Different Sources of Omega-3 Fatty Acid Supplementation vs. Blood Lipid Profiles—A Study on a Rat Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Scheme of the Experiment
2.2. Supplements
2.3. Blood Sampling and Analyses
2.4. Body Weight Control
2.5. Statistical Analysis
3. Results
3.1. Body Weight
3.2. Triglyceride Content
3.3. Total Cholesterol Content
3.4. Low-Density Lipoprotein Cholesterol Content
3.5. High-Density Lipoprotein Cholesterol Content
4. Discussion
4.1. Body Weight
4.2. Blood Lipid Profile
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sepidarkish, M.; Morvaridzadeh, M.; Akbari-Fakhrabadi, M.; Almasi-Hashiani, A.; Rezaeinejad, M.; Heshmati, J. Effect of omega-3 fatty acid plus vitamin E Co-Supplementation on lipid profile: A systematic review and meta-analysis. Diabetol. Metab. Syndr. 2019, 13, 1649–1656. [Google Scholar] [CrossRef] [PubMed]
- Hadi, A.; Askarpour, M.; Salamat, S.; Ghaedi, E.; Symonds, M.E.; Miraghajani, M. Effect of flaxseed supplementation on lipid profile: An updated systematic review and dose-response meta-analysis of sixty-two randomized controlled trials. Pharmacol. Res. 2020, 152, 104622. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, T.A.; Maki, K.C.; Orringer, C.E.; Jones, P.H.; Kris-Etherton, P.; Sikand, G.; La Forge, R.; Daniels, S.R.; Wilson, D.P.; Morris, P.B.; et al. NLA Expert Panel. National Lipid Association Recommendations for Patient-Centered Management of Dyslipidemia: Part 2. J. Clin. Lipidol. 2015, 9 (Suppl. S6), S1–S122.e1. [Google Scholar] [CrossRef] [PubMed]
- Haimeur, A.; Meskini, N.; Mimouni, V.; Ulmann, L.; Messaouri, H.; Pineau-Vincent, F.; Abouakil, N.; Tremblin, G. A comparative study on the effect of argan oil versus fish oil on risk factors for cardio-vascular disease in high-fat-fed rats. Nutrition 2019, 57, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Kontostathi, M.; Isou, S.; Mostratos, D.; Vasdekis, V.; Demertzis, N.; Kourounakis, A.; Vitsos, A.; Kyriazi, M.; Melissos, D.; Tsitouris, C.; et al. Influence of Omega-3 Fatty Acid-Rich Fish Oils on Hyperlipidemia: Effect of Eel, Sardine, Trout, and Cod Oils on Hyperlipidemic Mice. J. Med. Food. 2021, 24, 749–755. [Google Scholar] [CrossRef]
- Sahebkar, A.; Serban, M.C.; Gluba-Brzózka, A.; Mikhailidis, D.P.; Cicero, A.F.; Rysz, J.; Banach, M. Lipid-modifying effects of nutraceuticals: An evidence-based approach. Nutrition 2016, 32, 1179–1192. [Google Scholar] [CrossRef]
- Kota, S.K.; Jammula, S.; Kota, S.K.; Krishna, S.V.; Meher, L.K.; Rao, E.S.; Modi, K.D. Nutraceuticals in dyslipidemia management. J. Med. Nutr. Nutraceuticals 2013, 2, 26–40. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, C.; Li, S.; Yu, L.; Tian, F.; Zhao, J.; Zhang, H.; Chen, W.; Zhai, Q. Effects of Probiotic Supplementation on Dyslipidemia in Type 2 Diabetes Mellitus: A Meta-Analysis of Randomized Controlled Trials. Foods 2020, 9, 1540. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.S. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance—A review. Life Sci. 2018, 203, 255–267. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: Nutritional implications for chronic diseases. Biomed. Pharm. 2006, 60, 502–507. [Google Scholar] [CrossRef]
- Zárate, R.; el Jaber-Vazdekis, N.; Tejera, N.; Pérez, J.A.; Rodríguez, C. Significance of long chain polyunsaturated fatty acids in human health. Clin. Transl. Med. 2017, 6, 25. [Google Scholar] [CrossRef]
- Urlić, M.; Urlić, I.; Urlić, H.; Mašek, T.; Benzon, B.; Vitlov Uljević, M.; Vukojević, K.; Filipović, N. Effects of Different n6/n3 PUFAs Dietary Ratio on Cardiac Diabetic Neuropathy. Nutrients 2020, 12, 2761. [Google Scholar] [CrossRef] [PubMed]
- Draycott, S.A.V.; Elmes, M.J.; Muhlhausler, B.S.; Langley-Evans, S. Omega-6: Omega-3 Fatty Acid Ratio and Total Fat Content of the Maternal Diet Alter Offspring Growth and Fat Deposition in the Rat. Nutrients 2020, 12, 2505. [Google Scholar] [CrossRef] [PubMed]
- Campos, J.R.; Severino, P.; Ferreira, C.S.; Zielinska, A.; Santini, A.; Souto, S.B.; Souto, E.B. Linseed Essential Oil—Source of Lipids as Active Ingredients for Pharmaceuticals and Nutraceuticals. Curr. Med. Chem. 2019, 26, 4537–4558. [Google Scholar] [CrossRef] [PubMed]
- Bekhit, A.E.D.A.; Shavandi, A.; Jodjaja, T.; Birch, J.; Teh, S.; Ahmed, I.A.M.A.; Al-Juhaimi, F.Y.; Saeedi, P.; Bekhit, A.A. Flaxseed: Composition, detoxification, utilization, and opportunities. Biocatal. Agric. Biotechnol. 2018, 13, 129–152. [Google Scholar] [CrossRef]
- Sokoła-Wysoczańska, E.; Wysoczański, T.; Czyż, K.; Vogt, A.; Patkowska-Sokoła, B.; Sokoła, K.; Bodkowski, R.; Wyrostek, A.; Roman, K. Characteristics of polyunsaturated fatty acids ethyl esters from of high alpha-linolenic acid content as a component of biologically active health promoting supplements. Przem. Chem. 2014, 93, 1923–1927. [Google Scholar]
- Czyż, K.; Sokoła-Wysoczańska, E.; Bodkowski, R.; Cholewińska, P.; Wyrostek, A. Dietary omega-3 source effect on the fatty acid profile of intramuscular and perimuscular fat—Preliminary study on a rat model. Nutrients 2020, 12, 3382. [Google Scholar] [CrossRef] [PubMed]
- Czyż, K.; Sokoła-Wysoczańska, E.; Wyrostek, A.; Cholewińska, P. An attempt to enrich pig meat with omega-3 fatty acids using linseed oil ethyl ester diet supplement. Agriculture 2021, 11, 365. [Google Scholar]
- Nordoy, A.; Barstad, L.; Connor, W.E.; Hatcher, L. Absorption of the n − 3 eicosapentaenoic and docosahexaenoic acids as ethyl esters and triglycerides by humans. Am. J. Clin. Nutr. 1991, 53, 1185–1190. [Google Scholar] [CrossRef]
- Patkowska-Sokoła, B.; Czyż, K.; Sokoła-Wysoczańska, E.; Wysoczański, T.; Bodkowski, R.; Vogt, A. The use of polyunsaturated fatty acids ethyl esters from omega-3 group as raw material for fodder industry. Przem. Chem. 2014, 93, 799–802. [Google Scholar]
- Juszczyk, P.; Rymowicz, W.; Kita, A.; Rywińska, A. Biomass production by Yarrowia lipolytica yeast using waste derived from the production of ethyl esters of polyunsaturated fatty acids of flaxseed oil. Ind. Crops Prod. 2019, 138, 111590. [Google Scholar] [CrossRef]
- Sokoła-Wysoczańska, E.; Wysoczański, T.; Czyż, K.; Patkowska-Sokoła, B.; Vogt, A.; Bodkowski, R.; Wyrostek, A. Effect of linseed oil and ethyl esters of the oil-derived fatty acids on the morphology and proliferation rate of human adipose-derived stromal cells. Przem. Chem. 2014, 93, 1742–1745. [Google Scholar]
- Yashodhara, B.M.; Umakanth, S.; Pappachan, J.M.; Bhat, S.K.; Kamath, R.; Choo, B.H. Omega-3 fatty acids: A comprehensive review of their role in health and disease. Postgrad. Med. J. 2009, 85, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Bays, H. Clinical overview of Omacor: A concentrated formulation of omega-3 polyunsaturated fatty acids. Am. J. Cardiol. 2006, 98, 71i–76i. [Google Scholar] [CrossRef] [PubMed]
- Myhre, A.M.; Carlsen, M.H.; Bøhn, S.K.; Wold, H.L.; Laake, P.; Blomhoff, R. Water-miscible, emulsified, and solid forms of retinol supplements are more toxic than oil-based preparations. Am. J. Clin. Nutr. 2003, 78, 1152–1159. [Google Scholar] [CrossRef] [PubMed]
- Kołodziej, H.; Vogt, A.; Strzelecki, S.; Steinmetz, G. Method of Manufacturing the Ethyl or Methyl Esters of Higher Fatty Acids and the Installation to Execute this Method. Polish Patent PL211325, 31 May 2012. [Google Scholar]
- Majewski, M.; Ognik, K.; Juśkiewicz, J. The antioxidant status, lipid profile, and modulation of vascular function by fish oil supplementation in nano-copper and copper carbonate fed Wistar rats. J. Funct. Foods 2020, 64, 103595. [Google Scholar] [CrossRef]
- Dias, B.V.; Gomes, S.V.; Castro, M.L.D.C.; Carvalho, L.C.F.; Breguez, G.S.; de Souza, D.M.S.; Ramos, C.O.; Sant’Ana, M.R.; Nakandakari, S.C.B.R.; Araujo, C.M.; et al. EPA/DHA and linseed oil have different effects on liver and adipose tissue in rats fed with a high-fat diet. Prostaglandins Other Lipid Mediat. 2022, 159, 106622. [Google Scholar] [CrossRef]
- Seliem, E.; Azab, M.; Ismaila, R.; Nafeaa, A. Linseed oil supplementation improves altered lipid metabolism and insulin resistance in induced obese rats. Benha Vet. Med. J. 2022, 41, 73–78. [Google Scholar] [CrossRef]
- Hill, J.O.; Melanson, E.L.; Wyatt, H.T. Dietary fat intake and regulation of energy balance: Implications for obesity. J. Nutr. 2000, 130 (Suppl. S2), 284S–288S. [Google Scholar] [CrossRef]
- Bashir, S.; Sharma, Y.; Jairajpuri, D.; Rashid, F.; Nematullah, M.; Khan, F. Alteration of adipose tissue immune cell milieu towards the suppression of inflammation in high fat diet fed mice by flaxseed oil supplementation. PLoS ONE 2019, 14, e0223070. [Google Scholar] [CrossRef]
- Chiu, C.Y.; Wang, L.P.; Liu, S.H.; Chiang, M.T. Fish Oil Supplementation Alleviates the Altered Lipid Homeostasis in Blood, Liver, and Adipose Tissues in High-Fat Diet-Fed Rats. J. Agric. Food Chem. 2018, 66, 4118–4128. [Google Scholar] [CrossRef] [PubMed]
- Vijaimohan, K.; Jainu, M.; Sabitha, K.E.; Subramaniyam, S.; Anandhan, C.; Shyamala Devi, C.S. Beneficial effects of alpha linolenic acid rich flaxseed oil on growth performance and hepatic cholesterol metabolism in high fat diet fed rats. Life Sci. 2006, 79, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Baranowski, M.; Enns, J.; Blewett, H.; Yakandawala, U.; Zahradka, P.; Taylor, C.G. Dietary flaxseed oil reduces adipocyte size, adipose monocyte chemoattractant protein-1 levels and T-cell infiltration in obese, insulin-resistant rats. Cytokine 2012, 59, 382–391. [Google Scholar] [CrossRef]
- Han, H.; Yan, P.; Chen, L.; Luo, C.; Gao, H.; Deng, Q.; Zheng, M.; Shi, Y.; Liu, L. Dietary flaxseed oil improved western-type diet-induced atherosclerosis in apolipoprotein-E knockout mice. J. Funct. Foods 2018, 40, 417–425. [Google Scholar] [CrossRef]
- Gomes, S.V.; Dias, B.V.; Pereira, R.R.; de Pádua Lúcio, K.; Soares de Souza, D.M.; Talvani, A.; Brandão, G.C.; Cosenza, G.P.; de Queiroz, K.B.; Costa, D.C. Different source of commercial vegetable oils may regulate metabolic, inflammatory and redox status in healthy rats. J. Funct. Foods 2020, 66, 103780. [Google Scholar] [CrossRef]
- Aloufi, B.H. Hypocholesterolemic Effects of Cold and Hot-pressed linseed oil in A Wistar Rat Model. Asian J. Biol. Life Sci. 2017, 6, 422–426. [Google Scholar]
- Shahidi, S.; Mahmoodi, M.S.; Komaki, A.; Sadeghian, R. The comparison of omega-3 and flaxseed oil on serum lipids and lipoproteins in hyperlipidemic male rats. Heliyon 2022, 8, e09662. [Google Scholar] [CrossRef]
- Elimam, H.; Ramadan, B.K. Comparative Study of the Possible Prophylactic and Curative Effects of Flaxseed Oil on the Lipid Profile and Antioxidant Status of Hyperlipidaemic Rats. J. Appl. Pharm. 2018, 10, 257. [Google Scholar] [CrossRef]
- Murase, T.; Aoki, M.; Tokimitsu, I. Supplementation with alpha-linolenic acid-rich diacylglycerol suppresses fatty liver formation accompanied by an up-regulation of beta-oxidation in Zucker fatty rats. Biochim. Biophys. Acta 2005, 1733, 224–231. [Google Scholar] [CrossRef]
- Yue, H.; Qiu, B.; Jia, M.; Liu, W.; Guo, X.; Li, N.; Xu, Z.; Du, F.; Xu, T.; Li, D. Effects of α-linolenic acid intake on blood lipid profiles: A systematic review and meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2021, 61, 2894–2910. [Google Scholar] [CrossRef]
- Han, H.; Yan, P.; Chen, L.; Luo, C.; Gao, H.; Deng, Q.; Zheng, M.; Shi, Y.; Liu, L. Flaxseed oil containing-linolenic acid ester of plant sterol improved atherosclerosis in apoe deficient mice. Oxidative Med. Cell. Longev. 2015, 2015, 958217. [Google Scholar] [CrossRef] [PubMed]
- Bornfeldt, K.E. Triglyceride lowering by omega-3 fatty acids: A mechanism mediated by N-acyl taurines. J. Clin. Investig. 2021, 131, e147558. [Google Scholar] [CrossRef] [PubMed]
- Clarke, S.D. Polyunsaturated fatty acid regulation of gene transcription: A molecular mechanism to improve the metabolic syndrome. J. Nutr. 2001, 131, 1129–1132. [Google Scholar] [CrossRef]
- Price, P.T.; Nelson, C.M.; Clarke, S.D. Omega-3 polyunsaturated fatty acid regulation of gene expression. Curr. Opin. Lipidol. 2000, 11, 3–7. [Google Scholar] [CrossRef]
- Davidson, M.H. Mechanisms for the hypotriglyceridemic effect of marine omega-3 fatty acids. Am. J. Cardiol. 2006, 98, 27i–33i. [Google Scholar] [CrossRef] [PubMed]
- Zuliani, G.; Galvani, M.; Leitersdorf, E.; Volpato, S.; Cavalieri, M.; Fellin, R. The Role of Polyunsaturated Fatty Acids (PUFA) in the Treatment of Dyslipidemias. Curr. Pharm. Des. 2009, 15, 4087–4093. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Kothapalli, K.S.; Brenna, J.T. Desaturase and elongase-limiting endogenous long-chain polyunsaturated fatty acid biosynthesis. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 103–110. [Google Scholar] [CrossRef]
- Kaur, N.; Chugh, V.; Gupta, A.K. Essential fatty acids as functional components of foods—A review. J. Food Sci. Technol. 2014, 51, 2289–2303. [Google Scholar] [CrossRef]
- Takic, M.; Pokimica, B.; Petrovic-Oggiano, G.; Popovic, T. Effects of Dietary α-Linolenic Acid Treatment and the Efficiency of Its Conversion to Eicosapentaenoic and Docosahexaenoic Acids in Obesity and Related Diseases. Molecules 2022, 27, 4471. [Google Scholar] [CrossRef]
Diet | Supplementation Weeks 5–12 | ||
---|---|---|---|
Group | Weeks 1–4 | Weeks 5–12 | |
C | control | control | - |
C-H | high-fat | high-fat | - |
C-H-C | high-fat | control | - |
LO-H | high-fat | high-fat | Linseed oil |
EE-H | high-fat | high-fat | Ethyl esters |
FO-H | high-fat | high-fat | Fish oil |
LO-H-C | high-fat | control | Linseed oil |
EE-H-C | high-fat | control | Ethyl esters |
FO-H-C | high-fat | control | Fish oil |
Acid | LO | EEs | FO |
---|---|---|---|
palmitic acid (C16:0) | 4.37 | 4.44 | 11.36 |
stearic acid (C18:0) | 3.79 | 3.43 | 2.68 |
oleic acid (C18:1) | 16.41 | 16.73 | 23.95 |
linoleic acid (C18:2) | 16.24 | 16.68 | 1.43 |
linolenic acid (C18:3) | 56.29 | 58.71 | − |
eicosapentaenoic acid (C20:5) | − | − | 8.13 |
docosahexaenoic acid (C22:6) | − | − | 9.87 |
Group | Body Weight (g) | ||
---|---|---|---|
Beginning | Final | Gains | |
C | 380.50 ± 9.23 | 576.13 ± 29.57 c,d | 195.63 ± 23.05 c |
C-H | 383.75 ± 16.59 | 627.13 ± 36.91 a,b | 243.38 ± 38.57 a,b |
C-H-C | 380.00 ± 15.32 | 556.88 ± 24.47 d | 176.88 ± 27.37 c |
LO-H | 382.88 ± 27.30 | 579.50 ± 57.36 c,d | 196.63 ± 60.78 c |
EE-H | 377.25 ± 17.49 | 599.38 ± 27.93 a,b,c | 222.13 ± 41.41 a,b,c |
FO-H | 381.50 ± 16.20 | 634.88 ± 38.51 a | 253.38 ± 45.37 a |
LO-H-C | 382.34 ± 19.10 | 591.25 ± 47.28 b,c,d | 208.91 ± 37.91 b,c |
EE-H-C | 379.38 ± 12.70 | 569.38 ± 26.31 c,d | 190.00 ± 33.31 c |
FO-H-C | 384.38 ± 14.24 | 593.75 ± 30.23 b,c,d | 209.38 ± 42.37 b,c |
Group | Triglycerides (nmol/L) | |||
---|---|---|---|---|
Sampling 1 | Sampling 2 | Sampling 3 | Sampling 4 | |
C | 3.47 ± 0.37 | 3.45 ± 0.27 | 3.35 ± 0.25 a,b | 3.39 ± 0.45 a,b |
C-H | 3.46 ± 0.70 | 3.61 ± 0.27 | 3.59 ± 0.33 a | 3.66 ± 0.45 a |
C-H-C | 3.36 ± 0.29 | 3.55 ± 0.27 * | 3.12± 0.40 b,# | 3.25 ± 0.27 a,b |
LO-H | 3.57 ± 0.74 | 3.62 ± 0.54 | 3.24 ± 0.29 a,b | 3.05 ± 0.51 b |
EE-H | 3.24 ± 0.61 * | 3.47± 0.57 * | 2.69 ± 0.41 c,# | 2.31 ± 0.50 c,d,# |
FO-H | 3.39 ± 0.81 | 3.52 ± 0.68 | 3.47 ± 0.52 a,b | 3.35 ± 0.62 a,b |
LO-H-C | 3.32 ± 0.73 * | 3.49 ± 0.45 * | 2.59 ± 0.56 c,d,# | 2.28 ± 0.23 c,d,# |
EE-H-C | 3.46 ± 0.50 * | 3.51 ± 0.65 * | 1.92 ± 0.35 c,e,# | 1.87 ± 0.39 d,# |
FO-H-C | 3.37 ± 0.63 * | 3.53 ± 0.40 * | 2.36 ± 0.40 d,# | 2.59 ± 0.44 c,# |
Group | Total Cholesterol (nmol/L) | |||
---|---|---|---|---|
Sampling 1 | Sampling 2 | Sampling 3 | Sampling 4 | |
C | 2.80 ± 0.31 | 2.69 ± 0.38 | 2.76 ± 0.39 a,b | 2.79 ± 0.35 a |
C-H | 2.86 ± 0.31 | 3.04 ± 0.36 | 3.05 ± 0.38 a | 2.96 ± 0.48 a |
C-H-C | 2.68 ± 0.29 | 2.97 ± 0.31 | 2.85 ± 0.29 a,b | 2.65 ± 0.27 a,b |
LO-H | 2.91 ± 0.27 * | 2.99 ± 0.39 * | 2.51 ± 0.26 b,c,# | 2.29 ± 0.23 b,c,# |
EE-H | 2.72 ± 0.40 *,# | 3.01 ± 0.41 * | 2.57 ± 0.37 b,c,# | 2.13 ± 0.30 c,$ |
FO-H | 2.87 ± 0.26 *,# | 3.03 ± 0.38 * | 2.64 ± 0.30 b,c,#,$ | 2.35 ± 0.32 b,c,$ |
LO-H-C | 2.59 ± 0.29 *,# | 2.94 ± 0.50 * | 2.28 ± 0.34 c,#,$ | 1.96 ± 0.33 c,$ |
EE-H-C | 2.66 ± 0.36 *,# | 2.96 ± 0.33 * | 2.35 ± 0.37 c,#,$ | 2.08 ± 0.40 c,$ |
FO-H-C | 2.64 ± 0.62 | 3.00 ± 0.44 * | 2.75 ± 0.30 a,b | 2.28 ± 0.45 b,c,# |
Group | LDL Cholesterol (nmol/L) | |||
---|---|---|---|---|
Sampling 1 | Sampling 2 | Sampling 3 | Sampling 4 | |
C | 0.74 ± 0.07 | 0.71 ± 0.10 | 0.74 ± 0.14 b,c | 0.79 ± 0.13 b |
C-H | 0.73 ± 0.12 * | 0.79 ± 0.10 * | 0.92 ± 0.14 a,# | 0.93 ± 0.14 a,# |
C-H-C | 0.75 ± 0.17 | 0.78 ± 0.10 | 0.84 ± 0.15 a,b | 0.79 ± 0.12 b |
LO-H | 0.69 ± 0.17 | 0.70 ± 0.19 | 0.63 ± 0.12 c,d | 0.58 ± 0.07 c,d |
EE-H | 0.71 ± 0.11 * | 0.68 ± 0.07 * | 0.61 ±0.16 c,d,*,# | 0.53 ± 0.13 c,d,# |
FO-H | 0.73 ± 0.09 * | 0.69 ± 0.10 *,# | 0.74 ± 0.13 b,c,* | 0.59 ± 0.08 c,d,# |
LO-H-C | 0.68 ± 0.11 | 0.69 ± 0.11 | 0.58 ± 0.16 c,d | 0.56 ± 0.10 c,d |
EE-H-C | 0.74 ± 0.17 * | 0.72 ± 0.14 * | 0.56 ± 0.13 d,# | 0.51 ± 0.11 d,# |
FO-H-C | 0.71 ± 0.16 | 0.69 ± 0.09 | 0.72 ± 0.17 b,c,d | 0.65 ± 0.14 a |
Group | HDL Cholesterol (nmol/L) | |||
---|---|---|---|---|
Sampling 1 | Sampling 2 | Sampling 3 | Sampling 4 | |
C | 1.48 ± 0.21 | 1.64 ± 0.22 a,b | 1.51 ± 0.19 a,b | 1.43 ± 0.18 a |
C-H | 1.45 ± 0.21 #,$ | 1.80 ± 0.16 a,* | 1.61 ± 0.12 a,# | 1.35 ± 0.23 a,b,$ |
C-H-C | 1.36 ± 0.11 #,$ | 1.71 ± 0.19 a,* | 1.46 ± 0.21 a,b,c,# | 1.26 ± 0.16 a,b,c,$ |
LO-H | 1.46 ± 0.46 | 1.40 ± 0.22 b,c | 1.23 ± 0.24 d | 1.23 ± 0.16 a,b,c |
EE-H | 1.56 ± 0.31 * | 1.64 ± 0.28 a,b,* | 1.43 ± 0.27 a,b,c,d,* | 1.13 ± 0.11 c,# |
FO-H | 1.62 ± 0.23 a,* | 1.65 ± 0.28 a,b,* | 1.59 ± 0.23 a,* | 1.26 ± 0.19 a,b,c,# |
LO-H-C | 1.29 ± 0.20 b,*,# | 1.44 ± 0.18 b,c,* | 1.48 ± 0.17 a,b,c,* | 1.21 ± 0.18 b,c,# |
EE-H-C | 1.40 ± 0.21 * | 1.36 ± 0.23 c,* | 1.27 ± 0.08 c,d,*,# | 1.14 ± 0.26 c,# |
FO-H-C | 1.39 ± 0.30 | 1.39 ± 0.27 b,c | 1.35 ± 0.19 b,c,d | 1.28 ± 0.07 a,b,c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokoła-Wysoczańska, E.; Czyż, K.; Wyrostek, A. Different Sources of Omega-3 Fatty Acid Supplementation vs. Blood Lipid Profiles—A Study on a Rat Model. Foods 2024, 13, 385. https://doi.org/10.3390/foods13030385
Sokoła-Wysoczańska E, Czyż K, Wyrostek A. Different Sources of Omega-3 Fatty Acid Supplementation vs. Blood Lipid Profiles—A Study on a Rat Model. Foods. 2024; 13(3):385. https://doi.org/10.3390/foods13030385
Chicago/Turabian StyleSokoła-Wysoczańska, Ewa, Katarzyna Czyż, and Anna Wyrostek. 2024. "Different Sources of Omega-3 Fatty Acid Supplementation vs. Blood Lipid Profiles—A Study on a Rat Model" Foods 13, no. 3: 385. https://doi.org/10.3390/foods13030385
APA StyleSokoła-Wysoczańska, E., Czyż, K., & Wyrostek, A. (2024). Different Sources of Omega-3 Fatty Acid Supplementation vs. Blood Lipid Profiles—A Study on a Rat Model. Foods, 13(3), 385. https://doi.org/10.3390/foods13030385