The Potential Use of Near Infrared Spectroscopy (NIRS) to Determine the Heavy Metals and the Percentage of Blends in Tea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Chemical Analyses
2.3. Near Infrared Spectroscopy
2.4. Chemometric Techniques
2.5. Pattern Recognition
2.6. Discriminant Analysis
3. Results and Discussion
3.1. The Heavy Metal Content of the Samples
3.2. Exploratory Analysis of the Samples according to Their Heavy Metal Content
3.3. Determination of the Heavy Metal Content Using near Infrared Spectroscopy
3.3.1. Spectra of the Samples
3.3.2. Calibration Equations
3.3.3. Validation
3.4. Discrimination of the Percentage of the Blends Using near Infrared Spectroscopy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vuo, H. Tea: Market Data & Analysis. Available online: https://www.statista.com/study/48824/tea-market-data-and-analysis/16-09-2023 (accessed on 20 December 2023).
- Zhang, L.; Ho, C.-T.; Zhou, J.; Santos, J.S.; Armstrong, L.; Granato, D. Chemistry and Biological Activities of Processed Camellia sinensis Teas: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1474–1495. [Google Scholar] [CrossRef] [PubMed]
- Karori, S.M.; Wachira, F.N.; Wanyoko, J.K.; Ngure, R.M. Antioxidant Capacity of Different Types of Tea Products. Afr. J. Biotechnol. 2007, 6, 2287–2296. [Google Scholar] [CrossRef]
- Lim, C.M.; Carey, M.; Williams, P.N.; Koidis, A. Rapid Classification of Commercial Teas According to Their Origin and Type Using Elemental Content with X-Ray Fluorescence (XRF) Spectroscopy. Curr. Res. Food Sci. 2021, 4, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-W.; Wang, S.-H.; Jan, M.-Y.; Wang, W.-K. Effect of Black Tea Consumption on Radial Blood Pulse Spectrum and Cognitive Health. Complement. Ther. Med. 2017, 31, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Aty, A.M.; Choi, J.-H.; Rahman, M.M.; Kim, S.-W.; Tosun, A.; Shim, J.-H. Residues and Contaminants in Tea and Tea Infusions: A Review. Food Addit. Contam. Part A 2014, 31, 1794–1804. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Li, T.-H.; Li, L.-Q.; Ning, J.-M.; Zhang, Z.-Z. Micro-NIR Spectrometer for Quality Assessment of Tea: Comparison of Local and Global Models. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 237, 118403. [Google Scholar] [CrossRef]
- Lv, H.; Zhang, Y.; Lin, Z.; Liang, Y. Processing and Chemical Constituents of Pu-Erh Tea: A Review. Food Res. Int. 2013, 53, 608–618. [Google Scholar] [CrossRef]
- Lv, H.; Yang, T.; Ma, C.; Wang, C.; Shi, J.; Zhang, Y.; Peng, Q.; Tan, J.; Guo, L.; Lin, Z. Analysis of Naturally Occurring 3″-Methyl-Epigallocatechin Gallate in 71 Major Tea Cultivars Grown in China and Its Processing Characteristics. J. Funct. Foods 2014, 7, 727–736. [Google Scholar] [CrossRef]
- Xu, J.; Wang, M.; Zhao, J.; Wang, Y.-H.; Tang, Q.; Khan, I.A. Yellow Tea (Camellia sinensis L.), a Promising Chinese Tea: Processing, Chemical Constituents and Health Benefits. Food Res. Int. 2018, 107, 567–577. [Google Scholar] [CrossRef]
- Desideri, D.; Meli, M.A.; Roselli, C.; Feduzi, L. Polarized X Ray Fluorescence Spectrometer (EDPXRF) for the Determination of Essential and Non Essential Elements in Tea. Microchem. J. 2011, 98, 186–189. [Google Scholar] [CrossRef]
- Polechońska, L.; Dambiec, M.; Klink, A.; Rudecki, A. Concentrations and Solubility of Selected Trace Metals in Leaf and Bagged Black Teas Commercialized in Poland. J. Food Drug Anal. 2015, 23, 486–492. [Google Scholar] [CrossRef]
- Karak, T.; Bhagat, R.M. Trace Elements in Tea Leaves, Made Tea and Tea Infusion: A Review. Food Res. Int. 2010, 43, 2234–2252. [Google Scholar] [CrossRef]
- Başgel, S.; Erdemoğlu, S.B. Determination of Mineral and Trace Elements in Some Medicinal Herbs and Their Infusions Consumed in Turkey. Sci. Total Environ. 2006, 359, 82–89. [Google Scholar] [CrossRef]
- Yan, S.-M.; Liu, J.-P.; Xu, L.; Fu, X.-S.; Cui, H.-F.; Yun, Z.-Y.; Yu, X.-P.; Ye, Z.-H. Rapid Discrimination of the Geographical Origins of an Oolong Tea (Anxi-Tieguanyin) by Near-Infrared Spectroscopy and Partial Least Squares Discriminant Analysis. J. Anal. Methods Chem. 2014, 2014, e704971. [Google Scholar] [CrossRef]
- Heaney, S.; Koidis, A.; Morin, J.M. Tea and Flavoured Tea. In Handbook of Food Authenticity: A Guide to Food Authenticity Issues and Analytical Solutions; Morin, J.-F., Lees, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 315–331. [Google Scholar]
- Zhao, H.; Yu, C.; Li, M. Effects of Geographical Origin, Variety, Season and Their Interactions on Minerals in Tea for Traceability. J. Food Compos. Anal. 2017, 63, 15–20. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, J.; Yu, M.; Chen, X.; Shi, J. Lead Contamination in Different Varieties of Tea Plant (Camellia sinensis L.) and Factors Affecting Lead Bioavailability. J. Sci. Food Agric. 2010, 90, 1501–1507. [Google Scholar] [CrossRef]
- Karak, T.; Bora, K.; Paul, R.K.; Das, S.; Khare, P.; Dutta, A.K.; Boruah, R.K. Paradigm Shift of Contamination Risk of Six Heavy Metals in Tea (Camellia sinensis L.) Growing Soil: A New Approach Influenced by Inorganic and Organic Amendments. J. Hazard. Mater. 2017, 338, 250–264. [Google Scholar] [CrossRef]
- Rashid, M.H.; Fardous, Z.; Chowdhury, M.A.Z.; Alam, M.K.; Bari, M.L.; Moniruzzaman, M.; Gan, S.H. Determination of Heavy Metals in the Soils of Tea Plantations and in Fresh and Processed Tea Leaves: An Evaluation of Six Digestion Methods. Chem. Cent. J. 2016, 10, 7. [Google Scholar] [CrossRef] [PubMed]
- Gallaher, R.N.; Gallaher, K.; Marshall, A.J.; Marshall, A.C. Mineral Analysis of Ten Types of Commercially Available Tea. J. Food Compos. Anal. 2006, 19, S53–S57. [Google Scholar] [CrossRef]
- Nkansah, M.A.; Opoku, F.; Ackumey, A.A. Risk Assessment of Mineral and Heavy Metal Content of Selected Tea Products from the Ghanaian Market. Environ. Monit. Assess. 2016, 188, 332. [Google Scholar] [CrossRef]
- Martín-Domingo, M.C.; Pla, A.; Hernández, A.F.; Olmedo, P.; Navas-Acien, A.; Lozano-Paniagua, D.; Gil, F. Determination of Metalloid, Metallic and Mineral Elements in Herbal Teas. Risk Assessment for the Consumers. J. Food Compos. Anal. 2017, 60, 81–89. [Google Scholar] [CrossRef]
- Drivelos, S.A.; Georgiou, C.A. Multi-Element and Multi-Isotope-Ratio Analysis to Determine the Geographical Origin of Foods in the European Union. TrAC Trends Anal. Chem. 2012, 40, 38–51. [Google Scholar] [CrossRef]
- Atasoy, A.D.; Yesilnacar, M.I.; Yildirim, A.; Atasoy, A.F. Nutritional Minerals and Heavy Metals in Tea Infusions and Daily Intake of Human Body. Turk. J. Agric.-Food Sci. Technol. 2019, 7, 234–239. [Google Scholar] [CrossRef]
- McKenzie, J.S.; Jurado, J.M.; De Pablos, F. Characterisation of Tea Leaves According to Their Total Mineral Content by Means of Probabilistic Neural Networks. Food Chem. 2010, 123, 859–864. [Google Scholar] [CrossRef]
- Salahinejad, M.; Aflaki, F. Toxic and Essential Mineral Elements Content of Black Tea Leaves and Their Tea Infusions Consumed in Iran. Biol. Trace Elem. Res. 2010, 134, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-S.; Hwang, Y.-S.; Lee, J.; Choung, M.-G. The Characterization of Caffeine and Nine Individual Catechins in the Leaves of Green Tea (Camellia sinensis L.) by near-Infrared Reflectance Spectroscopy. Food Chem. 2014, 158, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Li, J.; Wang, J.; Liang, G.; Jiang, Y.; Yuan, H.; Yang, Y.; Meng, H. Rapid Determination by near Infrared Spectroscopy of Theaflavins-to-Thearubigins Ratio during Congou Black Tea Fermentation Process. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 205, 227–234. [Google Scholar] [CrossRef]
- González-Martín, I.; Hernández-Hierro, J.M.; González-Cabrera, J.M. Use of NIRS Technology with a Remote Reflectance Fibre-Optic Probe for Predicting Mineral Composition (Ca, K, P, Fe, Mn, Na, Zn), Protein and Moisture in Alfalfa. Anal. Bioanal. Chem. 2007, 387, 2199–2205. [Google Scholar] [CrossRef]
- González Martín, M.I.; Wells Moncada, G.; Fischer, S.; Escuredo, O. Chemical Characteristics and Mineral Composition of Quinoa by Near-infrared Spectroscopy. J. Sci. Food Agric. 2014, 94, 876–881. [Google Scholar] [CrossRef]
- González-Martín, M.I.; Escuredo, O.; Revilla, I.; Vivar-Quintana, A.M.; Coello, M.C.; Riocerezo, C.P.; Moncada, G.W. Determination of the Mineral Composition and Toxic Element Contents of Propolis by Near Infrared Spectroscopy. Sensors 2015, 15, 27854–27868. [Google Scholar] [CrossRef]
- Lastras, C.; Revilla, I.; González-Martín, M.I.; Vivar-Quintana, A.M. Prediction of Fatty Acid and Mineral Composition of Lentils Using near Infrared Spectroscopy. J. Food Compos. Anal. 2021, 102, 104023. [Google Scholar] [CrossRef]
- González-Martín, M.I.; Hernández-Hierro, J.M.; Revilla, I.; Vivar-Quintana, A.; González-Pérez, C.; García, L.G.; Riocerezo, C.P.; Ortega, I.A.L. Differentiation of Organic and Non-Organic Ewe’s Cheeses Using Main Mineral Composition or near Infrared Spectroscopy Coupled to Chemometric Tools: A Comparative Study. Talanta 2011, 85, 1915–1919. [Google Scholar] [CrossRef]
- González-Martín, I.; Hernández-Hierro, J.M.; Bustamante-Rangel, M.; Barros-Ferreiro, N. Near-Infrared Spectroscopy (NIRS) Reflectance Technology for the Determination of Tocopherols in Alfalfa. Anal. Bioanal. Chem. 2006, 386, 1553–1558. [Google Scholar] [CrossRef]
- Turgut, S.S.; Küçüköner, E.; Karacabey, E. TeaPot: A Chemometric Tool for Tea Blend Recipe Estimation. Appl. Food Res. 2021, 1, 100006. [Google Scholar] [CrossRef]
- Gogoi, R.C. Blending of Tea—The Development. Two Bud 2014, 61, 53–56. [Google Scholar]
- Rehder, A.P.; Silva, P.B.; Xavier, A.M.F.; Barrozo, M.A.S. Optimization of Microwave-Assisted Extraction of Bioactive Compounds from a Tea Blend. J. Food Meas. Charact. 2021, 15, 1588–1598. [Google Scholar] [CrossRef]
- Builders, P.F.; Mohammed, B.B.; Sule, Y.Z. Preparation and Characterization of a Poly-Herbal Tea with Effective Antioxidant Properties. Sci. World J. 2020, 15, 29–34. [Google Scholar]
- Sandasi, M.; Chen, W.; Vermaak, I.; Viljoen, A. Non-Destructive Quality Assessment of Herbal Tea Blends Using Hyperspectral Imaging. Phytochem. Lett. 2018, 24, 94–101. [Google Scholar] [CrossRef]
- Xu, S.; Sun, X.; Lu, H.; Zhang, Q. Detection of Type, Blended Ratio, and Mixed Ratio of Pu’er Tea by Using Electronic Nose and Visible/Near Infrared Spectrometer. Sensors 2019, 19, 2359. [Google Scholar] [CrossRef] [PubMed]
- Higa, F.; Koppel, K.; Chambers, E. Effect of Additional Information on Consumer Acceptance: An Example with Pomegranate Juice and Green Tea Blends. Beverages 2017, 3, 30. [Google Scholar] [CrossRef]
- Vilà, M.; Bedmar, À.; Saurina, J.; Núñez, O.; Sentellas, S. High-Throughput Flow Injection Analysis–Mass Spectrometry (FIA-MS) Fingerprinting for the Authentication of Tea Application to the Detection of Teas Adulterated with Chicory. Foods 2022, 11, 2153. [Google Scholar] [CrossRef]
- Cardoso, V.G.K.; Poppi, R.J. Non-Invasive Identification of Commercial Green Tea Blends Using NIR Spectroscopy and Support Vector Machine. Microchem. J. 2021, 164, 106052. [Google Scholar] [CrossRef]
- Martens, H.; Naes, T. Multivariate Calibration; Wiley: Hoboken, NJ, USA, 2001; Volume 116. [Google Scholar]
- Turgut, S.S.; Entrenas, J.A.; Taşkın, E.; Garrido-Varo, A.; Pérez-Marín, D. Estimation of the Sensory Properties of Black Tea Samples Using Non-Destructive near-Infrared Spectroscopy Sensors. Food Control 2022, 142, 109260. [Google Scholar] [CrossRef]
- Shenk, J.; Westerhaus, M. Routine Operation, Calibration, Development and Network System Management Manual; NIRSystems Inc.: Silver Spring, MD, USA, 1995; Volume 3. [Google Scholar]
- Williams, P.C.; Sobering, D. How do we do it: A brief summary of the methods we use in developing near infrared calibrations. In Near Infrared Spectroscopy: The Future Waves; Davies, A.M.C., Williams, P.C., Eds.; NIR Publications: Chichester, UK, 1996; pp. 185–188. [Google Scholar]
- Williams, P.; Norris, K. Near-Infrared Technology in the Agricultural and Food Industries; Amercian Association of Cereal Chemists, Inc.: St. Paul, MN, USA, 1987. [Google Scholar]
- Horcada, A.; Valera, M.; Juárez, M.; Fernández-Cabanás, V.M. Authentication of Iberian Pork Official Quality Categories Using a Portable near Infrared Spectroscopy (NIRS) Instrument. Food Chem. 2020, 318, 126471. [Google Scholar] [CrossRef]
- Dambiec, M.; Polechońska, L.; Klink, A. Levels of Essential and Non-Essential Elements in Black Teas Commercialized in Poland and Their Transfer to Tea Infusion. J. Food Compos. Anal. 2013, 31, 62–66. [Google Scholar] [CrossRef]
- Wróbel, K.; Wróbel, K.; Urbina, E.M.C. Determination of Total Aluminum, Chromium, Copper, Iron, Manganese, and Nickel and Their Fractions Leached to the Infusions of Black Tea, Green Tea, Hibiscus Sabdariffa, and Ilex Paraguariensis (Mate) by ETA-AAS. Biol. Trace Elem. Res. 2000, 78, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Karimi, G.; Hasanzadeh, M.; Nili, A.; Khashayarmanesh, Z.; Samiei, Z.; Nazari, F.; Teimuri, M. Concentrations and Health Risk of Heavy Metals in Tea Samples Marketed in Iran. Pharmacology 2008, 3, 164–174. [Google Scholar]
- Ye, Y.; Yan, W.; Peng, L.; He, J.; Zhang, N.; Zhou, J.; Cheng, S.; Cai, J. Minerals and Bioactive Components Profiling in Se-Enriched Green Tea and the Pearson Correlation with Se. LWT 2023, 175, 114470. [Google Scholar] [CrossRef]
- Islam, M.A.; Ebihara, M. Elemental Characterization of Japanese Green Tea Leaves and Tea Infusion Residue by Neutron-Induced Prompt and Delayed Gamma-Ray Analysis. Arab. J. Chem. 2017, 10, S677–S682. [Google Scholar] [CrossRef]
- Pourramezani, F.; Akrami Mohajeri, F.; Salmani, M.H.; Dehghani Tafti, A.; Khalili Sadrabad, E. Evaluation of Heavy Metal Concentration in Imported Black Tea in Iran and Consumer Risk Assessments. Food Sci. Nutr. 2019, 7, 4021–4026. [Google Scholar] [CrossRef]
- Tsushida, T.; Takeo, T. Zinc, Copper, Lead and Cadmium Contents in Green Tea. J. Sci. Food Agric. 1977, 28, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Weller, D.; Rubio, C.; Gutiérrez, A.J.; Pérez, B.; Hernández-Sánchez, C.; Caballero, J.M.; Revert, C.; Hardisson, A. Dietary Content and Evaluation of Metals in Four Types of Tea (White, Black, Red and Green) Consumed by the Population of the Canary Islands. Pharm. Anal. Acta 2015, 6, 10. [Google Scholar] [CrossRef]
- Li, F.; Lu, Q.; Li, M.; Yang, X.; Xiong, C.; Yang, B. Comparison and Risk Assessment for Trace Heavy Metals in Raw Pu-Erh Tea with Different Storage Years. Biol. Trace Elem. Res. 2020, 195, 696–706. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xie, H.; Chen, L.; Huang, J. An Improved Weighted Partial Least Squares Method Coupled with Near Infrared Spectroscopy for Rapid Determination of Multiple Components and Anti-Oxidant Activity of Pu-Erh Tea. Molecules 2018, 23, 1058. [Google Scholar] [CrossRef] [PubMed]
- Karimi, E.; Oskoueian, E.; Hendra, R.; Oskoueian, A.; Jaafar, H.Z.E. Phenolic Compounds Characterization and Biological Activities of Citrus Aurantium Bloom. Molecules 2012, 17, 1203–1218. [Google Scholar] [CrossRef] [PubMed]
- Barman, T.; Barooah, A.K.; Goswami, B.C.; Sharma, N.; Panja, S.; Khare, P.; Karak, T. Contents of Chromium and Arsenic in Tea (Camellia sinensis L.): Extent of Transfer into Tea Infusion and Health Consequence. Biol. Trace Elem. Res. 2020, 196, 318–329. [Google Scholar] [CrossRef] [PubMed]
- Portugal, Ó.B.; Flores-Quispe, M. Concentrations of Arsenic, Cadmium, and Lead in Herbal Infusion Tea Bags Marketed in Tacna, Peru. Environ. Monit. Assess. 2022, 194, 534. [Google Scholar] [CrossRef] [PubMed]
- Falahi, E.; Hedaiati, R. Heavy Metal Content of Black Teas Consumed in Iran. Food Addit. Contam. Part B 2013, 6, 123–126. [Google Scholar] [CrossRef]
- Garbowska, B.; Wieczorek, J.; Garbowska, B.; Wieczorek, Z.; Polak-Śliwińska, M. The Content of Minerals, Bioactive Compounds and Anti-Nutritional Factors in Tea Infusions. J. Elem. 2017, 23, 369–380. [Google Scholar] [CrossRef]
- Czernicka, M.; Zagula, G.; Bajcar, M.; Saletnik, B.; Puchalski, C. Study of Nutritional Value of Dried Tea Leaves and Infusions of Black, Green and White Teas from Chinese Plantations. Rocz. Państw. Zakładu Hig. 2017, 68, 237–245. [Google Scholar]
- Konieczynski, P.; Viapiana, A.; Wesolowski, M. Comparison of Infusions from Black and Green Teas (Camellia sinensis L. Kuntze) and Erva-Mate (Ilex Paraguariensis A. St.-Hil.) Based on the Content of Essential Elements, Secondary Metabolites, and Antioxidant Activity. Food Anal. Methods 2017, 10, 3063–3070. [Google Scholar] [CrossRef]
- Wang, X.; Huang, J.; Fan, W.; Lu, H. Identification of Green Tea Varieties and Fast Quantification of Total Polyphenols by Near-Infrared Spectroscopy and Ultraviolet-Visible Spectroscopy with Chemometric Algorithms. Anal. Methods 2015, 7, 787–792. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, J.; Zhang, H.; Wang, X. Feasibility Study on Qualitative and Quantitative Analysis in Tea by near Infrared Spectroscopy with Multivariate Calibration. Anal. Chim. Acta 2006, 572, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Bian, M.; Skidmore, A.K.; Schlerf, M.; Fei, T.; Liu, Y.; Wang, T. Reflectance Spectroscopy of Biochemical Components as Indicators of Tea (Camellia sinensis) Quality. Photogramm. Eng. Remote Sens. 2010, 76, 1385–1392. [Google Scholar] [CrossRef]
- Li, F.; Jiang, X.; Zhao, J.; Zhang, S. Graphene Oxide: A Promising Nanomaterial for Energy and Environmental Applications. Nano Energy 2015, 16, 488–515. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, M.; Liu, Y.; Wu, J.; Wang, X.; Ouyang, Q.; Chen, X. Application of FT-NIR Spectroscopy for Simultaneous Estimation of Taste Quality and Taste-Related Compounds Content of Black Tea. J. Food Sci. Technol. 2018, 55, 4363–4368. [Google Scholar] [CrossRef] [PubMed]
- Panigrahi, N.; Bhol, C.S.; Das, B.S. Rapid Assessment of Black Tea Quality Using Diffuse Reflectance Spectroscopy. J. Food Eng. 2016, 190, 101–108. [Google Scholar] [CrossRef]
- Li, C.; Guo, H.; Zong, B.; He, P.; Fan, F.; Gong, S. Rapid and Non-Destructive Discrimination of Special-Grade Flat Green Tea Using Near-Infrared Spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 206, 254–262. [Google Scholar] [CrossRef]
- Cai, J.; Wang, Y.; Xi, X.; Li, H.; Wei, X. Using FTIR Spectra and Pattern Recognition for Discrimination of Tea Varieties. Int. J. Biol. Macromol. 2015, 78, 439–446. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, J.; Liu, M.; Cai, J.; Liu, J. Determination of Total Polyphenols Content in Green Tea Using FT-NIR Spectroscopy and Different PLS Algorithms. J. Pharm. Biomed. Anal. 2008, 46, 568–573. [Google Scholar] [CrossRef]
- Adnan, M.; Ahmad, A.; Ahmed, A.; Khalid, N.; Hayat, I.; Ahmed, I. Chemical Composition and Sensory Evaluation of Tea (Camellia sinensis) Commercialized in Pakistan. Pak. J. Bot. 2013, 45, 901–907. [Google Scholar]
- Lin, J.-K.; Lin, C.-L.; Liang, Y.-C.; Lin-Shiau, S.-Y.; Juan, I.-M. Survey of Catechins, Gallic Acid, and Methylxanthines in Green, Oolong, Pu-Erh, and Black Teas. J. Agric. Food Chem. 1998, 46, 3635–3642. [Google Scholar] [CrossRef]
- Horanni, R.; Engelhardt, U.H. Determination of Amino Acids in White, Green, Black, Oolong, Pu-Erh Teas and Tea Products. J. Food Compos. Anal. 2013, 31, 94–100. [Google Scholar] [CrossRef]
- Martínez-Martín, I.; Hernández-Jiménez, M.; Revilla, I.; Vivar-Quintana, A.M. Prediction of Mineral Composition in Wheat Flours Fortified with Lentil Flour Using NIR Technology. Sensors 2023, 23, 1491. [Google Scholar] [CrossRef] [PubMed]
- Villatoro-Pulido, M.; Moreno Rojas, R.; Muñoz-Serrano, A.; Cardeñosa, V.; Amaro López, M.Á.; Font, R.; Del Río-Celestino, M. Characterization and Prediction by Near-Infrared Reflectance of Mineral Composition of Rocket (Eruca Vesicaria Subsp. Sativa and Eruca Vesicaria Subsp. Vesicaria): Characterization and NIRS Prediction of Mineral Content of Rocket Germplasm. J. Sci. Food Agric. 2012, 92, 1331–1340. [Google Scholar] [CrossRef]
- Martínez-Valdivieso, D.; Font, R.; Gómez, P.; Blanco-Díaz, T.; Del Rïo-Celestino, M. Determining the Mineral Composition in Cucurbita Pepo Fruit Using near Infrared Reflectance Spectroscopy. J. Sci. Food Agric. 2014, 94, 3171–3180. [Google Scholar] [CrossRef]
- De Oliveira, D.M.; Fontes, L.M.; Pasquini, C. Comparing Laser Induced Breakdown Spectroscopy, near Infrared Spectroscopy, and Their Integration for Simultaneous Multi-Elemental Determination of Micro- and Macronutrients in Vegetable Samples. Anal. Chim. Acta 2019, 1062, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Mir-Marqués, A.; Martínez-García, M.; Garrigues, S.; Cervera, M.L.; de la Guardia, M. Green Direct Determination of Mineral Elements in Artichokes by Infrared Spectroscopy and X-Ray Fluorescence. Food Chem. 2016, 196, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, D.; Moron, A. Exploring the Use of near Infrared Reflectance Spectroscopy (NIRS) to Predict Trace Minerals in Legumes. Anim. Feed Sci. Technol. 2004, 111, 161–173. [Google Scholar] [CrossRef]
- Patel, N.; Toledo-Alvarado, H.; Cecchinato, A.; Bittante, G. Predicting the Content of 20 Minerals in Beef by Different Portable Near-Infrared (NIR) Spectrometers. Foods 2020, 9, 1389. [Google Scholar] [CrossRef]
- Prananto, J.A.; Minasny, B.; Weaver, T. Chapter One—Near Infrared (NIR) Spectroscopy as a Rapid and Cost-Effective Method for Nutrient Analysis of Plant Leaf Tissues. Adv. Agron. 2020, 164, 1–49. [Google Scholar] [CrossRef]
- Cozzolino, D.; Cynkar, W.; Shah, N.; Smith, P. Quantitative Analysis of Minerals and Electric Conductivity of Red Grape Homogenates by near Infrared Reflectance Spectroscopy. Comput. Electron. Agric. 2011, 77, 81–85. [Google Scholar] [CrossRef]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef] [PubMed]
- Havsteen, B.H. The Biochemistry and Medical Significance of the Flavonoids. Pharmacol. Ther. 2002, 96, 67–202. [Google Scholar] [CrossRef] [PubMed]
- Sanaeifar, A.; Zhang, W.; Chen, H.; Zhang, D.; Li, X.; He, Y. Study on Effects of Airborne Pb Pollution on Quality Indicators and Accumulation in Tea Plants Using Vis-NIR Spectroscopy Coupled with Radial Basis Function Neural Network. Ecotoxicol. Environ. Saf. 2022, 229, 113056. [Google Scholar] [CrossRef] [PubMed]
- Font, R.; Del Río, M.; Vélez, D.; Montoro, R.; De Haro, A. Use of Near-Infrared Spectroscopy for Determining the Total Arsenic Content in Prostrate Amaranth. Sci. Total Environ. 2004, 327, 93–104. [Google Scholar] [CrossRef]
- Xu, X.; Chen, S.; Ren, L.; Han, C.; Lv, D.; Zhang, Y.; Ai, F. Estimation of Heavy Metals in Agricultural Soils Using Vis-NIR Spectroscopy with Fractional-Order Derivative and Generalized Regression Neural Network. Remote Sens. 2021, 13, 2718. [Google Scholar] [CrossRef]
- Ning, J.; Sun, J.; Li, S.; Sheng, M.; Zhang, Z. Classification of Five Chinese Tea Categories with Different Fermentation Degrees Using Visible and Near-Infrared Hyperspectral Imaging. Int. J. Food Prop. 2017, 20, 1515–1522. [Google Scholar] [CrossRef]
- Hernández-Jiménez, M.; Hernández-Ramos, P.; Martínez-Martín, I.; Vivar-Quintana, A.M.; González-Martín, I.; Revilla, I. Comparison of Artificial Neural Networks and Multiple Regression Tools Applied to near Infrared Spectroscopy for Predicting Sensory Properties of Products from Quality Labels. Microchem. J. 2020, 159, 105459. [Google Scholar] [CrossRef]
- Hernández-Jiménez, M.; González-Martín, M.I.; Martínez-Martín, I.; Revilla, I.; Vivar-Quintana, A.M. Carbon Stable Isotopes, Fatty Acids and the Use of NIRS to Differentiate IBERIAN Pigs. Meat Sci. 2021, 182, 108619. [Google Scholar] [CrossRef]
- Revilla, I.; Vivar-Quintana, A.M.; González-Martín, M.I.; Hernández-Jiménez, M.; Martínez-Martín, I.; Hernández-Ramos, P. NIR Spectroscopy for Discriminating and Predicting the Sensory Profile of Dry-Cured Beef “Cecina”. Sensors 2020, 20, 6892. [Google Scholar] [CrossRef] [PubMed]
N | Al (g/kg) | Pb (mg/kg) | As (mg/kg) | Hg (mg/kg) | Cu (mg/kg) | |
---|---|---|---|---|---|---|
Black tea | 7 | 2.04 ± 0.23 a | 0.56 ± 0.28 a | 0.04 ± 0.01 a | 0.00 ± 0.00 a | 17.31 ± 2.60 b |
Red tea | 8 | 2.36 ± 0.25 b | 1.21 ± 0.36 b | 0.19 ± 0.09 b | 0.00 ± 0.00 a | 19.87 ± 2.78 b |
Green tea | 11 | 2.52 ± 0.29 b | 0.98 ± 0.40 b | 0.09 ± 0.02 a | 0.01 ± 0.01 b | 12.19 ± 2.40 a |
Calibration Set (n = 257) | External Validation Set (n = 65) | |||||||
---|---|---|---|---|---|---|---|---|
Mineral | Minimun | Maximun | Mean | SD | Minimun | Maximun | Mean | SD |
Al (g/kg) | 1.8490 | 3.0470 | 2.3705 | 0.270 | 1.9540 | 2.9524 | 2.3153 | 0.223 |
Pb (mg/kg) | 0.2810 | 1.7100 | 0.8943 | 0.333 | 0.3170 | 1.4952 | 0.9003 | 0.293 |
As (mg/kg) | 0.0291 | 0.3910 | 0.1101 | 0.049 | 0.0305 | 0.2263 | 0.1099 | 0.048 |
Hg (mg/kg) | 0.0006 | 0.0189 | 0.0096 | 0.004 | 0.0022 | 0.0185 | 0.0096 | 0.004 |
Cu (mg/kg) | 8.4400 | 23.9140 | 15.9984 | 3.641 | 8.9430 | 23.7200 | 15.4139 | 3.728 |
Mineral | N | Mean | SD | Min Est. | Max Est. | SEC | SECV | RSQ | RPD |
---|---|---|---|---|---|---|---|---|---|
Al (g/kg) | 239 | 2.3537 | 0.2565 | 1.584 | 3.123 | 0.084 | 0.109 | 0.893 | 3.11 |
Pb (mg/kg) | 243 | 0.8784 | 0.3285 | 0.000 | 1.864 | 0.070 | 0.091 | 0.955 | 4.71 |
As (mg/kg) | 235 | 0.1051 | 0.0444 | 0.000 | 0.238 | 0.012 | 0.018 | 0.923 | 3.62 |
Hg (mg/kg) | 244 | 0.0066 | 0.0057 | 0.000 | 0.024 | 0.001 | 0.002 | 0.966 | 5.17 |
Cu (mg/kg) | 243 | 16.0964 | 3.6119 | 5.261 | 26.932 | 0.625 | 0.850 | 0.970 | 5.78 |
Mineral | p (Level of Significance) | RMSE |
---|---|---|
Al | 0.890 | 0.112 |
Pb | 0.792 | 1.003 |
As | 0.778 | 0.182 |
Hg | 0.684 | 0.027 |
Cu | 0.796 | 0.021 |
SIMCA Method | RMSX-Residuals Detrend (2,4,4,1) | |||||||
% Samples Correctly Classified | % Samples Correctly Classified | Sensitivity | Specificity | |||||
Component | Calibration | Validation | Calibration | Validation | Calibration | Validation | Calibration | Validation |
Pure tea vs. blends | ||||||||
Black pure | 100.00 | 100.00 | 100.00 | 100.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Red pure | 98.46 | 93.75 | 100.00 | 90.91 | 1.00 | 1.00 | 1.00 | 1.00 |
Green pure | 45.56 | 10.00 | 100.00 | 100.00 | 1.00 | 0.91 | 1.00 | 1.00 |
Black blends | 0.00 | 0.00 | 93.33 | 71.43 | 0.93 | 0.71 | 0.99 | 1.00 |
Red blends | 24.05 | 25.00 | 98.75 | 94.74 | 0.99 | 0.95 | 0.99 | 0.97 |
Green blends | 77.44 | 75.00 | 97.79 | 96.97 | 0.98 | 0.97 | 1.00 | 0.91 |
Percentage of blending | ||||||||
>95% black | 100.00 | 100.00 | 100.00 | 100.00 | 1.00 | 1.00 | 1.00 | 0.99 |
95–85% black | 0.00 | 0.00 | 100.00 | 50.00 | 1.00 | 0.50 | 1.00 | 1.00 |
85–75% black | 0.00 | 0.00 | 100.00 | 0.00 | 1.00 | 0.00 | 1.00 | 1.00 |
75–50% black | 0.00 | 0.00 | 70.00 | 33.33 | 0.70 | 0.33 | 1.00 | 0.99 |
>95% red | 91.67 | 88.24 | 100.00 | 100.00 | 1.00 | 1.00 | 1.00 | 0.95 |
95–85% red | 0.00 | 0.00 | 100.00 | 20.00 | 1.00 | 0.20 | 1.00 | 1.00 |
85–75% red | 0.00 | 0.00 | 100.00 | 0.00 | 1.00 | 0.00 | 1.00 | 1.00 |
75–50% red | 0.00 | 0.00 | 100.00 | 66.67 | 1.00 | 0.97 | 0.99 | 0.92 |
>95% green | 100.00 | 100.00 | 100.00 | 100.00 | 1.00 | 1.00 | 1.00 | 1.00 |
95–85% green | 0.00 | 0.00 | 100.00 | 62.50 | 1.00 | 0.97 | 1.00 | 1.00 |
85–75% green | 0.00 | 0.00 | 100.00 | 0.00 | 1.00 | 0.96 | 1.00 | 0.99 |
75–50% green | 0.00 | 0.00 | 98.55 | 88.24 | 1.00 | 0.97 | 1.00 | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Revilla, I.; Hernández Jiménez, M.; Martínez-Martín, I.; Valderrama, P.; Rodríguez-Fernández, M.; Vivar-Quintana, A.M. The Potential Use of Near Infrared Spectroscopy (NIRS) to Determine the Heavy Metals and the Percentage of Blends in Tea. Foods 2024, 13, 450. https://doi.org/10.3390/foods13030450
Revilla I, Hernández Jiménez M, Martínez-Martín I, Valderrama P, Rodríguez-Fernández M, Vivar-Quintana AM. The Potential Use of Near Infrared Spectroscopy (NIRS) to Determine the Heavy Metals and the Percentage of Blends in Tea. Foods. 2024; 13(3):450. https://doi.org/10.3390/foods13030450
Chicago/Turabian StyleRevilla, Isabel, Miriam Hernández Jiménez, Iván Martínez-Martín, Patricia Valderrama, Marta Rodríguez-Fernández, and Ana M. Vivar-Quintana. 2024. "The Potential Use of Near Infrared Spectroscopy (NIRS) to Determine the Heavy Metals and the Percentage of Blends in Tea" Foods 13, no. 3: 450. https://doi.org/10.3390/foods13030450
APA StyleRevilla, I., Hernández Jiménez, M., Martínez-Martín, I., Valderrama, P., Rodríguez-Fernández, M., & Vivar-Quintana, A. M. (2024). The Potential Use of Near Infrared Spectroscopy (NIRS) to Determine the Heavy Metals and the Percentage of Blends in Tea. Foods, 13(3), 450. https://doi.org/10.3390/foods13030450