality
(e.g., texture and color) with nutrient retention. Post-cooking, the color difference and
texture properties were assessed. Samples for metabolomics analysis were immediately
frozen in liquid nitrogen and stored at −80 ◦C.

2.2. Color Difference Measurements

The color difference was measured using an NR10QC general colorimeter (Sanenchi
Technology Co., Ltd., Shenzhen, China), with three parameters L*, a*, and b* being recorded.
L* represents brightness, a* stands for red (+) and green (−), and b* stands for yellow (+)
and blue (−). The ∆L, ∆a, and ∆b values represent the difference in the values of L*, a*, and
b* between the two samples. The ∆L, ∆a, and ∆b values were used to calculate the total
color difference (∆E) as follows: ∆E =

√
∆L2 + ∆a2 + ∆b2. Three samples were randomly

selected to measure the color difference between raw and cooked potatoes.

2.3. Total Starch Content, Amylose Starch Content, and Granule Size Analyses

The total starch content was measured using a total starch assay kit (Boxbio Int.
Ltd., Beijing, China). The amylose content was determined using the Megazyme amy-
lose/amylopectin assay kit (Megazyme Int. Ireland Ltd., Wicklow, Ireland). The potato
starch granule size was analyzed using the Malvern Mastersizer 2000 particle size analyzer
(Malvern Panalytical Ltd., Malvern, UK) [14].

2.4. Analysis of Pasting Properties

The pasting properties of the tuber starches were measured using a modified version
of the method described by Liu et al. (2023) [14]. Starch samples (2 g) were dissolved in
25 mL of distilled water to create an 8% starch solution. The starch solution was maintained
at 50 ◦C for 2 min, and then heated to 95 ◦C at a rate of 12 ◦C/min. It was held at 95 ◦C for
2.5 min, cooled from 95 ◦C to 50 ◦C at a rate of 12 ◦C/min, and finally maintained at 50 ◦C
for 2 min. This test was conducted in three biological replicates.



Foods 2024, 13, 3786 3 of 14

2.5. Texture Analysis

The potato tuber texture properties were assessed using a CT3 texture analyzer
(Brookfield, MA, USA) [14]. Samples with three replicates were compressed to 10.0 mm
using a TA3/100 cylinder probe at a rate of 2 mm·s−1, with measurements taken at a release
force of 1 g.

2.6. Metabolite Extraction for UHPLC-MS/MS Analysis

Tissues (100 mg) were ground with liquid nitrogen, and then resuspended in precooled
80% methanol via microwell vortexing. The samples were incubated on ice for 5 min,
centrifuged at 15,000× g for 20 min at 4 ◦C, and a portion of the supernatant was diluted
with LC-MS-grade water to achieve a final methanol concentration of 53%. The samples
were transferred to fresh Eppendorf tubes, and centrifuged again for 20 min at 15,000× g
and 4 ◦C. Finally, the supernatant was injected into a UHPLC-MS/MS system for analysis;
three biological replicates were tested.

2.7. UHPLC-MS/MS Analysis

The UHPLC-MS/MS analyses were performed using a Vanquish UHPLC system
(Thermo Fisher, Germering, Germany) coupled with an Orbitrap Q ExactiveTM HF mass
spectrometer at Shanghai BIOZERON Co., Ltd. (Shanghai, China). The samples were
injected into a Hypersil Gold column (100 × 2.1 mm, 1.9 µm) with a 12 min linear gradient
at a 0.2 mL/min flow rate. For positive polarity mode, eluents A (0.1% FA in water) and
B (methanol) were employed; for negative polarity mode, eluents A (5 mM ammonium
acetate, pH 9.0) and B (methanol) were used. The following parameters were set: 320 ◦C
capillary temperature, 35 psi sheath gas flow, 10 L/min aux gas flow, 60 S-lens RF level,
and 350 ◦C aux gas heater temperature.

2.8. Extraction of Volatile Metabolic Compounds for GC-MS

To each sample, 950 µL of a mixed solution (methanol/chloroform/ddH2O, 70:20:5,
v/v/v) was added and vortexed for 30 s. Then, 60 µL each of isotopealanine (10 mM) and
nonadecanoic acid (0.2 mg/mL) were added as internal standards and vortexed again
for 30 s. The tubes were placed in liquid nitrogen for 5 min, and then thawed at room
temperature. The samples were ground in a high-throughput tissue grinder at 70 Hz for
2 min, with the process was repeated twice. The samples were centrifuged at 16,000× g
for 15 min at 4 ◦C and 800–850 µL of the supernatant was transferred to a new tube. The
samples were concentrated to dryness in vacuo. To the samples, 40 µL of a 15 mg/mL
methoxyamine–pyridine solution was added, and the samples were vortexed for 30 s and
reacted at 37 ◦C for 90 min. Then, 40 µL of BSTFA reagent was added to the mixture and
incubated at 70 ◦C for 60 min. The samples were centrifuged at 12,000 rpm for 5 min and
the supernatant was transferred to the injection vial. For quality control (QC), 20 µL of each
sample was used, and the remainder was used for GC-MS detection.

2.9. GC-MS Detection

Gas chromatography was conducted using an HP-5 MS capillary column (30 m ×
250 µm, 0.25 µm film) at Shanghai Biozeron Biological Technology Co. Ltd. (Shanghai,
China), with a helium flow rate of 1 mL/min to separate the derivatives. A 1 µL sample
was injected by autosampler in split mode, with a split ratio of 20:1. Injection, interface,
and ion source temperatures were set at 280 ◦C, 150 ◦C, and 230 ◦C, respectively. The
temperature program involved an initial hold at 60 ◦C for 2 min, a ramp of 10 ◦C/min to
300 ◦C, and a final hold at 300 ◦C for 5 min. Mass spectrometry was performed using the
full-scan method, covering a range of 35–750 (m/z).

2.10. Data Processing and Metabolite Identification

The raw data files were analyzed using Compound Discoverer 3.3 (CD3.3, Thermo
Fisher) for peak alignment, selection, and quantification of each metabolite. The metabolites
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were identified using the mzCloud, HMDB, and LipidMaps databases. Principal component
analysis (PCA) was employed to assess overall expression differences between groups
and the degree of variation within groups. A univariate analysis using t-tests was used
to determine statistical significance (p-value). Differential metabolites were defined as
those with a p-value < 0.05 and fold change ≥2 or ≤0.5. Using ggplot2 in the R language,
metabolites of interest were filtered using volcano plots based on log2 (fold change) and
−log10 (p-value).

2.11. Statistics Analysis

Data processing was conducted using Microsoft Excel 2019. Principal component
analysis (PCA) and Duncan’s multiple range tests (α = 0.05 level), along with Venn dia-
grams, volcano plots, radar charts, bar charts, and correlation analysis, were performed
using R package models (http://www.r-project.org/, 4 April 2024). Heatmap analysis of
the compound data was conducted using ImageGP tools (https://www.bic.ac.cn/BIC/#/,
5 May 2024).

3. Results
3.1. Color Changes in Different Potato Varieties After Cooking

The color of the five potato varieties changed significantly after cooking. The L*, a*,
and b* values all showed notable reductions after steaming and cooking, compared to their
untreated counterparts (Figure 1A–E). Specifically, the L* values (representing brightness)
significantly decreased post-cooking, with the reductions in ZS49 and SH3 being more
pronounced than in the other three cultivars (Figure 1B). While a* values (red/green) also
significantly decreased after cooking in four of the varieties, no significant differences were
found among them, except for ZS35 (Figure 1C). The b* values (yellow/blue) exhibited
inconsistent changes across the varieties after cooking, with all varieties except ZS27
showing significant decreases (Figure 1D). Finally, no significant differences in total color
difference (∆E) were observed between the boiled and steamed potato varieties (Figure 1E).

3.2. Differences in Starch Content, Amylose Content, and Starch Granule Size Among Varieties

1. Significant variations were observed in the starch content, amylose content, and starch
granule size across the different potato varieties. The starch granule size distribution
was characterized using d10, d50, and d90 values, representing the percentage of
granules smaller than specific size thresholds. The starch granule size ranges were
28.37–33.28 µm (d10), 41.82–48.76 µm (d50), and 62.57–70.64 µm (d90). D[4,3] refers
to the volume-weighted average particle size, while D[3,2] denotes the surface area-
weighted average diameter of the granules. A small difference between D[3,2] and
D[4,3] suggests a more regular particle shape and a concentrated size distribution.

2. As shown in Table 1, the potato varieties displayed notable differences in their starch
particle size distribution. ZS35 had the largest average particle size (D[4,3]: 50.71 µm;
D[3,2]: 46.34 µm) resulting in a smoother texture. In contrast, SH3 exhibited a smaller
average particle size (D[4,3]: 47.51 µm; D[3,2]: 43.08 µm) compared to the early-
ripening variety ZS35. These findings highlight the impact of starch granule size on
the textural properties of different potato varieties.

Table 1. Starch content, amylose content, and starch granule size of five potato varieties.

Variety Starch Content
(%)

Amylose Content
(%) d10/µm d50/µm d90/µm D[4,3]/µm D[3,2]/µm

ZS27 15.87 ± 1.15 ab 24.15 ± 4.28 b 29.71 ± 0.16 c 41.82 ± 0.18 e 62.54 ± 2.77 c 44.85 ± 1.40 c 40.8 ± 0.36 d

ZS49 21.71 ± 4.43 b 12.09 ± 1.18 a 31.67 ± 0.12 b 45.95 ± 0.09 b 66.98 ± 0.65 ab 48.11 ± 0.29 b 43.99 ± 0.17 b

ZS39 20.37 ± 1.16 b 20.39 ± 2.73 b 28.37 ± 0.19 d 42.46 ± 0.12 d 64.12 ± 1.52 bc 44.88 ± 0.58 c 40.26 ± 0.22 d

ZS35 11.84 ± 2.02 a 12.36 ± 1.08 a 33.28 ± 0.15 a 48.76 ± 0.06 a 70.64 ± 0.51 a 50.71 ± 0.11 a 46.34 ± 0.18 a

http://www.r-project.org/
https://www.bic.ac.cn/BIC/#/
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Table 1. Cont.

Variety Starch Content
(%)

Amylose Content
(%) d10/µm d50/µm d90/µm D[4,3]/µm D[3,2]/µm

SH3 11.90 ± 1.13 a 9.44 ± 1.18 a 31.59 ± 0.20 b 44.47 ± 0.40 c 66.22 ± 2.16 bc 47.51 ± 1.18 b 43.28 ± 0.57 c

Values are expressed as mean ± standard deviation (SD); n = 3. Different letters represent significant differences
in the results of different varieties at the p < 0.05 level.
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Figure 1. Analysis of color difference of five potato varieties. Morphological observation of different
cooking methods (A). L* value (B), a* value (C), b* value (D), and delta E value (E) of five potato
varieties that were cooked using different cooking methods were investigated, n = 3. Different letters
represent significant differences between different treatment and varieties at p < 0.05 level.

3.3. Starch Viscosity of Different Potato Varieties Showed Significant Differences

The gelatinization temperature is a critical factor in determining the gelatinization
properties of starch. Potato starch is characterized by its low gelatinization temperature and
rapid viscosity increase, but these properties vary significantly among different varieties.
In this study, SH3 exhibited the highest pasting temperature at 73.23 ◦C (Table 2), which
was significantly higher than that of ZS49, ZS39, and ZS35. Moreover, SH3 demonstrated
the longest peak viscosity time of 5.91 s. In contrast, ZS49 and ZS39 had the lowest pasting
temperatures at 70.75 ◦C, with ZS49 showing the shortest peak viscosity time of 4.71 s.

Starch viscosity is a key parameter in assessing the gelatinization properties of potato
tubers, playing an essential role in evaluating starch quality. A higher starch viscosity
typically indicates a softer, waxier texture, whereas a lower viscosity correlates with a
softer, sandier texture. Table 2 shows that SH3 had the highest starch viscosity at 2790
BU (Brabender Units), significantly surpassing ZS49, ZS39, and ZS35. In contrast, ZS49
exhibited the lowest starch viscosity at 1956.67 BU. These findings highlight the distinct
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differences in starch gelatinization and viscosity properties among potato varieties, which
can have important implications for their processing and culinary applications.

Table 2. Determination of starch viscosity of five potato varieties.

Variety Viscosity
Temperature/◦C Peak Viscosity/BU Final Viscosity/BU Breakdown

Viscosity/BU
Setback

Viscosity/BU
Peak Viscosity

Time/s

ZS27 73.22 ± 0.03 a 5286.33 ± 508.96 a 2657.67 ± 131.86 a 3024.67 ± 406 a 396 ± 29.82 ab 5 ± 0.12 bc

ZS49 70.75 ± 0.05 c 3932.67 ± 135.39 b 1956.67 ± 59.07 d 2296 ± 99.6 b 320 ± 35.79 b 4.71 ± 0.03 c

ZS39 70.75 ± 0 c 3611 ± 78.31 b 2335.67 ± 64.17 b 1697.33 ± 62.92 c 422 ± 45.18 a 5.02 ± 0.1 bc

ZS35 71.27 ± 0.49 b 4114 ± 271.09 b 2181.67 ± 22.23 c 2368 ± 312.5 b 435.67 ± 65.68 a 5.14 ± 0.42 b

SH3 73.23 ± 0.1 a 4145 ± 343.94 b 2790 ± 23.81 a 1833.67 ± 321.9 bc 478.67 ± 38.55 a 5.91 ± 0.14 a

Values are expressed as mean ± standard deviation (SD); n = 3. Different letters represent significant differences
in the results of different varieties at p < 0.05 level.

3.4. The Texture of the Tuber Changed Significantly After the Cooking Treatment

Cooking significantly impacted the texture of the potato tubers, reducing the hardness,
gumminess, and adhesiveness in all five potato varieties (Figure 2A,B,E). These reductions
suggest that both boiling and steaming soften the tuber structure, making them easier
to chew and less sticky. However, cohesiveness remained unaffected by the cooking
treatments, indicating that the internal structure of the tubers remained relatively stable in
this aspect (Figure 2C).
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Steaming led to a significant increase in springiness (Figure 2D), which implies that
the tubers became more elastic and resilient when steamed, enhancing their texture profile.
In contrast, boiling resulted in a marked decrease in chewability (Figure 2F), making the
tubers less resistant to chewing, likely due to the higher moisture content absorbed during
boiling, which softens the tuber structure more than steaming.

These results highlight how different cooking methods can influence specific textural
attributes of potato tubers, with steaming improving springiness and boiling leading to
softer, more chewable textures. This information is crucial for tailoring cooking methods to
achieve the desired texture qualities in various culinary applications.

3.5. Correlation Analysis of Starch and Texture-Related Traits

The relationship between starch properties and texture traits was evaluated through
a correlation analysis, which revealed significant associations. The amylose content was
found to positively correlate with boiling springiness (r = 0.9), peak viscosity (r = 0.51),
and raw springiness (r = 0.58), indicating that a higher amylose content contributes to
improved springiness in both raw and boiled potatoes as well as to an increase in peak
viscosity. However, the amylose content showed a strong negative correlation with peak
viscosity time and starch granule size (r = −0.76), suggesting that a higher amylose content
is associated with smaller granules and faster viscosity development.

The starch content demonstrated positive correlations with several texture traits,
including boiling chewiness (r = 0.81), raw hardness (r = 0.84), steaming hardness (r = 0.7),
steaming springiness (r = 0.74), boiling cohesiveness (r = 0.5), steaming adhesiveness
(r = 0.52), steaming chewiness (r = 0.57), and raw gumminess (r = 0.69). This suggests
that a higher starch content generally enhances texture properties, particularly in terms of
hardness, chewiness, and springiness across different cooking methods.

Viscosity parameters, such as viscosity temperature and final viscosity, were positively
correlated with setback viscosity (r = 0.49–0.71), peak viscosity time (r = 0.64–0.76), and
peak viscosity (r = 0.5–0.74), indicating that starch viscosity parameters are interrelated and
contribute to the overall gelatinization behavior of the tubers.

Additionally, boiling springiness and raw springiness were closely related to the amy-
lose content, while steaming springiness showed a strong connection to the starch content.
Boiling gumminess was positively correlated with starch particle size (r = 0.69–0.82), but
negatively correlated with the starch content (r = 0.54), suggesting that larger starch gran-
ules contribute to greater gumminess, whereas a higher starch content reduces gumminess
(Figure 3).

3.6. Analysis of Volatile Metabolites

The GC-MS analysis reveal a total of 122 volatile organic compounds (VOCs) in the SH3
and ZS49 potato tubers before and after boiling and steaming (Table S1), Among these, 42
were identified as differential metabolites (Table S2). These metabolites included 10 benzene
and substituted derivatives, 8 aldehydes, 6 alcohols, 4 ketones, 3 esters, 3 phenols, 2 alkanes,
and 6 other types of compounds, indicating a broad spectrum of volatile compounds
contributing to the potatoes’ flavor profiles.

The principal component analysis (PCA) revealed distinct differences between the
treatments, with the first principal component (PC1) accounting for 48.6% the variance
and the second component (PC2) explaining 17.6% of the variance (Figure 4B). The volatile
metabolites clustered into three groups based on their concentration changes with the
different treatments:

Group I included compounds like 2,4-heptadienal (E,E), 2,4-nonadienal (E,E), 1-
decanol, and 1-dodecanol, which were present in low concentrations in raw samples
but increased in both boiled and steamed samples. Those compounds may contribute to
the development of rich, cooked aromas.

Group II consisted of benzoic acid, formamide, N,N-dibutyl, methanone, diphenyl,
hexadecane, hexadecane-2-methyl, benzene ethanol, benzene methanol, and docosanoic
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acids. These metabolites were more abundant in raw samples but decreased significantly
after boiling and steaming, indicating they might be degraded or volatilized during cooking.

Group III featured metabolites such as indolizine, methanethiol, succinimide, ben-
zaldehyde, phenylacetaldehyde, 2-phenylpropenal, and 4-quinolinecarboxaldehyde. These
compounds were found at relatively high levels in raw and steamed samples but di-
minished after boiling (Figure 4C), suggesting that steaming preserves more of these
flavor-contributing volatiles.

When comparing SH3 to ZS49, SH3 exhibited a significant increase in specific volatile
compounds like 4-ethynylbiphenyl, benzaldehyde-3-hydroxy, benzoic acid, and hexane,
indicating that SH3 potatoes had a richer aroma profile (Table S3). This suggests that SH3
potatoes may be more aromatic after cooking, possibly due to the higher concentration of
aromatic aldehydes and hydrocarbons. These findings highlight how varietal differences
and cooking methods influence the volatile composition and sensory properties of potatoes.
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3.6. Analysis of Volatile Metabolites 
The GC-MS analysis reveal a total of 122 volatile organic compounds (VOCs) in the 
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Figure 3. Correlation analysis of relationship between starch content, granule size, starch viscosity,
and texture traits. Amylose: amylose content; Starch: starch content; BH: boiling hardness; BG: boiling
gumminess; BC: boiling cohesiveness; BS: boiling springiness; BA: boiling adhesiveness; BCH: boiling
chewiness; RH: raw hardness; RG: raw gumminess; RC: raw cohesiveness; RS: raw springiness;
RA: raw adhesiveness; RCH: raw chewiness; SH: steaming hardness; SG: steaming gumminess;
SC: steaming cohesiveness; SS: steaming springiness; SA: steaming adhesiveness; SCH: steaming
chewiness; VT: viscosity temperature; PV: peak viscosity; FV: final viscosity; BV: breakdown viscosity;
SV: setback viscosity; PVT: peak viscosity time; D4: D[4,3]; D3: D[3,2]. Purple indicates a positive
correlation, green indicates a negative correlation, and numerical values are correlation coefficient
values that are significant at the p < 0.05 level.
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show the average relative expression intensity of all volatile compounds, while red blocks show
metabolites that were upregulated and blue blocks show metabolites that were downregulated.

3.7. Non-Volatile Metabolite Analysis by LC-MS

To investigate the effects of cooking on the nonvolatile metabolites in potato tubers, an
untargeted metabolomics analysis was conducted using UHPLC-MS. The principal compo-
nent analysis (PCA) (Figure 5A) revealed significant differences between the treatments,
with ~56.2% of the variance explained by the first two principal components (PC1 and
PC2): PC1 accounted for 38.7% of the variance, separating the steamed samples, while PC2
explain 17.5%, distinguished the cooked samples. A total of 755 metabolites were identified
(Table S4), and 445 showed differential expression between the treatments (Table S5).

These metabolites were categorized into nine groups based on their chemical proper-
ties (Figure 5B): phenylpropanoids and polyketides (16); lipids and lipid-like molecules
(177); organic nitrogen compounds (8); organic oxygen compounds (30); organoheterocyclic
compounds (39); benzene ring compounds (22); nucleosides, nucleotides, and analogues
(49); organic acids and their derivatives (80); and others (24).

The cluster analysis revealed five main patterns of metabolite changes: Cluster I
(72 metabolites) had higher concentrations in raw and steamed samples and lower con-
centrations in cooked samples. This cluster was dominated by nucleotides and organic
acids (56.9%). The levels of Cluster II (92 metabolites) were high in raw samples but they
decreased significantly after steaming and cooking, with lipids and lipid-like molecules
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comprising 55.4% of the cluster. The levels of Cluster III (120 metabolites) were low in
raw and steamed samples but increased in cooked samples. Lipids, lipid-like molecules,
and organic acids represented 45% of this group. The levels of Cluster IV were relatively
high in steamed samples but low in raw and cooked samples. This cluster contained
nucleosides, nucleotides, and analogues, as well as organic acids and derived metabolites,
which accounted for 45% of the cluster. The levels of Cluster V (97 metabolites) were high
in steamed samples and low in raw and cooked samples, and included lipids, lipid-like
molecules, nucleosides, and nucleotides (45.4%) (Figure 5F). Among these, umami-related
compounds such as guanosine monophosphate and uridine monophosphate were low in
raw potatoes but they significantly increased after cooking (Table S5), enhancing the flavor
profile post-cooking.

 
Figure 5. Analysis of nonvolatile metabolites in potato tubers treated with different cooking meth-
ods. (A) PCA score plot illustrating independent experiment replicates of nonvolatile metabolites.
(B) Statistics of different metabolite categories. (C–E) Volcano plot visualization of different metabo-
lites in raw, steamed, and cooked potato tubers. Red spots represent upregulated metabolites
and green spots represent downregulated metabolites. (F) K-means cluster analysis for differen-
tial metabolites.
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Comparing the varieties SH3 and ZS49, 120 nonvolatile compounds were found to
differ significantly, with 32 being downregulated and 88 upregulated. SH3 had higher
levels of flavor- enhancing compounds such as D-glutamine, DL-glutamine, and gamma-
glutamyl glutamine, contributing to its richer taste (Table S6). Conversely, SH3 exhibited
lower concentrations of potentially harmful compounds like solanine and free aspartic acid
(a precursor to acrylamide), which were more abundant in ZS49 (Table S6).

4. Discussion

Potatoes are a globally cultivated crop and a vital part of the food supply. Starch,
the primary component of potato tubers, varies significantly in content and granule size
across different genotypes [15]. Variations in physiological and textural properties fur-
ther distinguish these genotypes [16–18]. Starch granules exhibit a wide diameter range
(5–85 µm), though their shapes are generally similar [19]. Differential scanning calorimetry
showed that the gelatinization transition temperature (69–74 ◦C) differs among different
tuber varieties. The amylose and gelatinization properties of potatoes surpass those of
wheat and sweet potatoes, emphasizing their potential in the food industry [20]. The amy-
lose content has been positively correlated with the resistant-starch content and inversely
with the glycemic index [21]. Cultivars with higher sensory mealiness scores tend to have
lower gelatinization temperatures and a higher amylose content, while potatoes with lower
mealiness scores exhibit larger cell sizes and thinner cell walls [22].

In this study, the amylose content was negatively correlated with peak viscosity time
and starch granule size (Figure 3), which is consistent with previous findings [22,23]. The
starch granule size significantly influences tuber texture: smaller granules contribute to
a denser, more uniform texture [23]. Among the varieties studied, ZS49 had the highest
starch content, while SH3 and ZS35 had a lower starch content. ZS35 also exhibited the
largest starch granules, followed by SH3 (Table 1).

Different cooking methods affect the taste and chemical composition of potatoes in
distinct ways. Cooking significantly reduced the hardness, gumminess, and adhesiveness
of potato tubers (Figure 2A,B,E). Steaming, in particular, increased springiness (Figure 2D),
while boiling significantly reduced chewability (Figure 2F). This indicates that boiling
and steaming impact springiness and chewability in opposite ways. Similar effects of
cooking have been observed in other root vegetables, such as carrots, where cooking
reduces brightness, redness, yellowness, and color saturation [24]. The chemical changes
induced by cooking enhance the sensory qualities of potatoes, improving their food safety,
taste, and texture [25,26]. For selenium-enriched potatoes, boiling is recommended over
frying to retain nutritional quality [27]. Additionally, a study comparing various cooking
methods—boiling, steaming, roasting, microwaving, frying, and air frying—on three potato
varieties found that steaming and microwaving were the most suitable for preserving the
nutritional content in Zhongshu 8 [28]. Despite significant differences in starch content
among the five potato varieties, the cooking treatments had a more pronounced effect on
texture than the varietal differences.

Metabolomic analysis was employed to investigate how different cooking methods
affect potato metabolites. Higher potato flavor ratings were linked to lower concentrations
of specific metabolites [29]. Jiang et al. [30] analyzed how baking and boiling influence
purple-fleshed sweet potato metabolites, including starch, soluble sugars, volatile organic
compounds, and nonvolatile metabolites. They identified 64 volatile organic compounds,
noting that cooking decreased aldehyde levels and increased terpene levels. Among the
871 nonvolatile metabolites, 83.5% remained unchanged post-cooking, with the most
significant changes occurring in amino acids, carbohydrates, and phenylpropanoids. In
orange-fleshed sweet potatoes (OFSPs), 593 metabolites were identified, with 82.5% re-
maining unchanged after cooking. Cooking decreased the starch content from 18.15% to
7%, while increasing the soluble sugar content from 11.78% to 39.33% [30]. The carotenoid
content decreased by 7–23% depending on the cooking method, with steaming and mi-
crowaving being more effective at retaining health-promoting metabolites [30]. Other
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studies on fresh-cut sweet potatoes showed significant differences in phenylpropanoid
biosynthesis, polyphenol oxidase (PPO), and peroxidase (POD) pathways among different
varieties [31]. Tian et al. [32] similarly found that steaming and microwaving retained more
beneficial metabolites in raw potatoes compared to boiling or frying.

LC-MS analysis revealed that cooking increased the content of health-related com-
pounds like chlorogenic acid and rutin [33]. A study on flavor changes in various steamed
potato varieties identified 63 volatile compounds, including 27 aldehydes, 14 alcohols,
12 ketones, 4 esters, 2 furans, and 1 acid, with esters, furans, and acids having the most
significant impact on taste [34]. Fresh-cut potato shreds contained the highest levels of
alkanes, followed by alcohols, aldehydes, esters, furans, and quinones. Most volatile
components, except for hexane, 1,3-hexadiene, and 1,6-octadiene, were reduced several-
fold after cooking [11]. While multiple indicators are typically used to assess the effect
of different cooking methods, few studies have reported the total changes in metabolite
content and composition in potatoes after cooking. Interestingly, no significant differences
in volatile metabolites were observed between raw and steamed potato samples, indicating
that steaming may help retain volatile compounds better (Figure 4B).

5. Conclusions

The results showed that cooking significantly reduced the L*, a*, and b* values in the
five potato varieties, leading to marked changes in color. For browning-resistant varieties,
this reduction represented a deterioration in color, while for browning-sensitive varieties, it
indicated an improvement. The texture analysis indicated that cooking softened the tubers,
with boiling notably decreasing chewiness, while steaming enhanced tuber springiness. The
starch content, composition, granule size, and viscosity demonstrated varying correlations
with texture properties after cooking.

The metabolomic analysis of SH3 and ZS49 tubers identified 445 significantly different
nonvolatile metabolites using UHPLC-MS/MS and 42 significant volatile metabolites using
GC-MS. SH3 had a notably higher glutamine content in the aroma-related compounds
compared to ZS49, with this difference further increasing after cooking. Additionally, SH3
and ZS27 were found to be more suitable for boiling treatments due to their starch and
texture properties, while ZS49 and ZS39 were better suited for steaming.

This study provides a comprehensive assessment of how boiling and steaming affect
the color, texture, and metabolite profiles of potato tubers, offering valuable insights into
the metabolic mechanisms driving changes in potato tuber quality and texture during
cooking. These findings contribute to optimizing cooking methods for specific potato
varieties, facilitating improved sensory and nutritional qualities in both culinary and
industrial applications.
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accumulated nonvolatile metabolites between ZS49 and SH3.
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