Comparative Study of Spheroids (3D) and Monolayer Cultures (2D) for the In Vitro Assessment of Cytotoxicity Induced by the Mycotoxins Sterigmatocystin, Ochratoxin A and Patulin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Cell Culture and Spheroid Formation
2.3. Treatment of Monolayer Cell Cultures and Spheroids
2.4. Morphological Analysis
2.5. Cell Viability Assay
2.6. Estimation of LD50 Based on In Vitro IC50 Value
2.7. Statistical Analysis
3. Results
3.1. Cytotoxic Effects of STE, OTA and PAT in Monolayer Cultures
3.2. Cytotoxic Effects of STE, OTA and PAT in 3D Spheroids
3.3. Analysis of Morphological Parameters in 3D Cultures Exposed to STE, OTA and PAT
3.4. LD50 Estimation for In Vivo Study Based on In Vitro IC50 Data
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, C.; Li, C.; Yu, H.; Cheng, Y.; Xie, Y.; Yao, W.; Guo, Y.; Qian, H. Chemical food contaminants during food processing: Sources and control. Crit. Rev. Food Sci. Nutr. 2021, 61, 1545–1555. [Google Scholar] [CrossRef]
- Zingales, V.; Taroncher, M.; Martino, P.A.; Ruiz, M.J.; Caloni, F. Climate Change and Effects on Molds and Mycotoxins. Toxins 2022, 14, 445. [Google Scholar] [CrossRef]
- Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, R.A.; Jebur, A.B.; Kang, W.; El-Esawi, M.A.; El-Demerdash, F.M. An overview on the major mycotoxins in food products: Characteristics, toxicity, and analysis. J. Future Foods 2022, 2, 91–102. [Google Scholar] [CrossRef]
- Moretti, A.; Logrieco, A.F.; Susca, A. Mycotoxins: An underhand food problem. Mycotoxigenic Fungi Methods Protoc. 2017, 1542, 3–12. [Google Scholar]
- Joint FAO/WHO Food Standards Programme Codex Committee on Contaminants. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FShared%2BDocuments%252FArchive%252FMeetings%252FCCCF%252Fcccf9%252Fcf09_INF1e.pdf (accessed on 22 February 2023).
- Pattono, D.; Grosso, A.; Stocco, P.; Pazzi, M.; Zeppa, G. Survey of the presence of patulin and ochratoxin A in traditional semi-hard cheeses. Food Control 2013, 33, 54–57. [Google Scholar] [CrossRef]
- Ainiza, W.W.; Jinap, S.; Sanny, M. Simultaneous determination of aflatoxins and ochratoxin A in single and mixed spices. Food Control 2015, 50, 913–918. [Google Scholar] [CrossRef]
- Juan, C.; Moltó, J.; Lino, C.; Mañes, J. Determination of ochratoxin A in organic and non-organic cereals and cereal products from Spain and Portugal. Food Chem. 2008, 107, 525–530. [Google Scholar] [CrossRef]
- Juan, C.; Pena, A.; Lino, C.; Moltó, J.; Mañes, J. Levels of ochratoxin A in wheat and maize bread from the central zone of Portugal. Int. J. Food Microbiol. 2008, 127, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, K.F.; Ngemela, A.F.; Jensen, L.B.; de Medeiros, L.S.; Rasmussen, P.H. UHPLC-MS/MS determination of ochratoxin A and fumonisins in coffee using QuEChERS extraction combined with mixed-mode SPE purification. J. Agric. Food Chem. 2015, 63, 1029–1034. [Google Scholar] [CrossRef]
- Roberts, J.; Chang-Yen, I.; Bekele, F.; Bekele, I.; Harrynanan, L. Determination of ochratoxin A in cocoa beans using immunoaffinity column cleanup with high-performance liquid chromatography. J. AOAC Int. 2014, 97, 884–888. [Google Scholar] [CrossRef] [PubMed]
- Malir, F.; Ostry, V.; Pfohl-Leszkowicz, A.; Malir, J.; Toman, J. Ochratoxin A: 50 Years of Research. Toxins 2016, 8, 191. [Google Scholar] [CrossRef] [PubMed]
- Stoev, S.D. Balkan Endemic Nephropathy—Still continuing enigma, risk assessment and underestimated hazard of joint mycotoxin exposure of animals or humans. Chem. Biol. Interact. 2017, 261, 63–79. [Google Scholar] [CrossRef] [PubMed]
- Koszegi, T.; Poor, M. Ochratoxin A: Molecular Interactions, Mechanisms of Toxicity and Prevention at the Molecular Level. Toxins 2016, 8, 111. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.C.; Srivastava, A.; Lall, R. Ochratoxins and citrinin. In Veterinary Toxicology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1019–1027. [Google Scholar]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Schrenk, D.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.C.; Nebbia, C.S.; et al. Risk assessment of ochratoxin A in food. EFSA J. 2020, 18, e06113. [Google Scholar] [CrossRef] [PubMed]
- IARC. Ochratoxin A. IARC Monogr. Eval. Carcinog. Risks Hum. 1993, 56, 489–521. [Google Scholar]
- EFSA. Opinion of the scientific panel on contaminants in the food chain on a request from the commission related to Ochratoxin A in food. EFSA J. 2006, 365, 1–56. [Google Scholar]
- Ramalingam, S.; Bahuguna, A.; Kim, M. The effects of mycotoxin patulin on cells and cellular components. Trends Food Sci. Technol. 2019, 83, 99–113. [Google Scholar] [CrossRef]
- IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Overall Evaluations of Carcinogenicity: An Updating of IARC Monographs Volumes 1 to 42. IARC Monogr. 1987. [Google Scholar]
- JEFCA. Evaluation of Certain Food Additives and Contaminants. Forty-fourth report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Tech. Rep. Ser. 1995, 859, 36–38. [Google Scholar]
- 2003/598/EC. COMMISSION RECOMMENDATION of 11 August 2003 on the prevention and reduction of patulin contamination in apple juice and apple juice ingredients in other beverages. Off. J. Eur. Union 2003, L203, 1–6.
- Bertuzzi, T.; Romani, M.; Rastelli, S.; Giorni, P. Mycotoxins and Related Fungi in Italian Paddy Rice During the Growing Season and Storage. Toxins 2019, 11, 151. [Google Scholar] [CrossRef]
- Garcia-Moraleja, A.; Font, G.; Manes, J.; Ferrer, E. Analysis of mycotoxins in coffee and risk assessment in Spanish adolescents and adults. Food Chem. Toxicol. 2015, 86, 225–233. [Google Scholar] [CrossRef]
- Versilovskis, A.; Bartkevics, V.; Mikelsone, V. Analytical method for the determination of sterigmatocystin in grains using high-performance liquid chromatography-tandem mass spectrometry with electrospray positive ionization. J. Chromatogr. A 2007, 1157, 467–471. [Google Scholar] [CrossRef]
- Versilovskis, A.; Bartkevics, V.; Mikelsone, V. Sterigmatocystin presence in typical Latvian grains. Food Chem. 2008, 109, 243–248. [Google Scholar] [CrossRef]
- Versilovskis, A.; Van Peteghem, C.; De Saeger, S. Determination of sterigmatocystin in cheese by high-performance liquid chromatography-tandem mass spectrometry. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2009, 26, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Yoshinari, T.; Takeuchi, H.; Kosugi, M.; Taniguchi, M.; Waki, M.; Hashiguchi, S.; Fujiyoshi, T.; Shichinohe, Y.; Nakajima, M.; Ohnishi, T.; et al. Determination of sterigmatocystin in foods in Japan: Method validation and occurrence data. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2019, 36, 1404–1410. [Google Scholar] [CrossRef] [PubMed]
- Zingales, V.; Fernandez-Franzon, M.; Ruiz, M.J. Sterigmatocystin: Occurrence, toxicity and molecular mechanisms of action—A review. Food Chem. Toxicol. 2020, 146, 111802. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Li, X.; Li, J.; Niu, Y.; Shi, L.; Fang, Z.; Zhang, T.; Ding, H. Quantitative determination of carcinogenic mycotoxins in human and animal biological matrices and animal-derived foods using multi-mycotoxin and analyte-specific high performance liquid chromatography-tandem mass spectrometric methods. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2018, 1073, 191–200. [Google Scholar] [CrossRef]
- Dubravka, R.; Daniela, J.; Andrea, H.T.; Domagoj, K.; Nevenka, K.; Lada, R.; Davor, Z.; Maja, P.; Maja, S.K. Sterigmatocystin moderately induces oxidative stress in male Wistar rats after short-term oral treatment. Mycotoxin Res. 2019, 36, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Hutanasu, C.; Sfarti, C.; Trifan, A.; Cojocariu, C.; Singeap, A.M.; Spac, A.; Stanciu, C. High levels of sterigmatocystin in patients with chronic liver diseases. Rev. Med. Chir. Soc. Med. Nat. Iasi 2011, 115, 33–37. [Google Scholar]
- Kovesi, B.; Pelyhe, C.; Zandoki, E.; Mezes, M.; Balogh, K. Effect of short-term sterigmatocystin exposure on lipid peroxidation and glutathione redox system and expression of glutathione redox system regulatory genes in common carp liver. Toxicon 2019, 161, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, V.; Thanislass, J.; Niranjali, S.; Devaraj, H. Lipid peroxidation as a possible secondary mechanism of sterigmatocystin toxicity. Hum. Exp. Toxicol. 2001, 20, 398–403. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.P.; Gaspar, V.M.; Mano, J.F. Design of spherically structured 3D in vitro tumor models—Advances and prospects. Acta Biomater. 2018, 75, 11–34. [Google Scholar] [CrossRef] [PubMed]
- Wrzesinski, K.; Fey, S.J. From 2D to 3D--a New Dimension for Modelling the Effect of Natural Products on Human Tissue. Curr. Pharm. Des. 2015, 21, 5605–5616. [Google Scholar] [CrossRef]
- Bhat, P.V.; Anand, T.; Mohan Manu, T.; Khanum, F. Restorative effect of l-Dopa treatment against Ochratoxin A induced neurotoxicity. Neurochem. Int. 2018, 118, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Bunger, J.; Westphal, G.; Monnich, A.; Hinnendahl, B.; Hallier, E.; Muller, M. Cytotoxicity of occupationally and environmentally relevant mycotoxins. Toxicology 2004, 202, 199–211. [Google Scholar] [CrossRef] [PubMed]
- Sabater-Vilar, M.; Maas, R.F.; De Bosschere, H.; Ducatelle, R.; Fink-Gremmels, J. Patulin produced by an Aspergillus clavatus isolated from feed containing malting residues associated with a lethal neurotoxicosis in cattle. Mycopathologia 2004, 158, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Gong, Y.; Liu, L.; Zhou, Y.; Fang, X.; Zhang, C.; Li, Y.; Li, J. The use of human umbilical vein endothelial cells (HUVECs) as an in vitro model to assess the toxicity of nanoparticles to endothelium: A review. J. Appl. Toxicol. 2017, 37, 1359–1369. [Google Scholar] [CrossRef]
- Scanu, M.; Mancuso, L.; Cao, G. Evaluation of the use of human Mesenchymal Stem Cells for acute toxicity tests. Toxicol. In Vitro 2011, 25, 1989–1995. [Google Scholar] [CrossRef]
- Zingales, V.; Esposito, M.R.; Torriero, N.; Taroncher, M.; Cimetta, E.; Ruiz, M.J. The Growing Importance of Three-Dimensional Models and Microphysiological Systems in the Assessment of Mycotoxin Toxicity. Toxins 2023, 15, 422. [Google Scholar] [CrossRef] [PubMed]
- Santo, V.E.; Estrada, M.F.; Rebelo, S.P.; Abreu, S.; Silva, I.; Pinto, C.; Veloso, S.C.; Serra, A.T.; Boghaert, E.; Alves, P.M.; et al. Adaptable stirred-tank culture strategies for large scale production of multicellular spheroid-based tumor cell models. J. Biotechnol. 2016, 221, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Skrzydlewski, P.; Twaruzek, M.; Grajewski, J. Cytotoxicity of Mycotoxins and Their Combinations on Different Cell Lines: A Review. Toxins 2022, 14, 244. [Google Scholar] [CrossRef] [PubMed]
- Goodman, T.T.; Ng, C.P.; Pun, S.H. 3-D tissue culture systems for the evaluation and optimization of nanoparticle-based drug carriers. Bioconjug Chem. 2008, 19, 1951–1959. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lilly, G.D.; Doty, R.C.; Podsiadlo, P.; Kotov, N.A. In vitro toxicity testing of nanoparticles in 3D cell culture. Small 2009, 5, 1213–1221. [Google Scholar] [CrossRef] [PubMed]
- Khusna, D.A.; Nugroho, H.A.; Soesanti, I. Analysis of shape features for lesion classification in breast ultrasound images. AIP Conf. Proc. 2016, 1755, 160009. [Google Scholar]
- Amaral, R.L.F.; Miranda, M.; Marcato, P.D.; Swiech, K. Comparative Analysis of 3D Bladder Tumor Spheroids Obtained by Forced Floating and Hanging Drop Methods for Drug Screening. Front. Physiol. 2017, 8, 605. [Google Scholar] [CrossRef]
- ICCVAM. ICCVAM Test Method Evaluation Report: In Vitro Cytotoxicity Test Methods for Estimating Starting Doses for Acute Oral Systemic Toxicity Tests. NIH Publ. 2006, 07-4519, 1–408. [Google Scholar]
- Karmaus, A.L.; Bialk, H.; Fitzpatrick, S.; Krishan, M. State of the science on alternatives to animal testing and integration of testing strategies for food safety assessments: Workshop proceedings. Regul. Toxicol. Pharmacol. 2020, 110, 104515. [Google Scholar] [CrossRef]
- Cattaneo, I.; Astuto, M.C.; Binaglia, M.; Devos, Y.; Dorne, J.-L.C.M.; Ana, F.A.; Fernandez, D.A.; Garcia-Vello, P.; Kass, G.E.; Lanzoni, A. Implementing New Approach Methodologies (NAMs) in food safety assessments: Strategic objectives and actions taken by the European Food Safety Authority. Trends Food Sci. Technol. 2023, 133, 277–290. [Google Scholar] [CrossRef]
- Csenki, Z.; Garai, E.; Faisal, Z.; Csepregi, R.; Garai, K.; Sipos, D.K.; Szabo, I.; Koszegi, T.; Czeh, A.; Czompoly, T.; et al. The individual and combined effects of ochratoxin A with citrinin and their metabolites (ochratoxin B, ochratoxin C, and dihydrocitrinone) on 2D/3D cell cultures, and zebrafish embryo models. Food Chem. Toxicol. 2021, 158, 112674. [Google Scholar] [CrossRef] [PubMed]
- Imaoka, T.; Yang, J.; Wang, L.; McDonald, M.G.; Afsharinejad, Z.; Bammler, T.K.; Van Ness, K.; Yeung, C.K.; Rettie, A.E.; Himmelfarb, J.; et al. Microphysiological system modeling of ochratoxin A-associated nephrotoxicity. Toxicology 2020, 444, 152582. [Google Scholar] [CrossRef] [PubMed]
- Zingales, V.; Torriero, N.; Zanella, L.; Fernandez-Franzon, M.; Ruiz, M.J.; Esposito, M.R.; Cimetta, E. Development of an in vitro neuroblastoma 3D model and its application for sterigmatocystin-induced cytotoxicity testing. Food Chem. Toxicol. 2021, 157, 112605. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Ejaz, S.; Chekarova, I.; Sukura, A.; Ashraf, M.; Lim, C.W. Cytotoxicity of fumonisin B(1) in spheroid and monolayer cultures of rat hepatocytes. Drug Chem. Toxicol. 2008, 31, 339–352. [Google Scholar] [CrossRef]
- Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: An overview. Cancers 2014, 6, 1769–1792. [Google Scholar] [CrossRef]
- Aguilar Cosme, J.R.; Gagui, D.C.; Bryant, H.E.; Claeyssens, F. Morphological Response in Cancer Spheroids for Screening Photodynamic Therapy Parameters. Front. Mol. Biosci. 2021, 8, 784962. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Baldwin, L.A. The hormetic dose-response model is more common than the threshold model in toxicology. Toxicol. Sci. 2003, 71, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Li, F.J.; Xu, Z.S.; Soo, A.D.; Lun, Z.R.; He, C.Y. ATP-driven and AMPK-independent autophagy in an early branching eukaryotic parasite. Autophagy 2017, 13, 715–729. [Google Scholar] [CrossRef]
- Yang, G.; Bai, Y.; Wu, X.; Sun, X.; Sun, M.; Liu, X.; Yao, X.; Zhang, C.; Chu, Q.; Jiang, L.; et al. Patulin induced ROS-dependent autophagic cell death in Human Hepatoma G2 cells. Chem. Biol. Interact. 2018, 288, 24–31. [Google Scholar] [CrossRef]
- Senrung, A.; Lalwani, S.; Janjua, D.; Tripathi, T.; Kaur, J.; Ghuratia, N.; Aggarwal, N.; Chhokar, A.; Yadav, J.; Chaudhary, A. 3D tumor spheroids: Morphological alterations a yardstick to anti-cancer drug response. Vitr. Models 2023, 2, 219–248. [Google Scholar] [CrossRef]
- Mittler, F.; Obeid, P.; Rulina, A.V.; Haguet, V.; Gidrol, X.; Balakirev, M.Y. High-Content Monitoring of Drug Effects in a 3D Spheroid Model. Front. Oncol. 2017, 7, 293. [Google Scholar] [CrossRef]
- Celli, J.P.; Rizvi, I.; Blanden, A.R.; Massodi, I.; Glidden, M.D.; Pogue, B.W.; Hasan, T. An imaging-based platform for high-content, quantitative evaluation of therapeutic response in 3D tumour models. Sci. Rep. 2014, 4, 3751. [Google Scholar] [CrossRef]
- Friedrich, J.; Eder, W.; Castaneda, J.; Doss, M.; Huber, E.; Ebner, R.; Kunz-Schughart, L.A. A reliable tool to determine cell viability in complex 3-d culture: The acid phosphatase assay. J. Biomol. Screen. 2007, 12, 925–937. [Google Scholar] [CrossRef]
- Anbil, S.; Rizvi, I.; Celli, J.P.; Alagic, N.; Pogue, B.W.; Hasan, T. Impact of treatment response metrics on photodynamic therapy planning and outcomes in a three-dimensional model of ovarian cancer. J. Biomed. Opt. 2013, 18, 098004. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Singh, N.; Ansari, K.M. Toxicological effects of patulin mycotoxin on the mammalian system: An overview. Toxicol. Res. 2017, 6, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Creppy, E.E.; Chiarappa, P.; Baudrimont, I.; Borracci, P.; Moukha, S.; Carratu, M.R. Synergistic effects of fumonisin B1 and ochratoxin A: Are in vitro cytotoxicity data predictive of in vivo acute toxicity? Toxicology 2004, 201, 115–123. [Google Scholar] [CrossRef]
- Wong, T.; Hashim, Z.; Zulkifli, R.; Ismail, H.; Zainol, S.; Rajib, N.; Teh, L.; Majid, F.A.A. LD 50 Estimations for Diabecine TM Polyherbal Extracts Based on In Vitro Diabetic Models of 3T3-L1, WRL-68 and 1.1 B4 Cell Lines. Chem. Eng. Trans. 2017, 56, 1567–1572. [Google Scholar]
IC50 Value (µM) ± SEM | |||||||
---|---|---|---|---|---|---|---|
2D | 3D | ||||||
Cell Line | Mycotoxin | Time of Exposure | Time of Exposure | ||||
24 h | 48 h | 72 h | 24 h | 48 h | 72 h | ||
BM-MSCs | STE | >50 * | >50 * | >50 * | >100 * | >100 * | >100 * |
OTA | >50 * | 14.31 ± 2.36 | 10.43 ± 1.35 | >100 * | 15.80 ± 2.02 | 17.11 ± 2.38 | |
PAT | 29.09 ± 7.28 | 13.38 ± 3.62 | 5.43 ± 1.86 | 9.52 ± 1.28 | 8.40 ± 1.01 | 9.98 ± 1.88 | |
HUVECs | STE | >50 * | >50 * | >50 * | >100 * | >100 * | >100 * |
OTA | 13.87 ± 6.40 | 1.09 ± 0.24 | 0.80 ± 0.06 | 2.59 ± 1.38 | 5.14 ± 2.06 | 2.20 ± 0.71 | |
PAT | 19.99 ± 7.44 | 1.49 ± 0.25 | 0.45 ± 0.18 | 2.32 ± 0.60 | 5.76 ± 0.66 | 3.52 ± 0.36 | |
MDA-MB-231 | STE | >50 * | >50 * | 24.40 ± 7.28 | >100 * | >100 * | >100 * |
OTA | 31.19 ± 3.41 | 9.38 ± 2.27 | 5.13 ± 1.27 | >100 * | >100 * | 58.92 ± 19.42 | |
PAT | 2.31 ± 0.56 | 0.61 ± 0.17 | 0.42 ± 0.13 | >25 * | 7.30 ± 0.40 | 2.73 ± 0.21 | |
SH-SY5Y | STE | 28.22 ± 11 | 5.41 ± 1.26 | 2.91 ± 1.04 | >100 * | 48.42 ± 7.77 | 14.81 ± 3.53 |
OTA | 16.87 ± 5.91 | 5.80 ± 2.38 | 2.71 ± 0.87 | >100 * | 63.24 ± 21.60 | 5.66 ± 0.36 | |
PAT | 0.45 ± 0.16 | 0.52 ± 0.22 | 0.28 ± 0.15 | 4.93 ± 0.01 | 3.44 ± 0.56 | 2.77 ± 0.46 |
Mycotoxin | Cell Line | IC50 Value (µM) | IC50 Value (µg/mL) | log LD50 Value (mg/kg) | LD50 Value (mg/kg ± SD) |
---|---|---|---|---|---|
STE | BM-MSCs | 100 | 32.43 | 2.59 | 385.53 |
HUVECs | 100 | 32.43 | 2.59 | 385.53 | |
MDA-MB-231 | 100 | 32.43 | 2.59 | 385.53 | |
SH-SY5Y | 100–14.81 | 32.43–4.80 | 2.59–2.28 | 287.49 ± 98.04 | |
OTA | BM-MSCs | 100–15.80 | 40.38–6.38 | 2.62–2.32 | 314.44 ± 103.87 |
HUVECs | 5.14–2.20 | 2.07–0.89 | 2.14–2.00 | 119.9 ± 18.77 | |
MDA-MB-231 | 100–58.92 | 40.38–23.79 | 2.62–2.54 | 380.95 ± 37.36 | |
SH-SY5Y | 100–5.66 | 40.38–2.28 | 2.62–2.16 | 281.02 ± 137.29 | |
PAT | BM-MSCs | 9.98–8.40 | 1.54–1.29 | 2.09–2.06 | 120.19 ± 3.85 |
HUVECs | 5.76–2.32 | 0.89–0.36 | 2.00–1.86 | 86.59 ± 14.51 | |
MDA-MB-231 | 25–2.73 | 3.85–0.42 | 2.24–1.88 | 125.56 ± 48.98 | |
SH-SY5Y | 4.93–2.77 | 0.76–0.43 | 1.98–1.89 | 86.20 ± 9.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zingales, V.; Esposito, M.R.; Quagliata, M.; Cimetta, E.; Ruiz, M.-J. Comparative Study of Spheroids (3D) and Monolayer Cultures (2D) for the In Vitro Assessment of Cytotoxicity Induced by the Mycotoxins Sterigmatocystin, Ochratoxin A and Patulin. Foods 2024, 13, 564. https://doi.org/10.3390/foods13040564
Zingales V, Esposito MR, Quagliata M, Cimetta E, Ruiz M-J. Comparative Study of Spheroids (3D) and Monolayer Cultures (2D) for the In Vitro Assessment of Cytotoxicity Induced by the Mycotoxins Sterigmatocystin, Ochratoxin A and Patulin. Foods. 2024; 13(4):564. https://doi.org/10.3390/foods13040564
Chicago/Turabian StyleZingales, Veronica, Maria Rosaria Esposito, Martina Quagliata, Elisa Cimetta, and María-José Ruiz. 2024. "Comparative Study of Spheroids (3D) and Monolayer Cultures (2D) for the In Vitro Assessment of Cytotoxicity Induced by the Mycotoxins Sterigmatocystin, Ochratoxin A and Patulin" Foods 13, no. 4: 564. https://doi.org/10.3390/foods13040564
APA StyleZingales, V., Esposito, M. R., Quagliata, M., Cimetta, E., & Ruiz, M. -J. (2024). Comparative Study of Spheroids (3D) and Monolayer Cultures (2D) for the In Vitro Assessment of Cytotoxicity Induced by the Mycotoxins Sterigmatocystin, Ochratoxin A and Patulin. Foods, 13(4), 564. https://doi.org/10.3390/foods13040564