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Abstract: Starchy foods are an essential part of people’s daily diet. Starch is the primary substance
used by plants to store carbohydrates, and it is the primary source of energy for humans and animals.
In China, a variety of plants, including edible medicinal plants, such as Pueraria root, yam tuber
and coix seed, are rich in starch. However, limited by their inherent properties, kudzu starch and
other starches are not suitable for the modern food industry. Natural starch is frequently altered by
physical, chemical, or biological means to give it superior qualities to natural starch as it frequently
cannot satisfy the demands of industrial manufacturing. Therefore, the deep processing market of
modified starch and its products has a great potential. This paper reviews the modification methods
which can provide excellent functional, rheological, and processing characteristics for these starches
that can be used to improve the physical and chemical properties, texture properties, and edible
qualities. This will provide a comprehensive reference for the modification and application of starch
from medicinal and edible plants.

Keywords: starch; edible medicinal plants; modification methods; functionality

1. Introduction

The essence of edible medicinal plants is based on the concept of “medicine and food
homology” guidance. These herbs, which are used in both Chinese traditional medicine
and food therapy, can be both edible and medicinal [1]. They are often used in the medical
care field in the form of dietary therapy, dietary supplements and medicinal diets [2].

Starch is the main reserve polysaccharide of plants which is divided into amylose and
amylopectin. It is composed of D-glucose bonded by α-1,4 and α-1, 6-glycosidic bonds. Its
shape and size vary depending on its biological source, and different types of natural starch
have varying amylopectin contents, crystal structures, and gelatinization properties [3,4].
With the advancement of science and technology, new processes and equipment are widely
used, and with the characteristics of natural starch being used at the same time, the scope
of application is becoming narrower and narrower.

In this review, our primary aim is to comprehensively explore the various modifica-
tions applied to starch of edible medicinal plants and their implications in the food industry.
We will discuss the role of modified starches in modern industrial production and their
contribution to expanding the application range of starch-based products. Specifically,
we will focus on commonly used modified starches for food processing, including cold
water-soluble starch [5], dextrin [6], acid-modified starch [7], crosslinked starch [8], hydrox-
ypropyl starch [9], carboxymethyl starch [10], and starch phosphate [11]. Furthermore, we
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will delve into the specific applications and advantages of phosphate ester starch, hydrox-
ypropyl distarch phosphate, and acetylated distarch phosphate, which are among the most
commonly used modified starches in the food industry [12–14]. Our review aims to provide
valuable insights into the role of modified starches in enhancing food quality, texture, and
functionality, thus contributing to a broader understanding of their significance in the field
of food science and technology.

2. Common Starch-Rich Medicinal and Edible Homologous Plants and Their
Starch Characteristics

Starch is the primary ingredient of Pueraria root, yam tuber, coix seed, lotus seed
and other edible medical substances included in the Chinese edible medicinal substances
catalog. Their biological activity and active constituents are shown in Table 1.

Table 1. The pharmacological action and active constituents of common starch-rich medicinal and
edible homologous plants.

Plant Source Pharmacological Action Active Constituents Reference

Pueraria root

Healing wounds and relieving
fever, promoting eruption,
promoting fluid production to
quench thirst, ascending yang,
and relieving diarrhea.

Flavonoids, triterpenes,
coumarins, and organic
acid

[15,16]

Lotus seed

Tonifying the spleen and
stopping diarrhea, stopping
band, tonifying the kidney and
astringent essence, nourishing
the heart, and calming nerves.

Starch, polysaccharides,
and alkaloid [17]

Yam tuber

Tonifying the spleen and
stomach, generating fluid to
nourish the lungs, and
reinforcing the kidney to
consolidate essence.

Steroidal saponins,
polysaccharides, starch,
flavonoids, phenolic
glycosides, and fatty
acids

[18,19]

Coix seed

Strengthening the spleen and
tonifying the lungs, eliminating
heat
and dampness, removing pus
and paralysis, and stopping
diarrhea.

Esters, fatty acids,
polysaccharides, phenolic
acids, sterols, flavonoids,
lactams, triterpenes,
alkaloids, and adenosine

[20]

Rice bean
Eliminating heat and quenching
thirst, decanting wine and
detoxifying

Polyphenols, flavone,
saponin, and
polysaccharides

[21]

Gordon Euryale
seed

Invigorating the spleen and
stopping diarrhea, invigorating
the kidney and reinforcing
essence, removing dampness,
and stopping belt.

Sterols, flavonoids, cyclic
peptides,
sesquineolignan,
tocopherol, and
cerebroside

[22]

Ginkgo seed
Reducing phlegm, eliminating
poison, and treating diarrhea
and frequent urination.

Flavonoids, terpene
lactones, phenolic acid,
polysaccharides, and
organic acid

[23]

2.1. Pueraria Starch (kudzu starch)

Puerariae lobatae Radix, a traditional Chinese medicine for both medicine and food,
has long been used in Asian countries such as China, Japan and South Korea as a muscle
relaxant, antipyretic, antidysentery, and for the treatment of hypertension [24]. It is gener-
ally believed that the main bioactive components of P. lobata are isoflavone small-molecule
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compounds, including puerarin, daidzein, soybean saponin, and their derivatives, which
have multiple health care effects such as antioxidant, anti-inflammatory, antitumor, and hy-
poglycemic effects [25]. In addition to isoflavones, starch is another important component
in P. lobate, and its starch content can reach 51.60% ((w/w), dry basis), meaning it has the
potential to be used as a natural starch source. Kudzu starch is popular as a functional food
and is usually eaten as a health drink after being prepared with hot water.

Although kudzu starch has rich edible value and application potential, studies have
pointed out that natural kudzu starch has poor performance in terms of solubility and
thermal stability [26]. This results from the fact that kudzu starch granules are easy to
agglomerate after being directly added to hot or boiling water, forming a heterogeneous
paste, which seriously limits its utilization and promotion in production and processing.
The functional properties of starch are inseparable from the structure, and the amorphous
region of starch granules is mainly composed of amylose, which plays an important role
in the properties of starch products [27]. The amylose content of kudzu starch is 20–
22% [24], which is high, causing causes kudzu starch to not swell in boiling water and
making it difficult to be gelatinized. In order to meet the needs of industrial production
for the intensive processing of kudzu starch, it is necessary to improve the properties of
kudzu starch.

2.2. Lotus Seed Starch

Lotus seed is an important special economic resource in China, and is the fruits or
seeds of Nelumbo nubifera Gaertn, which has been listed by the Ministry of Health of China
as 1 of 87 medicinal and edible foods. Lotus seed has the functions of being antioxidative,
hypolipidemic, and hypoglycemic and regulating gastrointestinal function [28]. Starch is
the main component of lotus seed; starch content in Lotus seed can reach over 60% on a dry
basis, of which the amylose content is as high as 42%, which belongs to the specific starch
with high amylose content, and the granular crystal shape is a C-type structure [29]. The
physicochemical changes in the crystal morphology and structure of starch granules will
directly affect the quality of the product, such as structural properties, sensory properties,
and nutritional properties [30]. With the maturity of lotus seeds, the starch content in a
single cell increases, and the surface of starch grains changes from smooth to rough [31].
The diameter of the granules is between 3 and 30 µm, with an average of ~12 µm [32]. Due
to the high amylose content of lotus seed starch aqueous solution, after high temperature
treatment, it is easy to encounter a series of problems such as low transparency, high gel
hardness, poor dispersion stability, and thick texture [33].

Therefore, in the application of lotus seed starch, it is necessary to use modification
methods to improve its processing characteristics. Many previous studies have demon-
strated its physicochemical properties and expanded the application of modifications,
thereby improving and expanding the application of lotus seed starch, such as dry heat
treatment [34], microwave heat treatment [35], retrogradation [36], heat and humidity
treatment [37], and combination methods [38].

2.3. Yam Tuber Starch

Yams are the fourth most important type of potato in the world, after cassava, potato
and sweet potato, which is rich in starch (66.21~68.88%, dry basis) [39]. Its particle size
distribution ranges from 10 µm to 40 µm, and the content of directly connected starch
is higher. Yam starch also has the characteristics of easy gelatinization, strong water
absorption and expansion, stable viscosity of starch paste at high temperature and high gel
strength [40].

More importantly, yam is used as a traditional Chinese medicine with a long history
of medicinal use, in addition to its food value. Yam has antiaging, hypoglycemic, hypo-
lipidemic, and immune-enhancing medicinal effects due to its functional active ingredients
(polyphenols, allantoin, polysaccharides, saponins, etc.) [41,42]. The reason for the wide
variation in the medicinal efficacy of different varieties of yam is attributed to the differ-
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ences in the content of functional constituents in yam [43]. Yam polysaccharides, which
are complexes of homopolysaccharides, heteropolysaccharides, and glycoproteins, make
up the majority of the active components of yam, and have a broad range of medicinal
effects. The monosaccharides currently found in polysaccharides are glucose, altrose, galac-
tose, mannose, rhamnose, fucose, fructose, and xylose, among which the polysaccharides
extracted from Dioscorea root are mainly composed of glucose, mannose, galactose, and
glucuronic acid at a ratio of 1.2: 0.5: 0.3: 0.3 [41]. The composition and content of yam
polysaccharides are influenced by a variety of factors (source, species, monosaccharide com-
position, molecular weight, length of branched chains, active groups, glycosidic linkages,
and high-level structure), resulting in different medicinal effects of different yam varieties.

Starch, as the main polysaccharide in yam, has a promising application in yam medic-
inal use and health food development. Yam starch has a higher linear amylose content
of about 30% compared to that found in maize (25%) and cassava (19%) [44], indicating
that yam is a high-quality raw material for producing amylopectin and resistant starch.
However, multiple factors, namely, unfavorable protection of yam varieties, insufficient
research on pharmacological activities, browning phenomenon, and safety, are the main
problems hindering the development and utilization of yam. Therefore, it is worthwhile
to conduct further research exploring the functional active ingredients of different yam
varieties and their mechanisms of action, elucidating the dose–effect relationship between
different varieties of yam, and developing low-cost color protection agents with high color
protection efficiency, which is of great significance to increase the yield of yam, accelerate
its further processing and promote the development of medicinal and food-stuffs.

2.4. Coix Seed Starch

Coix seed, as a traditional Chinese food and medicine health food, has the effect of
clearing heat and draining pus, is anti-inflammatory and analgesic, invigorates the spleen
and dispels dampness, is a diuretic, enhances immunity, and reduces the risk of cancer
because of the presence of coix seed oil, esters of coix seed, polysaccharides, proteins,
and polyphenols [45,46]. Starch is the main component of coix seed, constituting about
70% of dry weight, of which the normal linear starch (five genotypes) ranges from 15.9 to
26.4%, while the waxy genotypes (five genotypes) contain less linear starch, whose thermal
and pasting properties are similar to corn starch [47,48]. Previous studies on the pasting
properties of coix starch showed that the values of pasting Tp (peak pasting temperature)
and enthalpy change (∆H) of the eight varieties were relatively close to each other, with
values of 71–76 ◦C and 7–11 J/g, respectively [47]. Compared with maize and potato,
which are the main sources of starch, there have been few studies on the structure and
physicochemical properties of coix starch.

Compared with commercial starch, coix starch has the advantages of uniform particle
shape, small particle size (3–14 µm), slow coagulation, and low digestibility, but it is difficult
to be pasted and its highly hydrophilic hydroxyl group makes it susceptible to water
erosion, which is a major limitation of its application [49]. Moreover, coix seed is difficult
to cook due to its dense structure and hard texture, which also hinders its consumption.
At present, the barley industry is still in the primary processing stage; the processing
stage produces sugars, proteins, bran, chaff, roots, stems and leaves, and other wastes
which must be further developed and utilization. Therefore, an in-depth understanding
of the physicochemical properties of coix starch, the establishment of efficient means to
improve the stability of starch granules and the development of a simple and convenient
pre-treatment technology for coix seed are of great significance to improve the social and
economic value of coix seed products.

3. Modification Methods and Physicochemical Properties of Modified Starch in Edible
Medicinal Plants

Natural starch has limited applications due to its insolubility in cold water, lack
of paste stability, poor aging and film-forming qualities, and low shear resistance. To
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improve these deficiencies, physical, chemical, and biological methods can be employed
to alter the original properties of starch (such as solubility, color, fluidity, etc.) and obtain
the desired characteristics [50]. Starch denaturation can be divided into three categories
based on its reaction mechanism: starch degradation products, crosslinked starch and
starch derivatives.

3.1. Physical Modification

Physical modification is a widely used technique to alter the properties of starch,
such as its physical and chemical characteristics, crystal structure, and digestibility [51].
This method involves the application of mechanical force, the blending of non-starch
polysaccharides and starch, heat treatment, and other techniques. It is a low-pollution,
safe, and easy-to-operate process. The most common physical modification techniques are
pre-gelatinization, mechanical grinding, wet heat treatment, dry heat treatment, extrusion,
ultra-fine grinding, irradiation, and ultrasonic technologies.

3.1.1. Pre-Gelatinization

Pre-gelatinized starch is frequently dried using spray drying, drum drying, and
extrusion techniques. Its qualities are comparable to those of a hydrophilic colloid and it
dissolves easily. It also does not require cooking before consumption [52].

Shi [53] used the two-drum drying method for hot paste, resulting in an instantaneous
natural kudzu powder with 73.2% starch and 26.8% white sugar that can be produced
by the drum at a steam pressure of 4 kg, providing high quality and flexibility. The pre-
gelatinization of yam tuber powder was generally achieved by steaming diced cubes in
an autoclave at 68950 Nm−2 for 5 min, and at 98 ± 2 ◦C for 10–30 min. The amylopectin
content in pre-gelatinized yam tubers decreases with longer cooking times [54].

Pre-gelatinized starch has good water solubility, absorption, and expansion, which
can effectively improve the taste and texture of food.

3.1.2. Heat Treatment

Studies have shown that baking at temperatures above 140 ◦C causes the P. lobata
starch particles to cluster together and increase significantly in size and distribution. The
consistency index of kudzu starch paste dramatically drops after baking at 150–160 ◦C [55].

Furthermore, Feng’s research has revealed that the original A-type of lentil starch
crystals remain after heat-moisture treatment (HMT); the crystallinity increases, the particle
morphology remains largely unchanged, and the temperature of gelatinization, solubility,
water absorption rate, antiaging property, freeze-thaw stability, transmittance, viscosity,
expansion force, and oil absorption rate decrease [56]. The effects of HMT on the structure
and characteristics of the starches from big coix seed (BCS), translucent coix seed (TCS), and
small coix seed (SCS) were investigated. HMT starches’ gelatinization temperatures rose
but their thermal enthalpies decreased. HMT starches demonstrated superior flowability
due to the altered rheological features, particularly for TCS starch. Moreover, HMT has been
found to reduce the amount of slowly digested starch and increase the amount of resistant
and quickly digested starch [48]. But hydrothermal treatment can raise the temperature
at which yam starch gelatinizes, decrease pasting viscosity, and increase the amount of
resistant and slowly digested starch by 4.40% and 3.73%, respectively [57]. These results
reveal that HMT has different impacts on the structural and physicochemical properties of
different starches.

3.1.3. Microwave Treatment

Microwaves are electromagnetic waves with frequencies ranging from 300 MHz to 300
GHz, and are widely used in food production due to their efficiency, time-saving capacity,
superior permeability, and other heating properties [58,59]. The A-type crystal structures
of the coix seed starch can be preserved through a combination of heat, moisture and
microwave treatment, resulting in an increase in amylase starch (17.48%), slowly digested



Foods 2024, 13, 558 6 of 19

starch (12.37%), and resistant starch (8.56%) compared to native starch [60]. However, this
process also causes a decrease in solubility, swelling power, viscosity, attenuation value
and setback value. The “attenuation value” measures a starch gel’s resistance to viscosity
reduction during temperature cycling, while the “setback value” quantifies the increase in
viscosity when starch retrogrades upon cooling.

Additionally, the amount of amylose dissolved in lotus seed starch after being microwave-
treated decreased from 120 to 87.89 mg/g, and an increase in microwave intensity was
observed to cause an apparent aggregation of starch particles, with a maximum average
particle diameter of 26.37 µm—2.15 times larger than that of untreated starch. Furthermore,
the starch paste’s elasticity modulus, rheology viscosity, and thixotropic properties also
dropped [61].

3.1.4. Ultrasound Treatment

Ultrasonic technology, an effective and environmentally friendly approach to modify
starch, has a wide range of potential applications [62]. It can reduce the molecular weight
of starch. Compared with other modification methods, ultrasonic treatment has the advan-
tages of short action time, non-random degradation, simple operation, and no pollution,
making it an important physical modification method [63].

According to Zhang et al., the solubility of KS improved by around 23% when exposed
to ultrasonic conditions of a duration of 180 min, a temperature of 30 ◦C, power of 90%
(324 W), and frequency of 40 kHz. Despite this, the freeze–thaw stability remained mostly
unchanged from the original starch. An additional analysis was performed on the ultrasonic
modified KS’s amylose concentration and particle size [64]. The solubility of starch is related
to the amylose content. Some ultrasonic treatment conditions easily destroy the double-
helix structure of amylose, resulting in a decrease in the reversibility of the double-helix
and an increase in the solubility. At the same time, ultrasound destroys the integrity of
starch particles, which easily leads to a decrease in water-holding capacity, and thus a
decrease in freeze–thaw stability [65]. The selected ultrasonic conditions did not change the
freeze–thaw stability of Pueraria starch, which may be due to the fact that the ultrasonic
conditions did not cause significant damage to the starch particles, so the freeze–thaw
stability remained unchanged under the condition of increased solubility.

The internal crystal structure of starch can be destroyed by ultrasonic treatment, which
can also cause the surface of the starch sample to exhibit a porous structure. This can
cause some starch molecules to break their glycosidic bonds, forming a specific number of
molecular chains of the right length, and increase the dissolution of amylose molecules,
which will encourage the formation of a double-helix structure [66].

3.1.5. Ultra-High Pressure Treatment

Ultra-high pressure (UHP) processing, also known as non-thermal processing, involves
sealing food raw ingredients in a UHP container after packing and processing them at a
high pressure (100–1000 MPa) and certain temperature for a predetermined amount of
time. This technique is used for sterilization, to alter material, create new organizational
structure, and improve food quality by changing, denaturing, and eliminating bacteria and
other microbes in food [67]. Following treatment at 600 MPa, lily starch’s shape was nearly
entirely disrupted and its particle size increased, suggesting that the starch was almost
entirely gelatinized. After being subjected to UHP treatment, the viscosities of lily starch at
its peak, valley, breakdown, and final values were all reduced [68].

The surface of coix seed flour was destroyed by the UHP (600 MPa) modification,
resulting in visible dents and a decreased size. The starch crystals were broken and the
polarization cross was increasingly hazy [69]. Zhang et al. treated the starch of Taibai
kudzu root under 300 MPa and 500 MPa. They discovered that while UHP treatment could
significantly increase paste transparency, decrease freeze–thaw stability, and improve paste
viscosity to pH value, it has little effect on the size and shape of starch particles and no
discernible effect on gelatinization viscosity characteristics [70].
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At temperatures of 55 ◦C, 60 ◦C and 75 ◦C, the starch solution treated with UHP
significantly increased its swelling power and solubility; however, the opposite trend
was observed at 85 ◦C and 95 ◦C. Following UHP treatment, lotus seed starch’s light
transmittance dropped, and this drop persisted as storage time increased. The freeze–thaw
stability and retrogradation of lotus seed starch were enhanced via UHP processing at 500
MPa for 10 to 50 min, as compared to native starch [71]. Lotus seed starch was combined
with a water suspension by Guo et al. [72]. After subjecting lotus seed starch to UHP
treatment at 500 MPa and 25 ◦C, it was observed that with an increasing holding period,
the size of the amylose particles expanded. The complex of endogenous lipids in lotus seed
starch improved the stability of the amylose by reducing its swelling.

Enhancing the coagulation and freeze–thaw stability of natural starch with UHP
treatment is advantageous. This is related to the change in the internal structure of starch
molecules and the decrease in its ability to bind with water caused by UHP treatment [73].
However, as treatment duration rises, starch particle damage increases as well, leading to
an increase in coagulation and water precipitation rate.

3.2. Chemical Modification

Chemical modification is a chemical method which adds new functional groups to
starch molecules or changes the size and particle properties of starch molecules. This
method only affects a small percentage of the hydroxyl groups in the starch. And the modi-
fied starches can be classified into water-soluble (that is, acid–alkali treatment of starch),
esterified, etherified, oxidized and crosslinked starch [74]. Their degree of substitution,
although minor, modify the nature of the starch. Chemical modification reacts the starch
with chemical reagents under certain conditions to make starch particles expand.

3.2.1. Acid-Modified Starch

Acid hydrolysis is one of the oldest methods of starch modification. The mechanism of
acid modification involves the attack of hydroxide ions on the oxygen atoms of the primary
starch glycoside, which leads to cleavage and depolymerization [75].

The characteristics of Pueraria starch vary depending on the acid treatment (AT) ap-
plied. Taibai Pueraria starch was found to have the best transparency when 3% hydrochloric
acid was added and hydrolyzed for 4 h at 50 ◦C; when 3% sulfuric acid was added and
hydrolyzed for 4 h at a constant temperature of 50 ◦C, Taibai Pueraria starch exhibited
the best hot paste stability. After three hours at 40 ◦C and 1% oxalic acid hydrolyzing, the
starch had the best gelatinicity [76].

Response surface testing was used to enhance the ultrasonic acid preparation pro-
cedure of Ginkgo biloba resistant starch, with an ultrasonic power of 528 W, ultrasonic
duration of 20 min, HCl concentration of 1.6%, and Ginkgo starch milk concentration of
30.6%. Subsequent confirmation revealed that the yield of G. biloba resistant starch under
these conditions was 26.45 ± 0.06% [77].

Previous studies have revealed that lily starch undergoing AT resulted in a rougher
surface, reduced light from the polarization cross, a gradual increase in starch particle
size and particle size distribution range with concentration, a B-type crystal structure, and
a decrease in crystallinity. Lily modified starch showed a reduction in swelling degree
and a considerable improvement in solubility. The temperature at which gelatinization
occurs rose, the viscosity dramatically reduced, and the enthalpy value decreased. The
interaction between acid and starch molecules breaks the chain of starch molecules and
exposes more hydrogen bonds to interact with water, and the interaction between starch
molecules becomes tighter, the surface of starch particles is damaged, and the aggregation
between starch particles increases the size of starch particles [78].

3.2.2. Crosslinked Starch

Crosslinking is a common method for starch modification, using a variety of crosslink-
ing agents such as sodium trimetaphosphate (STMP), sodium tripolyphosphate (STPP),
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phosphoryl chloride (POCl3), and epichloro hydrin (ECH) [79]. Compared with the original
starch, crosslinked starch has the characteristics of higher gelatinization temperature, better
freeze–thaw stability, and strong acid and alkali resistance [80].

Li [81] synthesized kudzu crosslinked starch utilizing STMP as the crosslinking agent.
They varied the reaction temperature (35 ◦C, 45 ◦C, and 55 ◦C), the reaction duration (1
h, 2 h, and 3 h) and the quantity of crosslinking agent (5%, 10%, and 12%). Crosslinking
was performed, and as a result, the transparency, solubility, and expansion rate of Pueraria
starch were reduced, the freeze–thaw stability was strengthened, and the thermal stability
was increased.

Liu [82] developed yam crosslinked starch with varying gelatinization temperatures,
viscosity, and transparency by using STMP and sodium tripolyphosphate as crosslinking
agents. As a result, transparent starch film with variable mechanical characteristics were
produced. The most desirable features of modified starch were obtained when it was
hydroxypropylated with 10–12% propylene oxide and crosslinked with a combination
of 2% STMP and 5% STPP. This resulted in modified starch that showed no viscosity
breakdown, good acid resistance, high freeze–thaw stability, and enhanced gel texture.
Because of the loosening of the hydroxypropyl starch granule structure and the breaking of
the hydrogen link between starch chains, starch reacts with phosphate more readily and
expands into larger granules [83].

Bai’s thesis [84] investigated the preparation of starch sodium octenyl succinate using
Ginkgo starch and lipase as a catalyst. Differential scanning calorimetry studies revealed
that upon esterification, the starch gelatinized more readily. X-ray diffraction research
revealed that following esterification, there is an increase in the amorphous area of starch,
which might be due to subgelatinization. Kudzu starch was found to be advantageous in
terms of acid and alkali resistance, freeze–thaw stability, and thermal viscosity stability
following acetylation and crosslinking [85].

3.2.3. Esterified Starch

Octenyl succinic anhydride (OSA) was used to esterify yam starch in aqueous slurry
systems. X-ray diffraction, FTIR, scanning electron microscopy, and a fast viscosity analyzer
were used to assess the physicochemical characteristics of the starch. The modified starch
exhibited greater viscosities and a lower gelatinization temperature [86].

Zhang [68] prepared octenyl succinylated lily starch samples, and the starch system
of pseudoplastic fluid showed a shear thinning phenomenon with the increase in shear
rate. The hydrophobic groups were added in the modification process and the hydrophilic
properties were retained, resulting in amphiphilic biopolymers.

Sun et al. [87] described the OSA esterification of lotus seed starch (LS). Hydrophobic
groups of OSA partly replaced the hydroxyl groups of starch granules during the esterifica-
tion step, producing LS with both hydrophilic and hydrophobic groups. The introduction
of substituents reduced the bond strength between starch molecules, causing an increase in
the swelling power and solubility of the modified starch.

3.2.4. Carboxymethylated Starch

Wang et al. synthesized carboxymethyl kudzu root starch for the first time under differ-
ent reaction conditions [88]. Using wide-angle X-ray diffraction, the crystallinity of Pueraria
starch was discovered to reduce after undergoing carboxymethylation. Thermogravimetric
and derivative thermogravimetric analyses demonstrated that carboxymethylation led to
an improvement in thermal stability.

Zhao et al. investigated the rheological characteristics of carboxymethyl Pueraria
starch and found that the viscosity of the solution increased with increasing concentration
of starch [89]. However, when the concentration of NaCl was raised, the viscosity decreased
and eventually became constant at concentrations higher than 1%. Furthermore, when the
acid and base were strong, the viscosity of the solution was low, while it remained high and
relatively unchanged when the pH was between 4.5 and 8.5. Carboxymethylated Pueraria
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starch can be completely dissolved in water at room temperature, and the water solubility
is greatly increased. In addition, its water-holding capacity is strong, and its freeze–thaw
stability is greatly improved.

3.2.5. Methylated Starch

Methylated Pueraria starch was optimized by Zhou [90] to produce a semi-solid
texture with a milky white hue. Its surface was found to be smoother and the particles
were observed to cling together. When the degree of substitution was 0.41, or very close to
the margin, the spreadability improved with the degree of substitution and reached 89.7%.
The water-holding capacity of methylated Pueraria starch increased with the increase in
substitution degree.

The fundamental characteristics of the methyl Pueraria starch demonstrated that the
starch particles stuck together and lacked a full particle form in the surrounding region.
Methyl starch has relatively little solubility in cold water and significantly more solubility
after heating. Its freeze–thaw stability was found to be notably better than that of the
original starch [91].

3.3. Enzymatic Modification

The principle of enzymatic modification involves hydrolyzing glycoside bonds in
starch molecules using specific enzymes. These deposition enzymes can be categorized into
several types based on the method of hydrolysis, such as α-deposition enzyme, β-amylase,
glycosylase, debranching enzyme, and others [92,93].

The impact of pullulanase enzymatic hydrolysis on the physicochemical characteristics
of granular kudzu starch was documented [94]. Research has indicated that the peak vis-
cosity and breakdown value of kudzu starch decreased by 28.33% and 94.69%, respectively,
during the enzymatic hydrolysis process. Additionally, the resistant starch concentration
rose from 1.29% to 4.60%. Huang’s work [95] assessed the synergistic hydrolysis efficiency
of kudzu starch with α-amylase and glucoamylase and built a model of enzymatic hydrol-
ysis kinetics. Glucoamylase and α-amylase showed a strong synergistic relationship. A
concentration of 20 U for α-amylase and a concentration of 36 U for glucoamylase was
shown to be the ideal combination for both enzymes.

Zheng et al. identified the optimal conditions for the enzymatic breakdown and
modification of adlay starch, which was a ratio of pullulanase to β-amylase of 1:1 [96].
Under these conditions, the initial gelatinization temperature was 60.1 ◦C, the degree of
esterification of adlay starch liquefaction was 23.28%, and the content of adlay starch was
276.3%. Liu [97] increased the stability of the yam beverages by adding 20 U of α-amylase
and 36 U of saccharification enzyme.

Enzymatic methods use specific enzymes to treat starch particles, which can achieve
the purpose of fully swelling starch particles.

3.4. Complex Modification

In addition to their structural and functional modifications, these starches may also
exert effects on blood lipid regulation through mechanisms related to their altered di-
gestibility and interaction with gastrointestinal processes. Bao et al. [98] reported that the
ultrasonic–autoclaving treatment purified Semen coicis resistant starch, enzyme–autoclaving
treatment purified S. coicis resistant starch, and microwave–moisture treatment purified
this resistant starch in comparison to high-amylose maize starch (HAMS). Ginkgo biloba
starch was treated with enzymes and microwaved to create the resistant starch. Using the
yield of the resistant starch as an evaluation metric, a single-factor experiment was used to
determine the ideal preparation conditions for G. biloba resistant starch, including a 15%
milk concentration of G. biloba starch, 750 W of microwave power for 90 s, the addition
of 20 U/g of isoamylase, 50 ◦C, pH 5.8, and 3 h. The output of the resistant starch was
25.3% [99].
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The structural, physical, and chemical characteristics of lotus seed starch nanoparticles
(LS-SNPs), which were made via enzymatic hydrolysis (EH) with high-pressure homoge-
nization (HPH), were examined by Wang et al. [100]. The molecular weight and particle
size of LS-SNPs are significantly impacted by HPH treatments at various frequencies and
pressures. The double-helix structure of LS-SNPs was changed by HPH treatment, as
evidenced by the relative crystallinity of H-LS-SNP increasing and then decreasing when
the homogenization pressure and frequency were raised. Native lotus seed flour (N-LSF)
was altered in Sopawong’s study using pullulanase treatment (EP), heat-moisture treatment
(HMT), and partial gelatinization (PG). Rapid digestible starch (RDS) was enhanced by
PG, while resistant starch (RS) was reduced; amylose and RS levels were increased to
34.57–39.23% and 86.99–92.52% total starch, respectively, by HMT and EP [101].

Kudzu powder’s instant qualities are significantly impacted by agglomeration, which
may be prevented during rehydration by using an extrusion process at low moisture levels
(10%, 15%, and 20%). When the rehydration duration approached 60 s, the extrusion-based
agglomeration rate of kudzu powder dropped from 42.41% to 0.84–1.46%. The powder
puffed up as a result of the abrupt pressure dips that occurred during the extrusion process,
which decreased the powder’s bulk density and allowed water to enter the powder more
quickly [102].

The optimization of the enzymatic hydrolysis combined with the extrusion puffing
process of yam powder was conducted using a single-factor test and orthogonal test,
and the ideal process conditions were determined to be 180 ◦C for the barrel rear zone
temperature, 16% moisture content, 24 kg feed per hour, 160 rpm screw speed, and 100 U/g
of α-amylase. The water solubility index of the produced yam powder was 42.80%, which
was 80.82% higher than that of extrusion puffing [103]. Muhammad et al. [104] investigated
acid-hydrolyzed high-amylose P. montana starch (PMS) as an emulsifier and modified it
with OSA. It demonstrated the potential application of pickering emulsions stabilized with
OSA-modified PMS as effective food-grade delivery vehicles in functional foods. In Liang’s
work, the impact of citrate esterification and surface gelatinization treatment on red rice
bean starch was examined. The starch’s molecular structure changed as a result of the
surface gelatinization that was caused by CaCl2, but the starch’s Maltese cross and growth
ring structure remained unchanged. Furthermore, adding citrate esterification enhanced the
original starch’s poor pasting ability, solubility, and swelling power in addition to further
reducing its molecular weight [105]. Lastly, HMT at various moisture levels (15–35%) and
AT with hydrochloric acid at five different concentrations (0.25–2.0 M) were used to modify
the starch recovered from lily bulbs. The starch granules clustered as a result of HMT and
AT, roughening their surface and increasing the particle size. In cooked samples, the starch
containing 25% HMT had the highest resistant starch concentration (44.15%) [106].

4. Bioactivities

RS is found in food and medicinal-related plant starches as the main bioactive compo-
nent (Figure 1). Although only a few studies have been conducted on the clinical use of RS
in food and medication substances, as dietary fiber research has become more and more
popular, an increasing number of studies have demonstrated the potential function of RS
in the prevention and treatment of various illnesses [107,108] (Table 2).

4.1. Regulation of Intestinal Flora

RS can be used as a fermentation substrate to regulate the gut microbiota after partial or
full fermentation in the large intestine, thereby promoting the growth of probiotic bacteria,
such as Lactobacillus, Bacteroides, Clostridium, and Bifidobacterium in the intestine [109,110].

P. Lobatae Radix RS is a class of polysaccharides that may withstand intestinal enzy-
matic breakdown and eventually function as a substrate for gut microbial fermentation. It
has the ability to alter the gut microbiota and both prevent and treat certain illnesses [111].
Through the cultivation of sugar-free MRS medium, Zeng et al. [112] investigated the
impact of lotus seed RS (RS) on the proliferation of intestinal probiotics in vitro and discov-
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ered that RS3 mostly stimulated the growth of Bifidobacterium and Lactobacillus. It was also
found to promote the growth of Bifidobacterium and Enterococcus and the secretion more
bile saline hydrolase and hydroxysteroid dehydrogenase in the intestine [113]. Li et al.
then discovered that the rough-surfaced and flawless crystalized purple yam RS could
both prevent and enhance Bifidobacterium growth from gastrointestinal conditions [114].
Coix seed RS could significantly increase the concentration of short-chain fatty acids in the
intestine of mice, reducing the number of pathogenic or potentially pathogenic flora such
as Clostridium, Porphyromonadaceae, and Rikenellaceae, while also increasing the amount of
beneficial intestinal microflora like Bacteroidaceae, Butyrivibrio, and Prevention [115].
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4.2. Antidiabetic and Anti-Obesity Activity

RS appears in a range of dietary products to improve health and lower the glycemic
index (GI), particularly in the management of diabetes. In Song’s research, kudzu RS
dramatically lowered the blood levels of total cholesterol (TC), total triglycerides (TG),
high-density lipoprotein (HDL), and low-density lipoprotein (LDL) in type 2 diabetes
mellitus (T2DM) mice, along with the value of fasting blood glucose. After analyzing the
insulin signaling sensitivity in liver tissue, it was shown that consuming various dosages
of kudzu RS could increase the efficiency of insulin production by restoring the expression
of IRS-1, p-PI3K, p-Akt, and Glut4 [116] (Figure 1).

In a study conducted by Wang et al. [117], the hypoglycemic effect of lotus seed RS
(LSRS) was investigated in mice with T2DM. The results showed that LSRS improved
lipid metabolism and markedly decreased blood glucose levels by 16.0–33.6%, as well as
restoring serum insulin levels by 25.0–39.0%.

Yang et al. [118] prepared instant rice bean powder with low starch digestibility and
low estimated glycemic index by microwave cooking. In complexation with ferulic acid
(FA) and quercetin (QR), Maibam et al. [119] examined the physicochemical, structural, and
in vitro starch digestibility of Euryale ferox kernel starch (EFKS). The complexation process
caused a change in color, a decrease in swelling strength, and an increase in solubility.
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Additionally, the percentage of RS increased from 6.79% to 49.39% (10% FA) and 54.68%
(10% QR), resulting in a significant decrease in the anticipated glycemic index.

According to Li’s research [120], the Ginkgo starch–lauric acid combination can suc-
cessfully tackle obesity caused by high-fat diets. In mice, this complex has been seen to
reduce body weight, TG, and TC, as well as improve the composition of the intestinal flora
and hepatic fat formation.

4.3. Maintaining Healthy Levels of Blood Lipids

RS can down-regulate the expression of genes related to fat formation and enhance
the expression of transporters related to lipids, thus playing a role in improving blood
lipid [107]. P. lobata starch (PLS) can effectively reduce inflammation, dyslipidemia, and
hepatic steatosis in mice with non-alcoholic fatty liver disease (NAFLD) caused by a high-
fat, high-cholesterol diet. PLS was found to have a protective effect on NAFLD-associated
gut dysbiosis, increasing the number of Lactobacillus, Bifidobacterium, and Turicibacter while
decreasing Desulfovibrio [121].

Previous research on hyperlipidemic rats has revealed that Chinese yam starch can
dramatically reduce levels of LDL cholesterol, triglycerides, and total cholesterol in the
blood, with estimated decreases of 33.8%, 46.2%, and 27.5%, respectively [122].

4.4. Other Activities

In T2DM mice, kudzu RS can significantly lower the amount of serum inflammatory
factors. Following a 4-week course of therapy with several dosages of kudzu RS, MCP-1
and TNF-α levels in T2DM mice were markedly reduced and showed a specific quantitative
impact connection [86]. Research has demonstrated that when mice are given the right
amounts of lotus seed resistant starch, organic acids like butyric, lactic, and succinic acid,
along with short-chain fatty acids, in the gut help the body absorb minerals like calcium,
magnesium, and iron by lowering the pH of the gut, making minerals more soluble, and
stimulating the growth of intestinal wall cells [123].

Recent outcomes have demonstrated that the use of RS derived from lotus seeds
reduced the symptoms of food allergies, including reduced body temperature and allergic
diarrhea. Additionally, in ovalbumin (OVA)-sensitized mice, lotus seed RS reduced the rise
in OVA-specific immunoglobulins and enhanced the Th1/Th2 imbalance [124].

Table 2. Physiological functions of RS. (BW: body weight).

Plant Source Physiological Functions Models Dosage Reference

Pueraria root

Regulation of intestinal
flora; anti-inflammatory;
anti-diabetic; lowers blood
lipids.

T2DM mice (male C57BL/6J
mice, high-fat diet (HFD)
feeding, and streptozotocin
(STZ) injection).
T2DM mice (male C57BL/6J
mice, HFD feeding).

0.5, 2.5, and 5.0 g/kg
BW/d, orally.
400 mg/kg BW/d,
orally.

[115,121]

Lotus seed

Regulation of intestinal
flora; regulation of
intestinal flora;
promotes the absorption of
minerals;
protects against food
allergy.

B. longum and L. delbrueckii
subsp., MRS plus 0.5 g/L
L-cysteine.
T2DM mice (male Kunming
mice, HFD feeding, and STZ
injection).
BALB/c male mice, fed the
basal diet.
BALB/c female mice,
sensitized twice by
intraperitoneal injection of
100 µg OVO

20% and 30% LRS3,
orally.
5%, 10%, and 15% RS,
orally.
5%, 10%, and 15%
LRS3, orally.
0.3 g/100 g BW/d LRS,
orally.

[111,116,123,124]
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Table 2. Cont.

Plant Source Physiological Functions Models Dosage Reference

Yam tuber
Regulation of intestinal
flora; anti-obesity activity;
lowers blood lipids.

Bifidobacteria in simulated
upper digestive tract
conditions.
Hyperlipidemic rats (Kunming
male Wistar rats, fed a
high-fat diet).

20 g/L.
6.5 g/kg BW/d. [113,122]

Coix seed

Regulation of intestinal
flora;
controls weight gain;
develops immunity.

BALB/c male mice fed the
basal diet. 0.2 mL/10 g BW/d. [113]

Rice bean Controls estimated
glycemic index (eGI). In vitro starch digestion. - [117]

Gordon Euryale
seed

Lowers predicted glycemic
index (pGI). In vitro starch digestion. - [118]

Ginkgo seed

Improves obesity;
improves hepatic fat
accumulation; lowers
blood lipids.

Male SD rats; HFD feeding.
The Ginkgo
starch–lauric acid
complex.

[119]

5. Application in Food Industry

Modified starch has good viscosity, transparency, and antiaging properties, and can
be used as a thickener, stabilizer and food additive, and in other applications in food
processing, including beverages, confectionery, frozen food, noodles, meat, condiments,
and baked food (Figure 2).
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The altered starch molecules include a variety of hydrophilic groups, including car-
boxylic and alcohol hydroxyl groups. To improve its freeze–thaw stability, functional
groups such as phosphoric and acetic acids are added to the starch molecules, which de-
creases the intermolecular hydrogen bond and increases hydrophilicity [50]. This modifica-
tion also increases storage stability and makes it difficult to regenerate at low temperatures
while maintaining a high thickening capacity under high temperature and strong acid
conditions. Additionally, it is effective in thickening liquids, puddings, jams, pie fillings,
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and spices, as well as preventing water from precipitating in meat foods, such as ham and
other low-temperature refrigerated meals.

Carboxymethyl starch has surface activity and can be used as an emulsifier in ice
cream. Octenyl succinate starch ester is hydrophilic and oleophobic, which can improve the
stability of flavor and fragrance in beverages. Modified starch can be used to create food
gels [125]. In the food industry, oxidized starch is used to produce sugar. Gummies have
a high gel strength and pleasant taste. Milk candy produced from acid-modified starch
is non-stick and elastic and can maintain its stability for a prolonged period. Starch that
has undergone enzymatic hydrolysis, acid hydrolysis, crosslinking, and other treatments,
combined with suitable physical methods, can produce a fatty, soft texture similar to fat.
When added to food, it can not only satisfy people’s taste for fatty foods, but also reduce
calorie intake (Figure 3).
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RS has a good structural improvement effect, and has been extensively used in bread,
biscuits, and other baked foods in recent years. In contrast to the addition of traditional
dietary fiber, baked foods containing RS do not have a harsh taste and have an improved
food texture.

6. Conclusions

Modified starch, due to its advantageous physical and chemical properties, is exten-
sively used in the food industry for cooking, baking, and the development of functional
food. It can enhance the quality of food and has beneficial physiological effects such as
regulating intestinal flora, improving the intestinal barrier, regulating inflammatory factors,
controlling blood sugar levels, and preventing fat accumulation, all of which can be benefi-
cial for disease prevention and treatment, and ultimately improve overall health. However,
at present, most of the studies on these substances remain in the animal experimental stage,
with lack of clinical data support, and the specific mechanism of action in the human body
has not been fully defined. Therefore, in the future, efforts should be made to develop and
utilize modified starch in starch-containing medicine and food homologous plants.
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