A Comparative Study of Freshwater Fish Burgers Made from Three Amazonian Species: Omega 3 Fortification and Sodium Reduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fish Oil Microencapsulation
2.3. Encapsulation Efficiency (EE), Microstructure, and Oxidative Stability of FOM
2.4. Burger Preparation
2.5. Proximate Analysis, Sodium, and Calcium Content
2.6. Cooking Losses
2.7. Texture Profile Analysis (TPA)
2.8. Fatty Acid Profile
2.9. Lipid Oxidation of Burgers
2.10. Microbiological Analysis
2.11. Sensory Evaluation
2.11.1. Consumers
2.11.2. Procedure
2.12. Data Analysis
3. Results
3.1. FOM Characterization
3.2. Proximal Composition, Sodium, and Calcium Content
3.3. Texture Profile Analysis (TPA) and Cooking Losses
3.4. Fatty Acid Profile
3.5. Lipid Oxidation
3.6. Consumers’ Sensory Profile and Overall Liking
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dufour, D.L.; Piperata, B.A.; Murrieta, R.S.S.; Wilson, W.M.; Williams, D.D. Amazonian foods and implications for human biology. Ann. Hum. Biol. 2016, 43, 330–348. [Google Scholar] [CrossRef] [PubMed]
- PRODUCE. Patrones De Consumo De Productos Hidrobiológicos En El Perú: Una Aproximación Con La Encuesta Nacional De Hogares. p. 23. 2015. Available online: http://www.acomerpescado.gob.pe/wp-content/uploads/2015/09/Patrones_Consumo_Productos_Hidrobiologicos_PNACP-2015.pdf (accessed on 10 June 2023).
- Ali, H.; Manour, E.; Al-Fath, A.; El-Bedawey, A.; Oscheba, A. Evaluation of tilapia fish burguers as affected by different replacement levels of mashed pumpkin or mashed potato. J. Saudi Soc. Agric. Sci. 2019, 18, 127–132. [Google Scholar]
- Bouvard, V.; Loomis, D.; Guyton, K.Z.; Grosse, Y.; El Ghissassi, D.E.; Benbrahim-Tallaa, F.; Corpet, L. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015, 16, 1599–1600. [Google Scholar] [CrossRef] [PubMed]
- Rios-Mera, J.D.; Saldaña, E.; Contreras-Castillo, C.J. Strategies for obtaining healthy meat products. In The Food Industry: Perceptions, Practices and Future Prospects; Santos, D.T.D., Torres, R.A.C., De Carvalho, G.B.M., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2021; pp. 1–328. [Google Scholar]
- De Devitiis, B.; Carlucci, D.; Nocella, G.; Viscecchia, R.; Bimbo, F.; Nardone, G. Insights for the Development of a Functional Fish Product: Drivers and Barriers, Acceptance, and Communication of Health Benefits. J. Aquat. Food Prod. Technol. 2018, 27, 430–445. [Google Scholar] [CrossRef]
- Salas, A.; Barriga, M.; Albrecht-Ruiz, M. Información Nutricional Sobre Algunos Peces Comerciales de la Amazonía Peruana; Instituto Tecnológico Pesquero del Perú (ITP): Lima, Perú, 2009. [Google Scholar]
- Dávila, C.R.G.; Sánchez Riveiro, H.; Flores Silva, M.A.; Mejía de Loayza, E.; Angulo Chávez, C.; Castro Ruiz, D.; Estivals, G.; García, A.; Vargas, G.; Nolorbe, C.; et al. Peces De Consumo De La Amazonía Peruana; Instituto de Investigaciones de la Amazonía Peruana (IIAP): Iquitos, Perú, 2018. [Google Scholar]
- Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Miller, L.A.; Perren, M.; Addis, P.B. Omega-3 Fatty Acids in Lake Superior Fish. J. Food Sci. 1990, 55, 71–73. [Google Scholar] [CrossRef]
- Di Giorgio, L.; Salgado, P.R.; Mauri, A.N. Encapsulation of fish oil in soybean protein particles by emulsification and spray drying. Food Hydrocoll. 2019, 87, 891–901. [Google Scholar] [CrossRef]
- Heck, R.T.; Lorenzo, J.M.; Santos, B.A.D.; Cichoski, A.J.; de Menezes, C.R.; Campagnol, P.C.B. Microencapsulation of healthier oils: An efficient strategy to improve the lipid profile of meat products. Curr. Opin. Food Sci. 2020, 40, 6–12. [Google Scholar] [CrossRef]
- Saavedra, A.R.; Rios-Mera, J.D.; Imán, A.; Vásquez, J.; Saldana, E.; Siche, R.; Tello, F. A sequential approach to reduce sodium chloride in freshwater fish burgers considering chemical, texture, and consumer sensory responses. LWT—Food Sci. Technol. 2022, 167, 113854. [Google Scholar] [CrossRef]
- de Sousa AM, B.; de Araujo Alves, R.; Madeira DS, S.; Santos, R.M.; Pereira AL, F.; de Oliveira Lemos, T.; Abreu, V.K.G. Storage of beef burgers containing fructooligosaccharides as fat replacer and potassium chloride as replacing sodium chloride. J. Food Sci. Technol. 2020, 57, 3232–3243. [Google Scholar] [CrossRef]
- Rios-Mera, J.D.; Saldaña, E.; Patinho, I.; Selani, M.M.; Contreras-Castillo, C.J. Enrichment of NaCl-reduced burger with long-chain polyunsaturated fatty acids: Effects on physicochemical, technological, nutritional, and sensory characteristics. Meat Sci. 2021, 177, 108497. [Google Scholar] [CrossRef] [PubMed]
- Tello, F.; Prata, A.S.; Rodrigues, R.A.F.; Sartoratto, A.; Grosso, C.R.F. Improving the performance of transglutaminase-crosslinked microparticles for enteric delivery. Food Res. Int. 2016, 88, 153–158. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Shanta, N.C.; Decker, E.A. Rapid, sensitive, Iron-Based Spectrophotometric Methods for Determination of Peroxide Values of Food Lipids. J. AOAC Int. 1994, 77, 421–424. [Google Scholar] [CrossRef]
- Tello, F.; Falfan-Cortés, R.N.; Martinez-Bustos, F.; da Silva, V.M.; Hubinger, M.D.; Grosso, C. Alginate and pectin-based particles coated with globular proteins: Production, characterization and anti-oxidative properties. Food Hydrocoll. 2015, 43, 670–678. [Google Scholar] [CrossRef]
- AOAC. Association of Official Analytical Chemists. Official Methods of Analytical Chemists of Association Chemistry, 19th ed.; AOAC: Washington, DC, USA, 2012. [Google Scholar]
- AOAC 929.07; Calcium in Fruits and Fruit Products. C19th 37.1. AOAC: Washington, DC, USA, 2012.
- AOAC 966.16-1968; Sodium in Fruits and Fruit Products—Flame Sp. 19th ed. AOAC: Washington, DC, USA, 1968.
- Selani, M.M.; Shirado, G.A.; Margiotta, G.B.; Saldaña, E.; Spada, F.P.; Piedade, S.M.; Contreras-Castillo, C.J.; Canniatti-Brazaca, S.G. Effects of pineapple byproduct and canola oil as fat replacers on physicochemical and sensory qualities of low-fat beef burger. Meat Sci. 2016, 112, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Surasani, V.K.R.; Raju, C.V.; Shafiq, U.; Chandra, M.V.; Lakshmisha, I.P. Influence of protein isolates from Pangas processing waste on physico-chemical, textural, rheological and sensory quality characteristics of fish sausages. LWT—Food Sci. Technol. 2020, 117, 108662. [Google Scholar] [CrossRef]
- Bourne, M.C.; Kenny, J.F.; Barnard, J. Computer-Assisted Readout of Data From Texture Profile Analysis Curves. J. Texture Stud. 1978, 9, 481–494. [Google Scholar] [CrossRef]
- Hartman, L.; Lago, C.A. Rapid preparation of fatty acid methyl esters from lipids. Lab. Pract. 1973, 22, 475–476. [Google Scholar]
- AOCS. Official Method Ce 1b-89 Fatty Acid Composition by GLC—Marine Oils; AOAC: Washington, DC, USA, 2005; pp. 1–5. [Google Scholar]
- AOCS. AOCS Official Method Cd 19–90; AOAC: Washington, DC, USA, 1990. [Google Scholar]
- Patinho, I.; Selani, M.M.; Saldaña, E.; Bortoluzzi, A.C.T.; Rios-Mera, J.D.; da Silva, C.M.; Kushida, M.M.; Contreras-Castillo, C.J. Agaricus bisporus mushroom as partial fat replacer improves the sensory quality maintaining the instrumental characteristics of beef burger. Meat Sci. 2021, 172, 108307. [Google Scholar] [CrossRef]
- Norma Sanitaria que Establece los Criterios Microbiologicos de Calidad Sanitaria E Inocuidad Para los Alimentos Y Bebidas de Consumo Humano; Resolución Ministerial N. 591-2008-MINSA; El Peruano: Lima, Peru, 2008; pp. 7–22.
- Rios-Mera, J.D.; Saldaña, E.; Cruzado-Bravo, M.L.; Martins, M.M.; Patinho, I.; Selani, M.M.; Valentin, D.; Contreras-Castillo, C.J. Impact of the content and size of NaCl on dynamic sensory pro fi le and instrumental texture of beef burgers. Meat Sci. 2020, 161, 107992. [Google Scholar] [CrossRef] [PubMed]
- Wakeling, I.N.; MacFie, H.J.H. Designing consumer trials balanced for first and higher orders of carry-over effect when only a subset of k samples from t maybe teste. Food Qual. Prefer. 1995, 6, 299–308. [Google Scholar] [CrossRef]
- Peryam, D.R.; Pilgrim, F.J. Hedonic scale method of measuring food preferences. Food Technol. 1957, 11, 9–14. [Google Scholar]
- Saldaña, E.; Serrano-León, J.; Selani, M.M.; Contreras-Castillo, C.J. Sensory and hedonic impact of the replacement of synthetic antioxidant for pink pepper residue extract in chicken burger. J. Food Sci. Technol. 2020, 57, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Meyners, M.; Castura, J.C.; Carr, B.T. Existing and new approaches for the analysis of CATA data. Food Qual. Prefer. 2013, 30, 309–319. [Google Scholar] [CrossRef]
- Vidal, L.; Tárrega, A.; Antúnez, L.; Ares, G.; Jaeger, S.R. Comparison of Correspondence Analysis based on Hellinger and chi-square distances to obtain sensory spaces from check-all-that-apply (CATA) questions. Food Qual. Prefer. 2015, 43, 106–112. [Google Scholar] [CrossRef]
- Saldaña, E.; Garcia, A.d.O.; Selani, M.M.; Haguiwara, M.M.; de Almeida, M.A.; Siche, R.; Contreras-Castillo, C.J. A sensometric approach to the development of mortadella with healthier fats. Meat Sci. 2018, 137, 176–190. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: The R Project for Statistical Computing. 2017. Available online: https://www.r-project.org/ (accessed on 5 December 2023).
- Habibi, A.; Keramat, J.; Hojjatoleslamy, M.; Tamjidi, F. Preparation of Fish Oil Microcapsules by Complex Coacervation of Gelatin–Gum Arabic and their Utilization for Fortification of Pomegranate Juice. J. Food Process Eng. 2017, 40, e12385. [Google Scholar] [CrossRef]
- Dong, Z.; Ma, Y.; Hayat, K.; Jia, C.; Xia, S.; Zhang, X. Morphology and release profile of microcapsules encapsulating peppermint oil by complex coacervation. J. Food Eng. 2011, 104, 455–460. [Google Scholar] [CrossRef]
- Santos, M.G.; Bozza, F.T.; Thomazini, M.; Favaro-Trindade, C.S. Microencapsulation of xylitol by double emulsion followed by complex coacervation. Food Chem. 2015, 171, 32–39. [Google Scholar] [CrossRef]
- Muhoza, B.; Yuyang, H.; Uriho, A.; Harindintwali, J.D.; Liu, Q.; Li, Y. Spray-and freeze-drying of microcapsules prepared by complex coacervation method: A review. Food Hydrocoll. 2023, 140, 108650. [Google Scholar] [CrossRef]
- Murthy, L.N.; Rao, B.M.; Asha, K.K.; Prasad, M.M. Nutritional composition, product development, shelf-life evaluation and quality assessment of pacu Piaractus brachypomus (Cuvier, 1818). Indian J. Fish. 2015, 62, 101–109. Available online: https://bit.ly/3SP8Z6m (accessed on 25 August 2023).
- Tanamati, A.; Stevanato, F.B.; Visentainer, J.E.L.; Matsushita, M.; de Souza, N.E.; Visentainer, J.V. Fatty acid composition in wild and cultivated pacu and pintado fish. Eur. J. Lipid Sci. Technol. 2009, 111, 183–187. [Google Scholar] [CrossRef]
- Ackman, R.G.; Fish, B.F. Fatty Acids in Fish and Shellfish. In Fatty Acids in Foods and Their Health Implications; Routledge: London, UK, 2008. [Google Scholar]
- Guimarães, I.G.; Martins, G.P. Nutritional requirement of two Amazonian aquacultured fish species, Colossoma macropomum (Cuvier, 1816) and Piaractus brachypomus (Cuvier, 1818): A mini review. J. Appl. Ichthyol. 2015, 31, 57–66. [Google Scholar] [CrossRef]
- Arcand, J.; Blanco-Metzler, A.; Aguilar, K.B.; L’abbe, M.R.; Legetic, B. Sodium levels in packaged foods sold in 14 latin american and Caribbean countries: A food label analysis. Nutrients 2018, 11, 369. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, M.V.D.S.; De Oliveira, R.C.; Gonzalez-Chica, D.A.; Proença, R.P.D.C. Sodium content on processed foods for snacks. Public Health Nutr. 2016, 19, 967–975. [Google Scholar] [CrossRef]
- Whelton, P.K.; Appel, L.J.; Sacco, R.L.; Anderson, C.A.; Antman, E.M.; Campbell, N.; Dunbar, S.B.; Frohlich, E.D.; Hall, J.E.; Jessup, M.; et al. Sodium, blood pressure, and cardiovascular disease: Further evidence supporting the American Heart Association sodium reduction recommendations. Circulation 2012, 126, 2880–2889. [Google Scholar] [CrossRef]
- (World Health Organization) WHO. Guideline: Sodium Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2012; pp. 1–56. Available online: https://www.who.int/publications/i/item/9789241504836 (accessed on 25 August 2023).
- Nicholas, Z.R.F.J.; Knowles, B. Salt Reduction Targets for 2024. Public Health England. 2020. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/915406/2024_salt_reduction_targets_070920-FINAL-1.pdf (accessed on 25 August 2023).
- Presenza, L.; de Fabrício, L.F.F.; Galvão, J.A.; de Vieira, T.M.F.S. Simplex-centroid mixture design as a tool to evaluate the effect of added flours for optimizing the formulation of native Brazilian freshwater fish burger. LWT—Food Sci. Technol. 2022, 156, 113008. [Google Scholar] [CrossRef]
- Ben Atitallah, A.; Barkallah, M.; Hentati, F.; Dammak, M.; Ben Hlima, H.; Fendri, I.; Attia, H.; Michaud, P.; Abdelkafi, S. Physicochemical, textural, antioxidant and sensory characteristics of microalgae-fortified canned fish burgers prepared from minced flesh of common barbel (Barbus barbus). Food Biosci. 2019, 30, 100417. [Google Scholar] [CrossRef]
- Romero, M.C.; Fogar, R.A.; Rolhaiser, F.; Clavero, V.V.; Romero, A.M.; Judis, M.A. Development of gluten-free fish (Pseudoplatystoma corruscans) patties by response surface methodology. J. Food Sci. Technol. 2018, 55, 1889–1902. [Google Scholar] [CrossRef]
- Sathe, S.K.; Zaffran, V.D.; Gupta, S.; Li, T. Protein Solubilization. JAOCS J. Am. Oil Chem. Soc. 2018, 95, 883–901. [Google Scholar] [CrossRef]
- Sargent, J.; Bell, G.; McEvoy, L.; Tocher, D.; Estevez, A. Recent developments in the essential fatty acid nutrition of fish. Aquaculture 1999, 177, 191–199. [Google Scholar] [CrossRef]
- Xu, H.; Turchini, G.M.; Francis, D.S.; Liang, M.; Mock, T.S.; Rombenso, A.; Ai, Q. Are fish what they eat? A fatty acid’s perspective. Prog. Lipid Res. 2020, 80, 101064. [Google Scholar] [CrossRef] [PubMed]
- Great Britain Committee on Medical Aspects of Food Policy; Cardiovascular Review Group; Great Britain Department of Health. Nutritional Aspects of Cardiovascular Disease; 1994; p. 186. Available online: https://books.google.com/books/about/Nutritional_Aspects_of_Cardiovascular_Di.html?hl=es&id=y5AeAQAAIAAJ (accessed on 27 November 2023).
- Zhang, Y.; Sun, Y.; Brenna, J.T.; Shen, Y.; Ye, K. Higher ratio of plasma omega-6/omega-3 fatty acids is associated with greater risk of all-cause, cancer, and cardiovascular mortality: A population-based cohort study in UK Biobank. medRxiv Prepr. Serv. Health Sci. 2023, Preprint. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Omega-6/Omega-3 Essential Fatty Acid Ratio and Chronic Diseases. Food Rev. Int. 2004, 20, 77–90. [Google Scholar] [CrossRef]
- European Parliament. Regulation (EC) no 1924/2006 of the European Parliament and of the countll of 20 December 2006 on nutrition and health claims made on foods. Off. J. Eur. Union 2006. Available online: https://www.legislation.gov.uk/eur/2006/1924/pdfs/eur_20061924_adopted_en.pdf (accessed on 25 August 2023).
- Shan, L.C.; Henchion, M.; De Brún, A.; Murrin, C.; Wall, P.G.; Monahan, F.J. Factors that predict consumer acceptance of enriched processed meats. Meat Sci. 2017, 133, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Merkle, S.; Giese, E.; Rohn, S.; Karl, H.; Lehmann, I.; Wohltmann, A.; Fritsche, J. Impact of fish species and processing technology on minor fish oil components. Food Control. 2017, 73, 1379–1387. [Google Scholar] [CrossRef]
- Devatkal, S.K.; Narsaiah, K.; Borah, A. Anti-oxidant effect of extracts of kinnow rind, pomegranate rind and seed powders in cooked goat meat patties. Meat Sci. 2010, 85, 155–159. [Google Scholar] [CrossRef]
- Zhang, Y.; Holman, B.W.B.; Ponnampalam, E.N.; Kerr, M.G.; Bailes, K.L.; Kilgannon, A.K.; Collins, D.; Hopkins, D.L. Understanding beef flavour and overall liking traits using two different methods for determination of thiobarbituric acid reactive substance (TBARS). Meat Sci. 2019, 149, 114–119. [Google Scholar] [CrossRef]
- Raeisi, M.; Tajik, H.; Aliakbarlu, J.; Mirhosseini, S.H.; Mohammad, S.; Hosseini, H. Effect of carboxymethyl cellulose-based coatings incorporated with Zataria multiflora Boiss. essential oil and grape seed extract on the shelf life of rainbow trout fillets. LWT—Food Sci. Technol. 2015, 64, 898–904. [Google Scholar] [CrossRef]
- Sallam, K.I. Antimicrobial and antioxidant effects of sodium acetate, sodium lactate, and sodium citrate in refrigerated sliced salmon. Food Control. 2007, 18, 566–575. [Google Scholar] [CrossRef] [PubMed]
- Solomando, J.S.; Vázquez, F.; Antequera, T.; Folgado, C.; Perez-Palacios, T. Addition of fish oil microcapsules to meat products—Implications for omega-3 enrichment and salt reduction. J. Funct. Foods 2023, 105, 105575. [Google Scholar] [CrossRef]
- Aquilani, C.; Pérez-Palacios, T.; Martín, E.J.; Antequera, T.; Bozzi, R.; Pugliese, C. Cinta Senese burgers with omega-3 fatty acids: Effect of storage and type of enrichment on quality characteristics. Arch. Zootec. 2018, 2018, 217–220. [Google Scholar] [CrossRef]
- Jiménez-Martín, E.; Pérez-Palacios, T.; Carrascal, J.R.; Rojas, T.A. Enrichment of Chicken Nuggets with Microencapsulated Omega-3 Fish Oil: Effect of Frozen Storage Time on Oxidative Stability and Sensory Quality. Food Bioprocess Technol. 2016, 9, 285–297. [Google Scholar] [CrossRef]
- Jeong, S.; Lee, J. Effects of cultural background on consumer perception and acceptability of foods and drinks: A review of latest cross-cultural studies. Curr. Opin. Food Sci. 2021, 42, 248–256. [Google Scholar] [CrossRef]
- Guàrdia, M.D.; Aguiar, A.P.S.; Claret, A.; Arnau, J.; Guerrero, L. Sensory characterization of dry-cured ham using free-choice profiling. Food Qual. Prefer. 2010, 21, 148–155. [Google Scholar] [CrossRef]
Proximal Composition (g/100 g) | Fish Fillets | Burgers | ||||
---|---|---|---|---|---|---|
Pacu | Boquichico | Bujurqui | Pacu | Boquichico | Bujurqui | |
Moisture | 75.52 ± 0.11 b | 74.00 ± 0.11 c | 76.55 ± 0.08 a | 61.04 ± 0.01 c | 61.81 ± 0.07 b | 65.36 ± 0.16 a |
Protein | 15.42 ± 0.23 c | 17.84 ± 0.06 a | 17.15 ± 0.12 b | 15.27 ± 0.03 c | 17.54 ± 0.04 b | 17.77 ± 0.02 a |
Lipid | 5.66 ± 0.11 a | 4.75 ± 0.04 b | 3.69 ± 0.07 c | 17.60 ± 0.06 a | 16.43 ± 0.09 b | 15.48 ± 0.08 c |
Ash | 0.87 ± 0.01 b | 1.21 ± 0.01 a | 0.81 ± 0.02 c | 1.64 ± 0.03 a | 1.54 ± 0.08 a | 1.60 ± 0.06 a |
Carbohydrate | 2.52 ± 0.18 a | 2.21 ± 0.14 a | 1.79 ± 0.20 b | 6.08 ± 0.02 a | 4.25 ± 0.20 b | 1.39 ± 0.08 c |
Burgers | |||
---|---|---|---|
Pacu | Boquichico | Bujurqui | |
Texture profile analysis | |||
Hardness (N) | 41.97 ± 5.49 a | 22.77 ± 3.18 b | 37.77 ± 3.77 ab |
Springiness | 0.80 ± 0.04 a | 0.80 ± 0.02 a | 0.84 ± 0.04 a |
Cohesiveness | 0.63 ± 0.04 a | 0.60 ± 0.01 a | 0.61 ± 0.01 a |
Chewiness (N) | 21.11 ± 1.29 a | 11.90 ± 0.44 b | 19.27 ± 2.54 a |
Cooking losses (%) | 33.43 ± 0.18 a | 34.06 ± 0.32 a | 34.13 ± 0.32 a |
Fatty Acid (g/100 g) | Un-Encapsulated Fish Oil (U-FO) | Fish Fillets | Burgers | ||||
---|---|---|---|---|---|---|---|
Pacu | Boquichico | Bujurqui | Pacu | Boquichico | Bujurqui | ||
C12:0 Lauric acid | 0.14 ± 0.01 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
C14:0 Myristic acid | 9.86 ± 0.44 | 0.03 ± 0.00 b | 0.05 ± 0.00 a | 0.02 ± 0.00 c | 0.22 ± 0.01 c | 0.33 ± 0.01 a | 0.30 ± 0.02 b |
C14:1 Myristoleic acid | 0.47 ± 0.03 | 0.00 ± 0.00 b | 0.02 ± 0.00 a | 0.00 ± 0.00 b | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.01 ± 0.01 a |
C15:0 Pentadecanoic acid | 0.78 ± 0.02 | 0.00 ± 0.00 b | 0.03 ± 0.00 a | 0.00 ± 0.00 b | 00.00 ± 0.00 b | 0.06 ± 0.01 a | 0.02 ± 0.02 b |
C15:1 Cis-10 pentadecenoic acid | 0.06 ± 0.11 | 0.00 ± 0.00 a | 0.004 ± 0.01 a | 0.00 ± 0.00 a | N.D. | N.D. | N.D. |
C16:0 Palmitic acid | 19.49 ± 0.45 | 0.57 ± 0.04 b | 0.68 ± 0.01 a | 0.24 ± 0.01 c | 2.86 ± 0.05 c | 3.77 ± 0.07 a | 3.33 ± 0.04 b |
C16:1 Palmitoleic acid | 14.49 ± 0.21 | 0.08 ± 0.02 a | 0.10 ± 0.00 a | 0.03 ± 0.01 b | 0.58 ± 0.01 c | 0.96 ± 0.01 a | 0.66 ± 0.05 b |
C17:0 Margaric acid | 0.79 ± 0.06 | 0.01 ± 0.00 b | 0.06 ± 0.00 a | 0.01 ± 0.01 b | 0.00 c | 0.12 ± 0.00 a | 0.08 ± 0.01 b |
C18:0 Stearic acid | 3.66 ± 0.04 | 0.22 ± 0.02 a | 0.22 ± 0.01 a | 0.07 ± 0.01 b | 1.72 ± 0.03 b | 2.00 ± 0.04 a | 1.80 ± 0.04 b |
C18:1 n-9 Oleic acid | 6.82 ± 1.11 | 0.80 ± 0.05 a | 0.28 ± 0.01 b | 0.19 ± 0.03 b | 4.73 ± 0.04 b | 5.22 ± 0.06 a | 4.89 ± 0.07 b |
C18:2 n-6 Linoleic acid | 1.90 ± 0.01 | 0.34 ± 0.04 a | 0.15 ± 0.00 b | 0.12 ± 0.02 b | 0.70 ± 0.02 a | 0.62 ± 0.02 b | 0.58 ± 0.02 b |
C18:3 n-3 alpha-Linolenic acid | 1.89 ± 0.04 | 0.02 ± 0.00 b | 0.15 ± 0.00 a | 0.02 ± 0.00 b | 0.22 ± 0.01 c | 0.37 ± 0.01 a | 0.24 ± 0.01 b |
C18:3 n-6 gamma-Linolenic acid | 0.46 ± 0.04 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
C20:0 Arachidic acid | N.D. | N.D. | N.D. | N.D. | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.02 ± 0.01 a |
C20:1 Eicosenoic acid | 1.18 ± 0.01 | 0.01 ± 0.00 b | 0.05 ± 0.00 a | 0.00 ± 0.00 c | 0.00 ± 0.00 b | 0.11 ± 0.01 a | 0.10 ± 0.01 a |
C20:2 Cis-11, 14-Eicosadienoic acid | 0.24 ± 0.01 | 0.00 ± 0.00 b | 0.03 ± 0.00 a | 0.00 ± 0.00 b | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.01 ± 0.02 a |
C20:3 n-3 Cis-11, 14, 17- Eicosatrienoic acid | 0.25 ± 0.01 | 0.00 ± 0.00 b | 0.04 ± 0.00 a | 0.00 ± 0.00 b | 0.00 ± 0.00 a | 0.02 ± 0.03 a | 0.03 ± 0.01 a |
C20:3 n-6 Cis-8, 11, 14- Eicosatrienoic acid | 0.33 ± 0.02 | 0.02 ± 0.00 b | 0.03 ± 0.00 a | 0.01 ± 0.00 b | 0.00 ± 0.00 a | 0.02 ± 0.04 a | 0.03 ± 0.00 a |
C20:4 n-6 Arachidonic acid | 1.44 ± 0.05 | 0.04 ± 0.01 b | 0.10 ± 0.02 a | 0.04 ± 0.01 b | 0.17 ± 0.01 b | 0.31 ± 0.03 a | 0.12 ± 0.03 b |
C20:5 n-3 Eicosapentaenoic acid (EPA) | 17.01 ± 0.61 | 0.00 ± 0.00 b | 0.06 ± 0.01 a | 0.00 ± 0.00 b | 0.17 ± 0.01 b | 0.36 ± 0.05 a | 0.21 ± 0.02 b |
C22:1 n-9 Erucic acid | 1.69 ± 0.06 | 0.00 ± 0.00 b | 0.05 ± 0.00 a | 0.00 ± 0.00 b | 0.00 ± 0.00 a | 0.02 ± 0.04 a | 0.03 ± 0.00 a |
C22:6 n-3 Docosahexaenoic acid (DHA) | 14.32 ± 0.89 | 0.01 ± 0.02 b | 0.12 ± 0.03 a | 0.06 ± 0.02 ba | 0.24 ± 0.01 b | 0.29 ± 0.02 a | 0.20 ± 0.02 b |
Total SFA | 34.58 ± 0.96 | 0.82 ± 0.06 b | 1.05 ± 0.02 a | 0.34 ± 0.01 c | 4.80 ± 0.05 c | 6.29 ± 0.11 a | 5.55 ± 0.09 b |
Total MUFA | 24.71 ± 0.97 | 0.89 ± 0.07 a | 0.51 ± 0.01 b | 0.22 ± 0.03 c | 5.31 ± 0.04 c | 6.31 ± 0.03 a | 5.69 ± 0.11 b |
Total PUFA | 37.84 ± 1.52 | 0.43 ± 0.01 b | 0.69 ± 0.05 a | 0.26 ± 0.02 c | 1.49 ± 0.02 b | 1.97 ± 0.06 a | 1.42 ± 0.07 b |
Total n-3 | 33.48 ± 1.42 | 0.03 ± 0.02 b | 0.38 ± 0.03 a | 0.08 ± 0.02 b | 0.62 ± 0.01 b | 1.03 ± 0.06 a | 0.68 ± 0.05 b |
Total n-6 | 4.12 ± 0.10 | 0.40 ± 0.03 a | 0.29 ± 0.02 b | 0.18 ± 0.00 c | 0.86 ± 0.02 b | 0.95 ± 0.01 a | 0.73 ± 0.04 c |
Total n-9 | 8.51 ± 1.05 | 0.78 ± 0.07 a | 0.33 ± 0.01 b | 0.19 ± 0.03 c | 4.73 ± 0.04 c | 5.24 ± 0.03 a | 4.92 ± 0.07 b |
n-6/n-3 ratio | 0.12 ± 0.00 | 13.33 ± 5.95 a | 0.76 ± 0.03 b | 2.25 ± 0.59 b | 1.39 ± 0.01 a | 0.92 ± 0.06 b | 1.08 ± 0.07 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iman, A.; Rios-Mera, J.D.; Rengifo, E.; Palomino, F.; Vela-Paredes, R.; Vásquez, J.; García de Sotero, D.E.; Saldaña, E.; Siche, R.; Tello, F. A Comparative Study of Freshwater Fish Burgers Made from Three Amazonian Species: Omega 3 Fortification and Sodium Reduction. Foods 2024, 13, 565. https://doi.org/10.3390/foods13040565
Iman A, Rios-Mera JD, Rengifo E, Palomino F, Vela-Paredes R, Vásquez J, García de Sotero DE, Saldaña E, Siche R, Tello F. A Comparative Study of Freshwater Fish Burgers Made from Three Amazonian Species: Omega 3 Fortification and Sodium Reduction. Foods. 2024; 13(4):565. https://doi.org/10.3390/foods13040565
Chicago/Turabian StyleIman, Alexander, Juan D. Rios-Mera, Estefany Rengifo, Flavia Palomino, Rafael Vela-Paredes, Jessy Vásquez, Dora Enith García de Sotero, Erick Saldaña, Raúl Siche, and Fernando Tello. 2024. "A Comparative Study of Freshwater Fish Burgers Made from Three Amazonian Species: Omega 3 Fortification and Sodium Reduction" Foods 13, no. 4: 565. https://doi.org/10.3390/foods13040565
APA StyleIman, A., Rios-Mera, J. D., Rengifo, E., Palomino, F., Vela-Paredes, R., Vásquez, J., García de Sotero, D. E., Saldaña, E., Siche, R., & Tello, F. (2024). A Comparative Study of Freshwater Fish Burgers Made from Three Amazonian Species: Omega 3 Fortification and Sodium Reduction. Foods, 13(4), 565. https://doi.org/10.3390/foods13040565