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Abstract: Nitrite hazard is an important food safety issue in the production process of Chinese
Northeastern sauerkraut, but this nitrite can be eliminated through microbial enzymatic degradation
and acidic degradation as fermentation progresses. Therefore, analyzing the microbial diversity that
dominates nitrite degradation in Chinese Northeastern sauerkraut can provide a reference for its
safe production. In this study, based on the dynamic monitoring of nitrite concentration, pH, and
the abundance of nitrite reductase genes (nirK and nirS) and the application of high-throughput
sequencing technology and various statistical analysis methods, the microbial groups associated with
nitrite enzymatic degradation and acidic degradation in Northeast sauerkraut fermentation broth
were analyzed. During the nitrite peak period of Northeast sauerkraut fermentation broth, the nitrite
concentration reached 32.15 mg/kg, the pH was 4.7, and the abundances of the nitrite reductase
genes nirK and nirS were 3.0 × 104 and 4.9 × 104 copies/µL, respectively. At this stage, nitrite degra-
dation was likely dominated by enzymatic activities. Microbial phyla such as Bacteroidetes (38.8%),
Proteobacteria (19.2%), and the archaeal phylum Euryarchaeota (1.1%) showed strong correlations with
nitrite. Among the genera within these three phyla, Chryseobacterium, Elizabethkingia, and Aeromonas
exhibited significant differences in abundance compared to the late fermentation stage and were iden-
tified as the primary microbial groups likely driving the enzymatic degradation. During the nitrite
degradation period, the nitrite concentration decreased to 0.04 mg/kg, the pH dropped to 3.6, and
the abundances of nirK and nirS genes were reduced to 1.0 × 103 copies/µL. At this stage, the nitrite
degradation was primarily driven by acid activity. The bacterial phylum Firmicutes (99%) exhibited a
strong correlation with pH. Within this phylum, the genus Lactobacillus, which showed significant
differences in abundance compared to the early fermentation stage, was identified as the primary
microbial group indirectly contributing to acidic degradation. This study provides guidance for the
isolation of food-grade prokaryotic microbial strains capable of nitrite degradation. Additionally,
the findings offer a methodological reference for conducting future research on nitrite-degrading
microorganisms in fermented vegetable broths.

Keywords: northeast sauerkraut; high-throughput sequencing; prokaryotic microorganisms; nitrite
enzymatic degradation; nitrite acidic degradation

1. Introduction

Paocai is a traditional Chinese fermented food with strong regional characteristics [1].
However, nitrite hazards often arise during fermentation. Nitrite in paocai is generated
through the microbial metabolism of residual nitrogen compounds in the vegetables, and
they are subsequently degraded and metabolized by microorganisms as fermentation pro-
gresses [2–5]. The microbial degradation of nitrite in paocai fermentation broth occurs via
two mechanisms: direct enzymatic degradation and indirect acidic degradation [6,7]. Enzy-
matic degradation involves biochemical reactions mediated by nitrite reductase enzymes
produced by microorganisms, while acidic degradation is a chemical reaction indirectly
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driven by the organic acid produced by lactic acid bacteria. The pH of the fermentation
broth serves as the boundary indicator distinguishing between these two mechanisms [6].
To date, studies on nitrite degradation in paocai have primarily focused on acidic degrada-
tion, and the lactic acid bacteria-based fermentation methods, derived from this theoretical
foundation, have already been applied in paocai production [2,8–10]. In contrast, research
on the enzymatic degradation of nitrites, directly mediated by microorganisms, remains
limited. Due to the abundance of lactic acid bacteria and their prominent role in inducing
acidic degradation, many researchers have assumed that lactic acid bacteria are also the
main microbial group responsible for the enzymatic degradation of nitrites [11]. How-
ever, when targeting the genes encoding nitrite reductase for functional gene retrieval
in microbial whole-genome databases, such as KEGG, NCBI, and Fungene, we found
that classic nitrite reductase genes or homologous genes with more than 30% similarity
were absent in the complete genome sequences of common lactic acid bacteria, including
Lactobacillus, Weissella, Lactococcus, Pediococcus, and Streptococcus. These research results
suggest that some unidentified non-lactic acid bacteria microorganisms may mediate a
self-degradation process of nitrite during the fermentation process of paocai through an
enzymatic degradation pathway, together with the nitrite acidic degradation pathway
dominated by lactic acid bacteria. Therefore, analyzing the microbial groups involved in
nitrite degradation during paocai fermentation—both lactic acid bacteria inducing acidic
degradation and non-lactic acid bacteria dominating enzymatic degradation—is crucial for
elucidating the microbial mechanisms of nitrite degradation and for controlling the nitrite
hazards in paocai production.

However, there are several challenges in studying the nitrite-degrading microorgani-
sms—how to identify and analyze the key microbial communities during the rapid micro-
bial community succession. Low-temperature fermentation can effectively slow down the
fermentation of microorganisms, and Chinese Northeast sauerkraut is a suitable model of
pickled vegetables that is fermented under low-temperature conditions and has a strong
regional characteristic. Northeast sauerkraut, a predominant type of pickled vegetable in
Northeast China, is prepared by anaerobically fermenting Chinese cabbage in low-salt brine
without any added condiments [12,13]. The process of preparing Northeast sauerkraut
involves a gradual decrease in pH and an extended fermentation duration. This unique
fermentation profile allows for distinct phases of enzymatic and acidic degradation, making
it a suitable model for studying microbial groups involved in both enzymatic degradation
and acidic degradation of nitrite in pickled vegetables. However, the absolute dominance
of lactic acid bacteria and the limitations in methodologies for studying non-lactic acid
bacteria present challenges for detecting the low-abundance non-lactic acid microbial
groups. The development of high-throughput sequencing technology offers a feasible
solution [14–18]. This culture-independent microbial technique elucidates the environ-
mental microbial diversity, community structure, and functional roles at the DNA level by
extracting the environmental microbial genomes [19–21]. Compared with the traditional
culture-dependent methods, high-throughput sequencing provides a more comprehensive
analysis of microbial communities and offers insights into culturable strains. Moreover,
high-throughput sequencing technology has been widely applied in the field of food mi-
crobiology [22–26]. Therefore, high-throughput sequencing provides robust support for
identifying and characterizing non-lactic acid bacterial groups that play critical roles in
nitrite enzymatic degradation.

This study integrates the dynamic monitoring of nitrite concentration, pH, and the
abundance of nitrite reductase genes (nirK and nirS) in the fermentation broth of Northeast
sauerkraut. High-throughput sequencing technology based on the Illumina platform was
employed to analyze the dynamic shifts in microbial community structure associated with
changes in nitrite concentration. Diverse statistical analysis methods were utilized to focus
on the differential analysis of microbial communities during the nitrite peak and decline
phases. By combining the annotation results with microbial whole-genome and functional
gene databases, the study identified key microbial groups associated with the enzymatic
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and acidic degradation of nitrite in the fermentation broth. The findings elucidate the nitrite
degradation process during Northeast sauerkraut fermentation and provide guidance for
isolating safe, food-grade microbial strains capable of nitrite degradation. Additionally, the
results offer a methodological reference for studying the nitrite-degrading microorganisms
in the fermentation broths of other types of pickled vegetables.

2. Materials and Methods
2.1. Preparation of Northeast Sauerkraut

Using a traditional pickling method, Chinese cabbage was blanched with boiling water
in an 80 L sterilized paocai jar and then fermented in a low-salt brine (2% NaCl) at 10 ◦C.
The experiment was conducted in triplicate. Each day, a disposable pipette was used to
randomly collect 2 mL of fermentation broth from three positions in the middle fermenta-
tion layer of each sauerkraut jar. The samples were pooled and centrifuged at 13,780× g for
1 min at 4 ◦C, yielding the supernatant and microbial pellet. The supernatant was immedi-
ately used to measure nitrite concentration and pH, while the microbial pellet was reserved
for genomic DNA extraction and stored at −80 ◦C for further use. The nitrite concentration
in the supernatant was measured using the N-(1-naphthyl)-ethylenediamine dihydrochlo-
ride spectrophotometric method [27]. The pH of the fermentation liquid was measured
using a pH meter (pHS-3TC; Shanghai Tianda Instrument Co., Ltd., Shanghai, China).

2.2. Extraction of Total DNA, qPCR, and High-Throughput Sequencing

Microbial genomic DNA was extracted on days 1, 3, 7, 9, 11, and 14. TE buffer (100 µL)
was added to the extracted DNA, and the mixture was gently shaken to dissolve the pellet.
Then, 10 µL of 0.5 M EDTA, 20 µL of 10 mg/mL lysozyme, and 5 µL of 1 mg/mL RNase
were added, and the mixture was gently shaken to mix. The sample was incubated in a
40 ◦C water bath for 30 min as part of the pretreatment process. The microbial genomic
DNA from sauerkraut fermentation broth was then extracted according to the instructions
provided with the Power Food Microbial DNA Isolation Kit (MoBio Laboratories Inc.,
Carlsbad, CA, USA).

Samples from the 7th and 14th days of fermentation were processed under the same
conditions to extract genomic DNA, following the same procedure. The genomic DNA
of Ochrobactrum anthropi JCM21032T (which harbors the nirK gene) and Denitratisoma
oestradiolicum JCM12830T (which harbors the nirS gene) were extracted. Using these as
templates, real-time quantitative PCR assays were established using primers for nirK
and nirS. These primers were used for the quantification of nirK and nirS genes in the
fermentation broth samples.

The extracted DNA from the samples was used as a template for PCR amplification
with universal primers for prokaryotes: 515F (5′-GTGYCAGCMGCCGCGGTA-3′) and
909R (5′-CCCCGYCAATTCMTTTRAGT-3′). Takara HS Taq enzyme was used for the PCR
amplification, and the reaction system was as follows: 2.5 µL Buffer, 2 µL Mg2+ (25 mmol/L),
2 µL dNTP, 0.5 µL each of primers F/R, 2.5 µL BSA (5 mg/mL), 0.1 µL Taq enzyme, 1 µL
DNA template, and ddH2O to a final volume of 25 µL. The reaction conditions were: 95 ◦C
for 5 min (pre-denaturation), followed by 30 cycles of 95 ◦C for 30 s (denaturation), 55 ◦C
for 30 s (annealing), and 72 ◦C for 40 s (extension). A final extension step was performed at
72 ◦C for 10 min. After amplification, PCR products were analyzed by gel electrophoresis
on a 1% agarose gel to check the amplification results. The PCR-amplified prokaryotic 16S
rDNA from different fermentation periods of sauerkraut fermentation broth was sent to
Beijing Novogene Bioinformatics Technology Co., Ltd. (Beijing, China) for high-throughput
sequencing. The data were then analyzed to assess the prokaryotic microbial community
structure in the sauerkraut fermentation broth.

2.3. Bioinformatic Analysis

To obtain more accurate and high-quality DNA sequence information, quality control
was performed on the raw high-throughput sequencing data. Chimera sequences were
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removed using the Mothur software (v1.30.2) [28]. For each obtained OTU (Operational
Taxonomic Unit), the species classification information was analyzed using the RDP clas-
sifier Bayesian algorithm at a 97% similarity level for the representative OTU sequences.
A dilution curve was constructed using Mothur software (v1.30.2). OTU clustering and
species classification were based on valid data, and basic analysis results of OTUs and
taxonomic profiles for the different DNA samples from sauerkraut fermentation broth at
different time points were obtained.

QIIME2 software was used to calculate the Chao1 index, Shannon index, and Simpson
index to analyze the abundance and diversity of the obtained OTUs [28,29]. The Chao1
index indicates that higher values reflect greater species richness in the community; the
Shannon and Simpson indices reflect the diversity and evenness of the community, re-
spectively. A higher Shannon index indicates greater community diversity, while a higher
Simpson index indicates higher evenness.

Species annotation was then performed, and statistical analysis of community structure
was conducted at various taxonomic levels. Based on the above data, a series of statistical
comparative analyses were performed, including OTU-based clustering analysis, Principal
Component Analysis (PCA), and phylogenetic tree analysis, to explore species composition
differences and evolutionary relationships between samples.

2.4. Statistical Analyses

The statistical analyses included LDA (Linear Discriminant Analysis) to identify
species with significant abundance differences between groups, where the length of the bar
in the LDA histogram represents the impact of the differential species (i.e., the LDA score).
PCA was performed to determine the similarity/differences in the community composi-
tion. Canonical Correlation Analysis (CCA) was used to evaluate the correlation between
samples and influencing factors, with smaller angles indicating a stronger correlation.

3. Results
3.1. Dynamic Changes in pH, Nitrite Concentration, Nitrite Reductase Genes, and Prokaryotic
Microbial Communities in Northeast Sauerkraut Fermentation Broth

During the fermentation of Northeast sauerkraut, the nitrite concentration and the
abundance of nitrite reductase genes (nirK and nirS) in the fermentation broth exhibited
a similar trend of first increasing and then decreasing, while the pH of the fermentation
broth showed a continuous decline (Figure 1). On day 7 of the fermentation, the nitrite
concentration in the fermentation broth significantly increased from the initial concentration
of 0.55 mg/kg to a peak concentration of 32.15 mg/kg (p < 0.05), surpassing the Chinese
national standard, which sets the limit at 20 mg/kg. At this point, the abundance of
nitrite reductase genes (nirK and nirS) also reached their peak values, 3.0 × 104 and
4.9 × 104 copies/µL, respectively, while the pH of the fermentation broth significantly
decreased from the initial value of 6.8 to 4.7 (p < 0.05). As the fermentation continued, the
nitrite concentration in the broth gradually decreased, significantly dropping to a level
close to the background value (0.06 mg/kg) by day 14 (p < 0.05). Meanwhile, the abundance
of nirK and nirS genes gradually decreased to 1.0 × 103 copies/µL, significantly lower than
the values during the nitrite peak period and the initial stage (p < 0.05). The pH continued
to decrease further, reaching approximately 3.6 by day 14.

High-throughput sequencing of the V4 region of the 16S rRNA gene of prokaryotic
microorganisms was performed on the Northeast sauerkraut fermentation broth samples
collected on days 1, 3, 7, 9, 11, and 14. The quality of the prepared sequencing libraries is
shown in Table 1. The number of valid sequences in all samples exceeded 50,000, and the
number of OTUs ranged from 66 to 115. Based on these OTU sequences, various indices
of the prokaryotic microbial community were calculated, and the results indicated that
the microbial communities in the fermentation broth at different stages of fermentation
exhibited distinct diversity, evenness, and species richness. Among these stages, the nitrite
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concentration peak period (day 7) exhibited the highest out number, Shannon index, Chao1
value, and ACE value.
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the fermentation broth.

Table 1. Summary of high-throughput DNA sequencing library average values of samples collected
from different days.

Sample
Name

Original Sequence
Number

Effective
Sequence Number

OTUs
Quantity

Shannon
Index

Simpson
Index Chao1 ACEs

1d 79,302 69,927 66 0.82 0.20 69.67 71.84
3d 75,814 57,123 99 2.07 0.68 104.00 103.74
7d 70,227 54,044 115 2.16 0.67 112.27 113.50
9d 89,421 62,491 81 2.04 0.67 79.00 79.36
11d 85,092 68,913 77 1.31 0.44 81.27 82.10
14d 93,839 82,678 80 1.26 0.40 81.56 90.74

The OTU sequences of the prokaryotic microbial communities in the constructed
libraries were annotated at the species level (Figure 2A). At the phylum level, the results
showed that during the initial stage of the fermentation of Northeast sauerkraut, the domi-
nant phylum in the fermentation broth was Firmicutes, with a relative abundance of 74.8%,
followed by Bacteroidetes (16.7%) and Proteobacteria (5.7%). As the nitrite concentration
increased to its peak (day 7), the relative abundance of Bacteroidetes and Proteobacteria rose
to 38.8% and 19.2%, respectively, while that of Firmicutes decreased to 36.8%, which was
no longer the dominant phylum. At the same time, the relative abundance of archaea,
specifically the Euryarchaeota phylum, increased from 0.1% at the initial stage to 1.1%,
making it the fourth most abundant prokaryotic phylum. As the fermentation continued,
the relative abundance of Firmicutes gradually increased. By day 14, when the nitrite con-
centration decreased to near-background levels, Firmicutes became the dominant phylum
again, with a relative abundance of 99.0%, while the total relative abundance of Bacteroidetes,
Proteobacteria, and Euryarchaeota was less than 1.0%.
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A Canonical Correspondence Analysis (CCA) was performed to analyze the prokary-
otic microbial community structure at different fermentation stages, the dominant phyla,
and factors such as pH and nitrite concentration (Figure 2B). The results indicated that the
prokaryotic microbial community structure at the nitrite concentration peak (day 7) was
strongly correlated with the nitrite concentration, and the relative abundance of bacterial
phyla such as Bacteroidetes, Actinobacteria, and Proteobacteria, as well as the archaeal phylum
Euryarchaeota, influenced this correlation (Figure 2B). During the nitrite concentration de-
cline period (day 14), the bacterial community structure was more strongly correlated with
the fermentation broth pH, and the relative abundance of Firmicutes affected this correlation.

Considering the factors such as nitrite concentration, pH, and nitrite reductase gene
concentration at the peak (day 7) and decline period (day 14), we hypothesize that during
the peak (day 7), nitrite degradation in the fermentation broth was primarily driven by
enzymatic degradation, while on day 14, acid degradation became the dominant process.
Therefore, based on statistical analysis, a systematic comparison of the prokaryotic micro-
bial communities during the nitrite peak and decline periods will help identify the key
microbial groups responsible for nitrite degradation via the enzymatic and acid processes
in Northeast sauerkraut fermentation.

3.2. Differential Analysis of Prokaryotic Microbial Communities in Northeast Sauerkraut
Fermentation Broth During the Nitrite Concentration Peak and Decline Periods

The quality of the high-throughput 16S rRNA V4 region libraries of prokaryotic
microbial communities in Northeast sauerkraut fermentation broth on days 7 and 14 is
shown in Table 2. Although a higher number of quality sequences were obtained from the
day 14 samples, the number of OTUs classified was lower compared to the day 7 samples.
The Shannon index, Chao1 value, and ACE value of the day 14 samples were all lower
than those of the day 7 samples. These results indicate that during the fermentation period,
when the nitrite concentration reaches its peak, the prokaryotic microbial community in
the fermentation broth exhibits higher species richness, and the community composition is
more diverse and uniform. In contrast, during the later stages of fermentation, when the
nitrite concentration returns to baseline levels, the prokaryotic microbial community in the
fermentation broth becomes more specialized, with dominant groups exhibiting a more
pronounced dominance.

Principal component analysis (PCA) based on the prokaryotic microbial OTU se-
quences (Figure 3) showed that during the nitrite concentration peak period (day 7), the
PCA distances between different replicates of the sauerkraut fermentation broth samples
varied considerably. In contrast, during the nitrite concentration decline period (day 14),
the PCA distances between different replicates of the fermentation samples were much
smaller. Additionally, after calculating the mean values for the samples from the two
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periods, the PCA distances were significantly different. This suggests that during the peak
nitrite concentration period, the succession of prokaryotic microbial communities in the
fermentation broth is highly random, with substantial differences in community composi-
tion. However, as the fermentation time increases, the succession of prokaryotic microbial
communities tends to become more consistent, with a marked reduction in the differences
between replicate samples and a clear contrast from the community composition observed
at the nitrite concentration peak period.

Table 2. Summary of high-throughput DNA sequencing library average values of samples collected
from 7th and 14th day.

Sample
Name

Original Sequence
Number

Effective
Sequence Number

OTUs
Quantity

Shannon
Index

Simpson
Index

Chao1
Index ACEs

7d 71,361 ± 1342 60,365 ± 864 93 ± 9 1.7 ± 0.2 0.5 ± 0.1 95.3 ± 2.6 96.4 ± 5.3
14d 89,451 ± 3211 71,361 ± 1034 79 ± 13 1.5 ± 0.1 0.5 + 0.1 80.6 ± 4.3 84.1 ± 2.7
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The species annotation of the prokaryotic microbial OTU sequences from the peak
(7d) and decline period (14d) of the nitrite concentration in the Northeast sauerkraut
fermentation broth was performed. A clustering heatmap was created based on the rel-
ative abundance of the top 15 dominant genera in both periods (Figure 4A), and Linear
Discriminant Analysis (LDA) score analysis was conducted to assess the differential im-
pacts on the prokaryotic microbial community structure in the two periods (Figure 4B).
The clustering heatmap results showed that during the nitrite concentration peak period,
the relative abundance of genera such as Weissella (Firmicutes), Leuconostoc (Firmicutes),
Lactococcus (Firmicutes), Aeromonas (Proteobacteria), Chryseobacterium (Bacteroidetes), Eliza-
bethkingia (Bacteroidetes), Sphingobacterium (Bacteroidetes), and Halobacterium (Euryarchaeota)
was higher compared to the nitrite degradation period. Among them, Elizabethkingia,
Aeromonas, Chryseobacterium, Lactococcus, and Weissella genera showed higher LDA scores,
representing prokaryotic microbial groups with significant differences in abundance in the
nitrite concentration peak period (7d). In contrast, during the nitrite decline period (14d),
Lactobacillus in the Firmicutes phylum was the only prokaryotic microbial group with higher
relative abundance compared to the peak period, and it had a higher LDA score, indicating
it was the prokaryotic microbial group with significant differences in abundance in the
nitrite decline period (14d). These results suggest that the microorganisms that dominate
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the microbial community structure during different fermentation periods are significantly
different, and as fermentation progresses, the microbial community structure gradually
becomes more uniform.
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4. Discussion

The nitrite degradation process in fermented foods can be divided into two stages:
acidic degradation and enzymatic degradation, a concept first proposed by Dodds et al.
(1984) in their study of smoked fermented foods [30]. In China, Zhang et al. (2002) simu-
lated the fermentation process using the MARs medium to study the acid and enzymatic
degradation of nitrite during vegetable pickling fermentation [31]. They proposed that a
pH of 4 serves as the boundary point between the two degradation stages, i.e., when the
pH of the fermentation liquid is below 4, nitrite degradation primarily occurs via acidic
degradation, and when the pH is above 4, microbial enzymatic degradation becomes the
dominant process [32]. The principle of nitrite acidic degradation is that the excess H+

produced by lactic acid bacteria in the fermentation liquid reacts with NO2
−, forming

unstable HNO2, which further decomposes into NO and NO2, thus releasing them and
thereby degrading the nitrite [6]. The principle of nitrite enzymatic degradation is that
microorganisms, under the action of nitrite reductase (Nir) encoded by the nirK or nirS
genes, use NO2

− as an electron acceptor, forming a respiratory chain to provide energy
for themselves, and reduce nitrite to NO, NO2, and N2, thus degrading nitrite [33]. In
this study, the abundance of nitrite reductase genes nirK and nirS in Northeast sauerkraut
fermentation broth reached its peak during the nitrite concentration peak period, indicating
the presence of a large number of microbial groups with nitrite reduction potential in the
fermentation broth during this period. Considering that the pH of the fermentation broth
was 4.8 at this time, we believe that during the nitrite peak period, the degradation of nitrite
in the Northeast sauerkraut fermentation broth may primarily occur through microbial
enzymatic degradation. However, during the nitrite decline period, when the pH of the
fermentation liquid dropped to 3.8, the abundance of nirK and nirS genes decreased to
background levels; these results suggest that the microbial groups with nitrite reduction
potential, i.e., the enzymatic degradation microorganisms, gradually disappeared. With
the acidic degradation becoming the dominant nitrite control pathway, the nitrite hazard
of the Northeast sauerkraut tested was truly controlled. Therefore, the pickled Northeast
sauerkraut must be sufficiently pickled for about 15 days; that is, when it is completely in
the nitrite acidic degradation stage dominated by lactic acid bacteria, it is the actual safe
period for consumption.

To further compare and analyze the microbial communities during the nitrite peak
and decline periods, we identified several prokaryotic genera with significant abundance
differences in the phyla Bacteroidetes, Proteobacteria, and Euryarchaeota (the latter being
Archaea), including Aeromonas (Proteobacteria); Chryseobacterium, Elizabethkingia, and Sphin-
gobacterium (Bacteroidetes); and Halobacterium (Euryarchaeota). We conducted genome-wide
and functional gene (nirK and nirS) sequence searches for these genera in the NCBI, KEGG,
and Fungene databases and found that Aeromonas, Chryseobacterium, and Halobacterium
have all been reported to possess the nirK gene [34]. Therefore, these three prokaryotic
genera may be the primary microbial groups responsible for nitrite enzymatic degradation
in the Northeast sauerkraut fermentation broth. Recently, the Chinese paocai industry
is promoting the “shallow fermentation” strategy, which means delaying the speed of
acidification of the fermentation liquid. This makes the nitrite enzymatic degradation,
which has a very short action time, even more important. However, the strains of the key
genera in Aeromonas and Chryseobacterium identified in this study may have conditional
pathogenicity characteristics, making it difficult to apply them in practical production. It
is worth noting that Halobacterium, a haloarchaea, is introduced into the Chinese paocai
fermentation system along with salt. Considering the characteristic of haloarchaea that they
are extremely prone to absorbing water and swelling to death in low-salt or salt-free liquids,
they may be a potentially useful microbial group that can control the nitrite harm through
the enzymatic degradation combined with “shallow fermentation” of Chinese paocai.
Meanwhile, compared with the haloarchaea dominated by nitrite enzymatic degradation
reported previously [33], the haloarchaea detected in this study should be some special
groups that are resistant to low salt, and these groups deserve attention in future research.
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Detecting the microbial composition at different stages of Northeast sauerkraut fer-
mentation is key to identifying the functional microbes responsible for nitrite degrada-
tion. Traditional detection methods are primarily culture-based [35–37]; however, they
are limited by the number of culturable microorganisms and often underestimate the
microbial diversity in the sauerkraut fermentation system due to competition inhibition
and the selectivity of culture media [38]. With the continuous development of molecular
technologies, early uncultured detection techniques such as clone library methods, de-
naturing/temperature gradient gel electrophoresis (DGGE/TGGE), terminal restriction
fragment length polymorphism (T-RFLP), and real-time quantitative PCR (Q-PCR) have
emerged [39–43]. These methods reflect the ecological diversity of microbial communities
in sauerkraut fermentation systems at the molecular level. However, the early molecular
ecological techniques have limitations, such as an inability to simultaneously perform
qualitative and quantitative analysis, low throughput for diversity studies, and limited
detection of microbial abundance. The application of these methods in studying the com-
plex microbial groups in sauerkraut fermentation systems is not comprehensive and may
overlook certain microbial groups with low abundance that could play important roles.
For example, in this study, the archaea Halobacterium (Euryarchaeota) with nitrite reductase
genes has an abundance of <0.1%. The development of next-generation sequencing tech-
nologies based on the Illumina platform provides strong technical support for detecting
complex microbial systems in sauerkraut [44,45]. This technology enables comprehensive
detection of all microbial DNA sequences in the sample’s complex environment, analyzing
the diversity and abundance of microbial populations, and more accurately inferring the
composition of microbial communities throughout the fermentation process [46–48]. Com-
bined with the verification of relevant functional genes and physicochemical properties,
this approach can guide the cultivation of potential functional microorganisms for subse-
quent research [49]. In this study, we utilized Illumina-based high-throughput sequencing
technology to sequence sauerkraut fermentation samples at different time points to define
the microbial community structure at each stage. By correlating the abundance of nirK and
nirS functional genes with the dynamic changes in nitrite levels, we conduct a detailed
analysis of the nitrite degradation mechanisms and related functional microorganisms in
Northeast sauerkraut fermentation.

5. Conclusions

During the fermentation process of the tested Northeast sauerkraut, the microbial
community structure of the fermentation liquid underwent continuous succession, accom-
panied by the initial increase and subsequent decrease in nitrite content and the abundance
of nitrite reductase genes along with the ongoing decline in pH. During the nitrite peak
period of the tested Northeast sauerkraut fermentation, the pH of the fermentation liquid
was >4.0, and the abundance of the nitrite reductase genes nirK and nirS reached their peak.
At this stage, the nitrite degradation in the fermentation broth was likely dominated by
microbial enzyme degradation. The bacteria Aeromonas (Proteobacteria) and Chryseobacterium
and Elizabethkingia (Bacteroidetes) exhibited significant differences in abundance compared
to the nitrite drop period and likely possessed the nitrite reductase gene nirK, making
them potential microbial groups responsible for nitrite enzyme degradation during the
fermentation process of Northeast sauerkraut. During the nitrite drop period of the tested
Northeast sauerkraut fermentation, the pH of the fermentation liquid was <4.0, and the
abundance of nitrite reductase genes nirK and nirS decreased to levels below the initial
values. At this stage, nitrite degradation in the fermentation liquid was primarily driven
by microbial-mediated acid degradation. The bacterium Lactobacillus (Firmicutes), which
exhibited significant differences in abundance compared to the nitrite peak period, is there-
fore identified as the primary microbial group responsible for the acid-mediated nitrite
degradation during the fermentation process of Northeast sauerkraut.
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