Fermented Mare Milk and Its Microorganisms for Human Consumption and Health
Abstract
:1. Introduction
2. Microorganisms in Fermented Mare Milk Products
2.1. Lactic Acid Bacteria
2.2. Yeasts
3. Potential Functional Properties of Microorganisms in Fermented Mare Milk for Human Consumption and Health
3.1. Survival of LAB through the Human Digestive Tract and Cholesterol Reduction Effect
3.2. Antioxidative Effect
3.3. Immuno-Modulation Function
3.4. ACE Inhibitory Activity
3.5. Antibacterial Activity of LAB and Yeasts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Q.; Wang, J.; Guo, Z.; Yan, L.; Zhang, Q.; Chen, W.; Liu, X.M.; Zhang, H. Fermentation characteristics and transit tolerance of Lactobacillus casei Zhang in reconstituted mare milk during storage. Int. J. Dairy Technol. 2009, 62, 249–254. [Google Scholar] [CrossRef]
- Foekel, C.; Schubert, R.; Kaatz, M.; Schmidt, I.; Bauer, A.; Hipler, U.C.; Vogelsang, H.; Rabe, K.; Jahreis, G. Dietetic effects of oral intervention with mare’s milk on the Severity Scoring of Atopic Dermatitis on faecal microbiota and on immunological parameters in patients with atopic dermatitis. Int. J. Food Sci. Nutr. 2009, 60, 41–52. [Google Scholar] [CrossRef]
- Schubert, R.; Kahle, C.; Kauf, E.; Hofmann, J.; Hobert, I.; Gruhn, B.; Häfer, R.; Vogelsang, H.; Jahreis, G. Dietetic efficacy of mare’s milk for patients with chronic inflammatory bowel diseases—Clinical study. Ernährung 2009, 33, 314–321. [Google Scholar]
- Kushugulova, A.; Kozhakhemtov, S.; Sattybayeva, R.; Nurgozhina, A.; Ziyat, A.; Yadav, H.; Marotta, F. Mare’s milk as a prospective functional product. Funct. Foods Health Dis. 2018, 8, 537–543. [Google Scholar] [CrossRef]
- Martuzzi, F.; Doreau, M. Mare milk composition: Recent findings about protein fractions and mineral content. In Nutrition and Feeding of the Broodmare; Miraglia, N., Martin-Rosset, W., Eds.; EAAP Scientific Series; Wageningen Pers: Wageningen, The Netherlands, 2006; Volume 120, pp. 65–76. [Google Scholar]
- Uniacke-Lowe, T.; Huppertz, T.; Fox, P.F. Equine milk proteins: Chemistry, structure and nutritional significance. Int. Dairy J. 2010, 20, 609–629. [Google Scholar] [CrossRef]
- Doreau, M.; Martuzzi, F. Fat content and composition of mare’s milk. In Nutrition and Feeding of the Broodmare; Miraglia, N., Martin-Rosset, W., Eds.; EAAP Scientific Series; Wageningen Pers: Wageningen, The Netherlands, 2006; Volume 120, pp. 77–87. [Google Scholar]
- Curadi, M.C.; Giampietro, P.G.; Lucenti, P.; Orlandi, M. Use of mare milk in pediatric allergology. In Proceedings of the XIV Congress of Associazione Scientifica di Produzione Animale (ASPA), Firenze, Italy, 12–15 June 2001; pp. 647–649. [Google Scholar]
- Malacarne, M.; Martuzzi, F.; Summer, A.; Mariani, P. Nitrogen fractions and fat composition of mare milk: Some nutritional remarks with reference to woman and cow milk. Int. Dairy J. 2002, 12, 869–877. [Google Scholar] [CrossRef]
- Tidona, F.; Sekse, C.; Criscione, A.; Jacobsen, M.; Bordonaro, S.; Marletta, D.; Vegarud, G.E. Antimicrobial effect of donkeys’ milk digested in vitro with human gastrointestinal enzymes. Int. Dairy J. 2011, 21, 158–165. [Google Scholar] [CrossRef]
- Muraro, M.A.; Giampietro, P.G.; Galli, E. Soy formulas and nonbovine milk. Ann. Allergy Asthma Immunol. 2002, 89 (Suppl. S1), 97–101. [Google Scholar] [CrossRef]
- Monti, G.; Bertino, E.; Muratore, M.C.; Coscia, A.; Cresi, F.; Silvestro, L.; Fabris, C.; Fortunato, D.; Giuffrida, M.G.; Conti, A. Efficacy of donkey’s milk in treating highly problematic cow’s milk allergic children: An in vivo and in vitro study. Pediatr. Allergy Immunol. 2007, 18, 258–264. [Google Scholar] [CrossRef] [PubMed]
- La Torre, G.L.; Saitta, M.; Potortì, A.G.; Di Bella, G.; Dugo, G. High performance liquid chromatography coupled with atmospheric pressure ionization mass spectrometry for sensitive determination of bioactive amines in donkey milk. J. Chromatogr. A 2010, 1217, 5215–5224. [Google Scholar] [CrossRef] [PubMed]
- Salimei, E.; Fantuz, F. Equid milk for human consumption. Int. Dairy J. 2012, 24, 130–142. [Google Scholar] [CrossRef]
- Bornaz, S.; Guizani, N.; Sammari, J.; Allouch, W.; Sahli, A.; Attia, H. Physicochemical properties of fermented Arabian mares’ milk. Int. Dairy J. 2010, 20, 500–505. [Google Scholar] [CrossRef]
- Wang, Y.G.; Yan, Y.S.; Xu, J.J.; Du, R.F.; Flatz, S.D.; Kühnau, W.; Flatz, G. Prevalence of primary adult lactose malabsorption in three populations of northern China. Hum. Genet. 1984, 67, 103–106. [Google Scholar]
- Itan, Y.; Powell, A.; Beaumont, M.A.; Burger, J.; Thomas, M.G. The origins of lactase persistence in Europe. PLoS Comput. Biol. 2009, 5, e1000491. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; Chen, X.; Liu, Y.; Zhang, H.; Sun, T. Identification of angiotensin I-converting enzyme inhibitory peptides from koumiss, a traditional fermented mare’s milk. J. Dairy Sci. 2010, 93, 884–892. [Google Scholar] [CrossRef]
- Kondybayev, A.; Loiseau, G.; Achir, N.; Mestres, C.; Konuspayeva, G. Fermented mare milk product (Qymyz, Koumiss). Int. Dairy J. 2021, 119, 105065. [Google Scholar] [CrossRef]
- Konuspayeva, G.; Baubekova, A.; Akhmetsadykova, S.; Faye, B. Traditional dairy fermented products in Central Asia. Int. Dairy J. 2023, 137, 105514. [Google Scholar] [CrossRef]
- Sudun, W.; Arakawa, K.; Miyamoto, M.; Miyamoto, T. Interaction between lactic acid bacteria and yeasts in airag, an alcoholic fermented milk. Anim. Sci. J. 2013, 84, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, R.; Kawai, T.; Bat-Oyun, T.; Shinoda, M.; Morinaga, Y. Electrical conductivity, pH, minerals, and sensory evaluation of airag (Fermented Mare’s Milk). Foods 2020, 9, 333. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Adachi, Y.; Ogawa, Y. Classification of lactic acid bacteria isolated from chigee and mare milk collected in Inner Mongolia. Anim. Sci. J. 2004, 75, 245–252. [Google Scholar] [CrossRef]
- Ni, H.J.; Bao, H.H.; Sun, T.S.; Chen, X.; Zhang, H.P. Identification and biodiversity of yeasts isolated from koumiss in Xinjiang of China. Wei Sheng Wu Xue Bao (Acta Microbiol. Sin.) 2007, 47, 578–582. [Google Scholar]
- Alais, C. Scienza del Latte, 4th ed.; Tecniche Nuove: Milano, Italy, 2000; p. 717. [Google Scholar]
- Outram, A.K.; Stear, N.A.; Bendrey, R.; Olsen, S.; Kasparov, A.; Zaibert, V.; Thorpe, N.; Evershed, R.P. The earliest horse harnessing and milking. Science 2009, 323, 1332–1335. [Google Scholar] [CrossRef] [PubMed]
- Dugan, F.M. Dregs of our forgotten ancestors. Fermentative microorganism in the prehistory of Europe, the steppes and Indo-Iranian Asia and their contemporary use in traditional and probiotic beverages. Fungi 2009, 24, 16–39. [Google Scholar]
- Siddiqui, S.A.; Salman, S.H.M.; Redha, A.A.; Zannou, O.; Chabi, I.B.; Oussou, K.F.; Bhowmik, S.; Nirmal, N.P.; Maqsood, S. Physicochemical and nutritional properties of different non-bovine milk and dairy products: A review. Int. Dairy J. 2023, 148, 105790. [Google Scholar] [CrossRef]
- Martuzzi, F.; Vaccari Simonini, F. Advances on equine milk and derivatives for human consumption. In Proceedings of the 61st Annual Meeting of the European Association of Animal Production, Heraclion, Greece, 23–27 August 2010; Wageningen Academic Publisher: Wageningen, The Netherlands, 2010; p. 40. [Google Scholar]
- Quigley, L.; O’Sullivan, O.; Stanton, C.; Beresford, T.P.; Ross, R.P.; Fitzgerald, G.F.; Cotter, P.D. The complex microbiota of raw milk. FEMS Microbiol. Rev. 2013, 37, 664–698. [Google Scholar] [CrossRef] [PubMed]
- Mackie, R.I.; Abdelghani, S.; Gaskins, H.R. Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr. 1999, 69, 1035S–1045S. [Google Scholar] [CrossRef] [PubMed]
- Ward, T.L.; Hosid, S.; Ioshikhes, I.; Altosaar, I. Human milk metagenome: A functional capacity analysis. BMC Microbiol. 2013, 13, 116. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, L.A.; Lawrence, T.J. Development of the equine gastrointestinal tract. In Advances in Equine Nutrition IV; Pagan, J.D., Ed.; Nottingham University Press—Kentucky Equine Research: Versailles, Kentucky, USA, 2008; pp. 173–184. [Google Scholar]
- Kondybayev, A.; Konuspayeva, G.; Strub, C.; Loiseau, G.; Mestres, C.; Grabulos, J.; Manzano, M.; Akhmetsadykova, S.; Achir, N. Growth and metabolism of Lacticaseibacillus casei and Lactobacillus kefiri isolated from qymyz, a traditional fermented central Asian beverage. Fermentation 2022, 8, 367. [Google Scholar] [CrossRef]
- Guo, L.; Xu, W.; Li, C.; Ya, M.; Guo, Y.; Qian, J.; Zhu, J. Production technology, nutritional, and microbiological investigation of traditionally fermented mare milk (Chigee) from Xilin Gol in China. Food Sci. Nutr. 2020, 1, 257–264. [Google Scholar] [CrossRef]
- Viljoen, B. Yeast ecological interactions. Yeast-yeast, yeast-bacteria, yeast-fungi interactions and yeasts as biocontrol agents. In Yeasts in Food and Beverages; Querol, A., Fleet, G., Eds.; Springer: Berlin, Germany, 2006; pp. 83–110. [Google Scholar]
- Mu, Z.; Yang, X.; Yuan, H. Detection and identification of wild yeast in Koumiss. Food Microbiol. 2012, 31, 301–308. [Google Scholar] [CrossRef]
- Kerr, T.J.; McHale, B.B. Applications in General Microbiology: A Laboratory Manual, 6th ed.; Hunter Textbooks: Winston-Salem, NC, USA, 2001; p. 398. [Google Scholar]
- Danova, S.; Petrov, K.; Pavlov, P.; Petrova, P. Isolation and characterization of Lactobacillus strains involved in koumiss fermentation. Int. J. Dairy Technol. 2005, 58, 100–105. [Google Scholar] [CrossRef]
- Seiler, H. A review: Yeasts in kefir and koumiss. Milchwissenschaft 2003, 58, 392–396. [Google Scholar]
- Lozovich, S. Medical Uses of Whole and Fermented mare Milk in Russia. Cult. Dairy Prod. J. 1995, 30, 18–21. [Google Scholar]
- Zhang, L. Studies on orthogonal test of blend fermenting of three phases of intermediate culture of mare’s milk and flavour evaluation of koumiss. China Dairy Ind. 1990, 18, 246–251. [Google Scholar]
- Di Cagno, R.; Tamborrino, A.; Gallo, G.; Leone, C.; de Angelis, M.; Faccia, M.; Amirante, P.; Gobbetti, M. Uses of mare’s milk in manufacture of fermented milks. Int. Dairy J. 2004, 14, 767–775. [Google Scholar] [CrossRef]
- Akuzawa, R.; Miura, T.; Surono, I.S. Fermented Milks | Asian Fermented Milks. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Fox, P.F., McSweeney, P.L.H., Eds.; Academic Press: San Diego, CA, USA, 2011; Volume 2, pp. 507–511. [Google Scholar]
- Tang, H.; Ma, H.; Hou, Q.; Li, W.; Xu, H.; Liu, W.; Sun, Z.; Haobisi, H.; Menghe, B. Profiling of koumiss microbiota and organic acids and their effects on koumiss taste. BMC Microbiol. 2020, 20, 85. [Google Scholar] [CrossRef] [PubMed]
- Uchida, K.; Hirata, M.; Motoshima, H.; Urashima, T.; Arai, I. Microbiota of ‘airag’, ‘tarag’ and other kinds of fermented dairy products from nomad in Mongolia. Anim. Sci. J. 2007, 78, 650–658. [Google Scholar] [CrossRef]
- Meng, Y.; Chen, X.; Sun, Z.; Li, Y.; Chen, D.; Fang, S.; Chen, J. Exploring core microbiota responsible for the production of volatile flavor compounds during the traditional fermentation of Koumiss. LWT Food Sci. Technol. 2021, 135, 110049. [Google Scholar] [CrossRef]
- Felis, G.E.; Dellaglio, F. Taxonomy of Lactobacilli and Bifidobacteria. Curr. Issues Intest. Microbiol. 2007, 8, 44–61. [Google Scholar]
- Wang, J.; Chen, X.; Liu, W.; Yang, M.; Airidengcaicike; Zhang, H. Identification of Lactobacillus from koumiss by conventional and molecular methods. Eur. Food Res. Technol. 2008, 227, 1555–1561. [Google Scholar] [CrossRef]
- de Vos, W. Systems solutions by lactic acid bacteria: From paradigms to practice. Microb. Cell Factories 2011, 10 (Suppl. S1), S2. [Google Scholar] [CrossRef]
- Huys, G.; Botteldoorn, N.; Delvigne, F.; De Vuyst, L.; Heyndrickx, M.; Pot, B.; Dubois, J.J.; Daube, G. Microbial characterization of probiotics—Advisory report of the Working Group “8651 Probiotics” of the Belgian Superior Health Council (SHC). Mol. Nutr. Food Res. 2013, 57, 1479–1504. [Google Scholar] [CrossRef]
- Burentegusi; Miyamoto, T.; Nakamura, S.; Nozaka, Y.; Aoishi, A. Identification of Lactic Acid bacteria isolated from fermented mare’s milk “chigee” in Inner Mongolia China. Nihon Chikusan Gakkaiho 2002, 73, 441–448. [Google Scholar] [CrossRef]
- Menghe, B.; Wu, R.; Wang, L.; Yang, X.; Xu, J.; Dong, Y.; Sun, Z.; Zang, H. Isolation and identification of Lactobacillus from koumiss collected in Inner Mongolia and People’s Republic of Mongolia. China Dairy Ind. 2004, 32, 6–11. [Google Scholar]
- Shuangquan; Burentegusi; Yu, B.; Miyamoto, T. Microflora in traditional starter cultures for fermented milk hurunge from Inner Mongolia China. Anim. Sci. J. 2006, 77, 235–241. [Google Scholar] [CrossRef]
- Watanabe, K.; Fujimoto, J.; Sasamoto, M.; Dugersuren, J.; Tumursuh, T.; Demberel, S. Diversity of lactic acid bacteria and yeasts in Airag and Tarag traditionally fermented milk products of Mongolia. World J. Microbiol. Biotechnol. 2008, 24, 1313–1325. [Google Scholar] [CrossRef]
- Wu, R.; Wang, L.; Wang, J.; Li, H.; Menghe, B.; Wu, J.; Guo, M.; Zhang, H. Isolation and preliminary selection of lactobacilli from koumiss in Inner Mongolia. J. Basic Microbiol. 2009, 49, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.H.; Liu, W.J.; Zhang, J.C.; Yu, J.; Gao, W.; Jiri, M.; Menghe, B.; Sun, T.S.; Zhang, H.P. Identification and characterization of the dominant lactic acid bacteria isolated from traditional fermented milk in Mongolia. Folia Microbiol. 2010, 55, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Takeda, S.; Yamasaki, K.; Takeshita, M.; Kikuchi, Y.; Tsend-Ayush, C.; Dashnyam, B.; Ahhmed, A.M.; Kawahara, S.; Muguruma, M. The investigation of probiotic potential of lactic acid bacteria isolated from traditional Mongolian dairy products. Anim. Sci. J. 2011, 82, 571–579. [Google Scholar] [CrossRef]
- Choi, S. Characterization of airag collected in Ulaanbaatar, Mongolia with emphasis on isolated lactic acid bacteria. J. Anim. Sci. Technol. 2016, 58, 10. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Ya, M.; Guo, Y.S.; Li, C.D.; Sun, J.P.; Zhu, J.J.; Qian, J.P. Study of bacterial and fungal community structures in traditional koumiss from Inner Mongolia. Int. Dairy Sci. 2019, 102, 1972–1984. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, J.; Yuan, J.; Cong, L.; Dang, N.; Sun, T.; Liu, W. Evaluation of lactic acid bacterial communities in spontaneously-fermented dairy products from Tajikistan, Kyrgyzstan and Uzbekistan using culture-dependent and culture-independent methods. Int. Dairy J. 2022, 130, 105281. [Google Scholar] [CrossRef]
- Oleinikova, Y.; Alybayeva, A.; Daugaliyeva, S.; Alimzhanova, M.; Ashimuly, K.; Yermekbay, Z.; Khadzhibayeva, I.; Saubenova, M. Development of an antagonistic active beverage based on a starter including Acetobacter and assessment of its volatile profile. Int. Dairy J. 2024, 148, 105789. [Google Scholar] [CrossRef]
- Wu, R.; Zhang, H.; Menghe, B. 16S rDNA sequence and cluster analysis of Lb. casei Zhang and ZL12-1 isolated from koumiss. China Dairy Ind. 2005, 33, 4–9. [Google Scholar]
- Hao, Y.; Zhao, L.; Zhang, H.; Zhai, Z.; Huang, Y.; Liu, X.; Zhang, L. Identification of the bacterial biodiversity in koumiss by denaturing gradient gel electrophoresis and species-specific polymerase chain reaction. J. Dairy Sci. 2010, 93, 1926–1933. [Google Scholar] [CrossRef]
- Slattery, L.; O’Callaghan, J.; Fitzgerald, G.F.; Beresford, T.; Ross, R.P. Invited review: Lactobacillus helveticus—A thermophilic dairy starter related to gut bacteria. J. Dairy Sci. 2010, 93, 4435–4454. [Google Scholar] [CrossRef]
- Foster, L.M.; Tompkins, T.; Dahl, W. A comprehensive post-market review of studies on a probiotic product containing Lactobacillus helveticus R0052 and Lactobacillus rhamnosus R0011. Benef. Microbes 2011, 2, 319–334. [Google Scholar] [CrossRef] [PubMed]
- Sedláček, I.; Yansanjav, A.; Nováková, D.; Švec, P. Ribotyping of Lactobacillus helveticus from the Koumiss. In Proceedings of the Indonesian Society for Microbiology and Indonesian Society for Lactic Acid Bacteria, Sanur, Bali, Indonesia, 22 October 2015; p. 151. [Google Scholar]
- Wu, Y.; Li, Y.; Gesudu, Q.; Zhang, J.; Sun, Z.; Halatu, H.; Menghe, B.; Liu, W. Bacterial composition and function during fermentation of Mongolia koumiss. Food Sci. Nutr. 2021, 9, 4146–4155. [Google Scholar] [CrossRef] [PubMed]
- You, L.; Yang, C.; Jin, H.; Kwok, L.Y.; Sun, Z.; Zhang, H. Metagenomic features of traditional fermented milk products. Lwt 2022, 155, 112945. [Google Scholar] [CrossRef]
- Yao, G.; Yu, J.; Hou, Q.; Hiu, W.; Liu, W.; Kwok, L.; Menghe, B.; Sun, T.; Zhang, H.; Zhang, W. A perspective study of koumiss microbiome by metagenomics analysis based on single-cell amplification technique. Front. Microbiol. 2017, 8, 165. [Google Scholar] [CrossRef] [PubMed]
- Oberg, T.S.; McMahon, D.J.; Culumber, M.D.; McAuliffe, O.; Oberg, C.J. Invited review: Review of taxonomic changes in dairy-related lactobacilli. J. Dairy Sci. 2022, 105, 2750–2770. [Google Scholar] [CrossRef]
- Wang, L.; Xu, J.; Yun, Y.; Wu, R.; Menghe, B.; Zhang, H. Assessment of potential probiotic properties of Lactobacillus isolated from traditionally home-made koumiss in Mongolia. China Dairy Ind. 2005, 33, 4–10. [Google Scholar]
- Xu, J.; Yun, Y.; Zhang, W.; Shao, Y.; Menghe, B.; Zhang, H. Fermentation properties of 4 strains of Lactobacillus casei isolated from traditionally home-made koumiss in Inner Mongolia of China. China Dairy Ind. 2006, 34, 23–27. [Google Scholar]
- Zuo, F.L.; Feng, X.J.; Chen, L.L.; Chen, S.W. Identification and partial characterization of lactic acid bacteria isolated from traditional dairy products produced by herders in the western Tianshan Mountains of China. Lett. Appl. Microbiol. 2014, 59, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Myamoto, M.; Ueno, H.M.; Watanabe, M.; Tatsuna, Y.; Seto, Y.; Miyamoto, T.; Nakajima, H. Distinctive proteolytic activity of cell envelope proteinase of Lactobacillus helveticus isolated from airag, a traditional Mongolian fermented mare’s milk. Int. J. Food Microbiol. 2015, 197, 65–71. [Google Scholar] [CrossRef]
- Watanabe, K.; Makino, H.; Sasamoto, M.; Kudo, Y.; Fujimoto, J.; Demberel, S. Bifidobacterium mongoliense sp. nov. from airag a traditional fermented mare’s milk product from Mongolia. Int. J. Syst. Evol. Microbiol. 2009, 59, 1535–1540. [Google Scholar] [CrossRef]
- Montanari, G.; Zambonelli, C.; Grazia, L.; Kamesheva, G.K.; Shigaeva, M.K. Saccharomyces unisporus as the principal alcoholic fermentation microorganism of traditional koumiss. J. Dairy Res. 1996, 63, 327–331. [Google Scholar] [CrossRef]
- Rakhmanova, A.; Wang, T.; Xing, G.; Ma, L.; Hong, Y.; Lu, Y.; Xin, L.; Xin, W.; Zhu, Q.; Lü, X. Isolation and identification of microorganisms in Kazakhstan koumiss and their application in preparing cow-milk koumiss. J. Dairy Sci. 2020, 104, 151–166. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Miyamoto, T. Isolation and identification of yeasts in chigee, fermented mare’s milk, a traditional drink of Inner Mongolia, China. Milk Sci. 2010, 59, 231–236. [Google Scholar]
- Guarner, F.; Schaafsma, G.J. Probiotics. Int. J. Food Microbiol. 1998, 39, 237–238. [Google Scholar] [CrossRef]
- Choi, J.; Sabikhi, L.; Hassan, A.; Anand, S. Bioactive peptides in dairy products. Int. J. Dairy Technol. 2012, 65, 11–12. [Google Scholar] [CrossRef]
- Del Piano, M.; Morelli, L.; Strozzi, G.P.; Allesina, S.; Barba, M.; Deidda, F.; Lorenzini, P.; Ballare, M.; Montino, F.; Orsello, M.; et al. Probiotics, from research to consumer. Dig. Liver Dis. 2006, 38 (Suppl. S2), S248–S255. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, J.; Yan, L.; Chen, W.; Zhang, H. In vitro comparison of probiotic properties of Lactobacillus casei Zhang a potential new probiotic with selected probiotic strains. LWT Food Sci. Technol. 2009, 42, 1640–1646. [Google Scholar] [CrossRef]
- Xue, W.; Yuan, X.; Ji, Z.; Li, H.; Yao, Y. Nutritional ingredients and prevention of chronic diseases by fermented koumiss: A comprehensive review. Front. Nutr. 2023, 10, 1270920. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, D.; Sun, Z.; Wu, R.; Chen, X.; Chen, W.; Meng, H.; Hu, S.; Zhang, H. Complete genome sequence of Lactobacillus casei Zhang, a new probiotic strain isolated from traditional homemade koumiss in Inner Mongolia, China. J. Bacteriol. 2010, 192, 5268–5269. [Google Scholar] [CrossRef]
- He, Q.; Hou, Q.; Wang, Y.; Shen, L.; Sun, Z.; Zhang, H.; Liong, M.T.; Kwok, L.Y. Long-term administration of Lactobacillus casei Zhang stabilized gut microbiota of adults and reduced gut microbiota age index of older adults. J. Funct. Foods 2020, 64, 103682. [Google Scholar] [CrossRef]
- Wu, R.; Sun, Z.; Wu, J.; Meng, H.; Zhang, H. Effect of bile salts stress on protein synthesis of Lactobacillus casei Zhang revealed by 2-dimensional gel electrophoresis. J. Dairy Sci. 2010, 93, 3858–3868. [Google Scholar] [CrossRef]
- Liong, M.T.; Shah, N.P. Bile salt deconjugation ability, bile salt hydrolase activity and cholesterol co-precipitation ability of lactobacilli strains. Int. Dairy J. 2005, 15, 391–398. [Google Scholar] [CrossRef]
- Chen, X.; Sun, Z.; Meng, H.; Zhang, H. The acid tolerance association with expression of H+-ATPase in Lactobacillus casei. Int. J. Dairy Technol. 2009, 62, 272–276. [Google Scholar] [CrossRef]
- Pan, D.D.; Zeng, X.Q.; Yan, Y.T. Characterisation of Lactobacillus fermentum SM-7 isolated from koumiss, a potential probiotic bacterium with cholesterol-lowering effects. J. Sci. Food Agric. 2011, 91, 512–518. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, H.; Chen, X.; Chen, Y.; Menghebilige; Bao, Q. Selection of potential probiotic lactobacilli for cholesterol-lowering properties and their effect on cholesterol metabolism in rats fed a high-lipid diet. J. Dairy Sci. 2012, 95, 1645–1654. [Google Scholar] [CrossRef]
- Zhang, H.; Menghe, B.; Wang, J.; Sung, T.; Xu, J.; Wang, L.; Yun, Y.; Wu, R. Assessment of potential probiotic properties of casei Zhang isolated from traditionally home-made koumiss in Mongolia. China Dairy Ind. 2006, 34, 4–10. [Google Scholar]
- Bilighe, M.; Liu, W.; Rina, W.; Wang, L.; Sun, T.; Wang, J.; Li, H.; Zhang, H. Evaluation of potential probiotics properties of the screened Lactobacilli isolated from home-made koumiss in Mongolia. Ann. Microbiol. 2009, 59, 493–498. [Google Scholar] [CrossRef]
- Zhong, Z.; Zhang, W.; Du, R.; Meng, H.; Zhang, H. Lactobacillus casei Zhang stimulates lipid metabolism in hypercholesterolemic rats by affecting gene expression in the liver. Eur. J. Lipid Sci. Technol. 2012, 114, 244–252. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Liu, W.; Zhang, H.; Sun, Z. Metagenomic and metatranscriptomic profiling of Lactobacillus casei Zhang in the human gut. NPJ Biofilms Microbiomes 2021, 7, 55. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.; Li, C.; Liu, Y.; Li, W.; Chen, Y.; Siqinbateer; Bao, Y.; Saqila, W.; Zhang, H.; Menghe, B.; et al. Koumiss consumption modulates gut microbiota, increases plasma high density cholesterol, decreases immunoglobulin G and albumin. J. Funct. Foods 2019, 52, 469–478. [Google Scholar] [CrossRef]
- Menghe, B.; Zhou, Y.; Zhang, H.; Chen, Y.; Wang, L.; Xu, J.; Zhou, D. Antioxidative effect of Lactobacillus MG2-1 in koumiss. China Dairy Ind. 2005, 33, 21–24. [Google Scholar]
- Abdel-Salam, A.M.; Al-Dekheil, A.; Babkr, A.; Farahna, M.; Mousa, H.M. High fiber probiotic fermented mare’s milk reduces the toxic effects of mercury in rats. N. Am. J. Med. Sci. 2010, 2, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Rong, J.; Zheng, H.; Liu, M.; Hu, X.; Wang, T.; Zhang, X.; Jin, F.; Wang, L. Probiotic and anti-inflammatory attributes of an isolate Lactobacillus helveticus NS8 from Mongolian fermented koumiss. BMC Microbiol. 2015, 15, 196. [Google Scholar] [CrossRef] [PubMed]
- Ya, T.; Su, Y.; Zhang, H. Effect of Lb. casei Zhang on koumiss on the production of cytokines in sera of mouse. Food Sci. 2006, 27, 488–491. [Google Scholar]
- Ya, T.; Zhang, Q.; Chu, F.; Merritt, J.; Menhe, B.; Sun, T.; Du, R.; Zhang, H. Immunological evaluation of Lactobacillus casei Zhang, a newly isolated strain from koumiss in Inner Mongolia, China. BMC Immunol. 2008, 9, 68. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Xie, J.; Zhang, Y.; Wang, J.; Sun, X.; Zhang, H. Protective effects of probiotic Lactobacillus casei Zhang against endotoxin- and D-galactosamine-induced liver injury in rats via anti-oxidative and anti-inflammatory capacities. Int. Immunopharmacol. 2013, 15, 30–37. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, J.; Wang, N.; Li, Y.; Sun, X.; Zhang, Y.; Zhang, H. Lactobacillus casei Zhang modulate cytokine and Toll-like receptor expression and beneficially regulate poly I:C-induced immune responses in RAW264.7 macrophages. Microbiol. Immunol. 2013, 57, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xie, J.; Li, Y.; Dong, S.; Liu, H.; Chen, J.; Wang, Y.; Zhao, S.; Zhang, Y.; Zhang, H. Probiotic Lactobacillus casei Zhang reduces pro-inflammatory cytokine production and hepatic inflammation in a rat model of acute liver failure. Eur. J. Nutr. 2016, 55, 821–831. [Google Scholar] [CrossRef] [PubMed]
- Özer, B.H.; Kirmaci, H.A. Functional milks and dairy beverages. Int. J. Dairy Technol. 2009, 63, 1–15. [Google Scholar]
- Sun, T.S.; Zhao, S.P.; Wang, H.K.; Cai, C.K.; Chen, Y.F.; Zhang, H.P. ACE-inibitory activity and gamma-aminobutyric acid content of fermented skim milk by Lactobacillus helveticus isolated from Xinjiang koumiss in China. Eur. Food Res. Technol. 2009, 228, 607–612. [Google Scholar] [CrossRef]
- Aquilanti, L.; Carbini, A.; Strappati, R.; Santarelli, S.; Silvestri, G.; Garofalo, C.; Clementi, F. Characterisation of Lactobacillus helveticus strains producing antihypertensive peptides by RAPD and inverse-PCR of IS elements. Benef. Microbes 2010, 1, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Wulijideligen; Asahina, T.; Hara, K.; Arakawa, K.; Nakano, H.; Miyamoto, T. Production of bacteriocin by Leuconostoc mesenteroides 406 isolated from Mongolian fermented mare’s milk, airag. Anim. Sci. J. 2012, 83, 704–711. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zhang, C.; Wang, C.; Lv, X.; Chen, Z.; Ding, Z.; Wang, Y.; Cui, H. A screening of class IIA bacteriocins produced by lactic acid bacteria isolated from fermented mare milk. J. Food Saf. 2013, 33, 433–439. [Google Scholar] [CrossRef]
- Batdorj, B.; Dalgalarrondo, M.; Choiset, Y.; Pedroche, J.; Métro, F.; Prévost, H.; Chobert, J.M.; Haertlé, T. Purification and characterization of two bacteriocins produced by lactic acid bacteria isolated from Mongolian airag. J. Appl. Microbiol. 2006, 101, 837–848. [Google Scholar] [CrossRef]
- Li-Li, M.; Xiang, D.J. Effect of LuxS/AI-2-mediated quorum sensing system on bacteriocin production of Lactobacillus plantarum NMD-17. Folia Microbiol. 2023, 68, 855–866. [Google Scholar]
- Xu, C.; Fu, Y.; Liu, F.; Liu, Z.; Ma, J.; Jiang, R.; Song, C.; Jiang, Z.; Hou, J. Purification and antimicrobial mechanism of a novel bacteriocin produced by Lactobacillus rhamnosus 1.0320. LWT Food Sci. Technol. 2021, 137, 110338. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, C.; Hou, W.; Wang, X.; Gali, B.; Huasai, S.; Yang, S.; Wu, A.; Zhao, Y.; Wu, Y.; et al. Effects of antibacterial compounds produced by Saccharomyces cerevisiae in Koumiss on pathogenic Escherichia coli O8 and its cell surface characteristics. J. Integr. Agric. 2017, 16, 742–748. [Google Scholar] [CrossRef]
- Chen, Y.; Aorigele, C.; Wang, C.; Simujide, H.; Yang, S. Screening and extracting mycocin secreted by yeast isolated from koumiss and their antibacterial effect. J. Food Nutr. Res. 2015, 3, 52–56. [Google Scholar] [CrossRef]
1 | 2 | Main LAB Species | Identification Method | Product | Sampling Location | References |
---|---|---|---|---|---|---|
10 | 258 | Enterococcus faecium, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus plantarum, Leuconostoc mesenteroides subsp. dextranicum, Streptococcus thermophilus | Growth condition, gas production, ammonia production, sugar fermentation, hippurate hydrolysis | chigee | Inner Mongolia | Burentegusi et al., 2002 [52] |
14 | 117 | Lactobacillus pentosus, Lactobacillus plantarum, Lactococcus lactis subsp. cremoris | Chemotyping, sugar fermentation, 16S rDNA sequencing | chigee | Inner Mongolia (Silinguole, Wulanchabu) | An et al., 2004 [23] |
5 | 30 | Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus plantarum | Not mentioned | koumiss | Mongolia | Menghe et al., 2004 [53] |
21 | 80 | Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus coryniformis, Lactobacillus curvatus, Lactobacillus fermentum, Lactobacillus kefiranofaciens, Lactobacillus paracasei, Lactobacillus plantarum, Weissella kandleri, Weissella paramesenteroides | Not mentioned | koumiss | Inner Mongolia | Menghe et al., 2004 [53] |
2 | 7 | Lactobacillus buchneri, Lactobacillus plantarum, Lactobacillus salivarius | Growth condition, gas production, ammonia production, sugar fermentation, hippurate hydrolysis | lyophilized koumiss | Mongolia | Danova et al., 2005 [39] |
3 | 66 | Lactobacillus acetotolerans, Lactobacillus casei, Lactobacillus homohiochii, Lactobacillus kefiranofaciens, Lactobacillus plantarum, Lactococcus lactis subsp. cremoris, Lactococcus lactis spp. lactis, Lactococcus raffinolactis, Leuconostoc mesenteroides subsp. cremoris | Growth condition, gas production, sugar fermentation | hurunge | Inner Mongolia | Shungquan et al., 2006 [54] |
3 | Lactobacillus farciminis, Lactobacillus helveticus, Lactobacillus kefiri, Lactobacillus paracasei, Lactobacillus plantarum | sugar fermentation, 16S rDNA sequencing | airag | Mongolia | Uchida et al., 2007 [46] | |
12 | Lactobacillus casei, Lactobacillus fermentum, Lactobacillus helveticus, Lactobacillus plantarum | Physiological tests and 16S rDNA sequencing | koumiss | China | Wang et al., 2008 [49] | |
22 | 183 | Enterococcus faecium, Lactobacillus casei, Lactobacillus diolivorans, Lactobacillus farciminis, Lactobacillus helveticus, Lactobacillus hilgardii, Lactobacillus kefiranofaciens, Lactobacillus kefiri, Lactobacillus parafarranginis, Lactobacillus plantarum, Lactococcus lactis subsp. lactis, Lactococcus spp, Leuconostoc mesenteroides, Leuconostoc pseudomesenteroides, Streptococcus thermophilus | RAPD-PCR multiplex and 16S rDNA sequencing | airag | Mongolia | Watanabe et al., 2008 [55] |
16 | 48 | Lactobacillus casei, Lactobacillus coryniformis, Lactobacillus curvatus, Lactobacillus fermentum, Lactobacillus helveticus, Lactobacillus kefiranofaciens, Lactobacillus paracasei, Lactobacillus plantarum, Weissella kandleri | Growth condition, sugar fermentation, acid resistance, bile tolerance, 16S rDNA sequencing | koumiss | Inner Mongolia | Wu et al., 2009 [56] |
5 | 26 | Lactobacillus casei, Lactobacillus helveticus, Lactobacillus plantarum | Growth condition, gas production, ammonia production, sugar fermentation, lactic acid isomers, 16S rRNA sequencing | airag | Mongolia | Sun et al., 2010 [57] |
7 | 7 | Lactobacillus delbrueckii subsp. Lactis, Lactobacillus fermentum, Lactobacillus helveticus, Lactobacillus kefiri, Lactobacillus pentosus, Lactobacillus plantarum, Lactobacillus sakei, Lactococcus lactis subsp. lactis, Leuconostoc citreum, Leuconostoc garlicum, Weissella confusa, Weissella viridescens | 16S rDNA sequencing, acid resistance, bile tolerance, adhesion to Caco2 cells, RAPD-PCR | airag | Mongolia | Takeda et al., 2011 [58] |
18 | Lactobacillus helveticus, Lactobacillus kefiranofaciens, Lactobacillus kefiri, Lactobacillus diolivorans, Enterococcus faecium, Enterococcus durans | Growth condition, sugar fermentation, acid resistance, bile tolerance 16S rDNA sequencing BLAST search program | airag | Mongolia | Choi, 2016 [59] | |
11 | Lactococcus lactis, Lactobacillus buchneri, Enterococcus italicus, Lactobacillus homohiochii; Lactobacillus hilgardii, Lactobacillus helveticus, Leuconostoc mesenteroides, Streptococcus parauberis | 16S rDNA sequencing RAPD-PCR | koumiss | Inner Mongolia | Guo et al., 2019 [60] | |
15 | 109 | Lacticaseibacillus paracasei, Limosilactobacillus fermentum, Lacticaseibacillus casei, Lentilactobacillus diolivorans, Lactobacillus helveticus, Schleiferilactobacillus harbinensis, Leuconostoc mesenteroides, Lactobacillus kefiranofaciens, Lentilactobacillus parabuchneri, Staphylococcus epidermidis 3 | 16S rRNA gene sequencing, PacBio SMRT sequencing technology | koumiss | Kyrgyzstan | Sun et al., 2022 [61] |
15 | 26 | Lactobacillus helveticus, Lactobacillus delbrueckii, Lactobacillus kefiranofaciens, Lentilactobacillus diolivorans, Lentilactobacillus kefiri 3 | 16S rRNA gene sequencing, PacBio SMRT sequencing technology | koumiss | Uzbekistan | Sun et al., 2022 [61] |
14 | Lacticaseibacillus paracasei, Lacticasebacillus casei, Lacticaseibacillus rhamnosus, Lactobacillus delbrueckii, Lactobacillus delbrueckii subsp. bulgaricus, Enterococcus faecalis, Streptococcus thermophilus 3 | 16S rRNA gene sequencing | koumiss | Kazakhstan (Almaty and Zhambyl regions) | Oleinikova et al., 2024 [62] |
1 | 2 | Main Yeast Species | Identification Method | Product | Sampling Location | References |
---|---|---|---|---|---|---|
94 | 417 | Candida buinensis, Kluyveromyces marxianus, Saccharomyces cerevisiae, Saccharomyces unisporus | morphological and physiological tests | koumiss | Kazakhstan | Montanari et al., 1996 [77] |
3 | nd | Kulyveromyces wickerham, Issatchenkia orientalis, Saccharomyces cerevisiae, Saccharomyces dairensis | sugar fermentation, 26S rDNA sequencing | airag | Mongolia | Uchida et al., 2007 [46] |
96 | 655 | Candida pararugosa, Dekkera anomala, Geotrichum sp., Issatchenkia orientalis, Kazachstania unispora, Kluyveromyces marxianus, Pichia deserticola, Pichia fermentans, Pichia manshurica, Pichia membranaefaciens, Saccharomyces cerevisiae, Torulaspora delbrueckii | 5.8S-ITS rDNA and 26S rDNA | koumiss | Mongolia, Xin Jiang, Qing Hai | Mu et al., 2012 [37] |
5 | 108 | Candida kefyr, Candida krusei, Candida valida, Kluyveromyces marxianus, Pichia cactophila, Saccharomyces cerevisiae, Saccharomyces servazzii | API ID and physiological tests | chigee | Mongolia | Sudun et al., 2010 [79] |
28 | 87 | Kluyveromyces marxianus, Pichia membranaefaciens, Saccharomyces cerevisiae, Saccharomyces unisporus | biochemical tests, 26S rDNA sequencing | koumiss | Xin Jiang | Ni et al., 2007 [24] |
3 | 30 | Candida kefyr, Candida krusei, Candida valida, Kluyveromyces marxianus, Saccharomyces cerevisiae | API ID and physiological tests | hurunge | Inner Mongolia | Shungquan et al., 2006 [54] |
11 | Kluyveromyces marxianus, Kazachstania unispora, Dekkera anomala, Saccharomyces cerevisiae, Trichosporum asaii, Penicillium carneum, Pichia membranaefaciens, Clavispora lusitaniae | ITS rDNA, 16S rDNA sequencing | koumiss | Inner Mongolia | Guo et al., 2019 [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martuzzi, F.; Franceschi, P.; Formaggioni, P. Fermented Mare Milk and Its Microorganisms for Human Consumption and Health. Foods 2024, 13, 493. https://doi.org/10.3390/foods13030493
Martuzzi F, Franceschi P, Formaggioni P. Fermented Mare Milk and Its Microorganisms for Human Consumption and Health. Foods. 2024; 13(3):493. https://doi.org/10.3390/foods13030493
Chicago/Turabian StyleMartuzzi, Francesca, Piero Franceschi, and Paolo Formaggioni. 2024. "Fermented Mare Milk and Its Microorganisms for Human Consumption and Health" Foods 13, no. 3: 493. https://doi.org/10.3390/foods13030493
APA StyleMartuzzi, F., Franceschi, P., & Formaggioni, P. (2024). Fermented Mare Milk and Its Microorganisms for Human Consumption and Health. Foods, 13(3), 493. https://doi.org/10.3390/foods13030493