Feasibility of Using a Cheap Colour Sensor to Detect Blends of Vegetable Oils in Avocado Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Colour Sensor Analysis
2.3. Statistical Analysis
2.3.1. Supervised Classification
2.3.2. Multivariate Calibration
3. Results
3.1. Discriminating between Pure and Blended Avocado Oil
3.2. Discriminating between Blend Types in Avocado Oil
3.3. Predicting the Blend Level in Avocado Oil
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flores, M.; Saravia, C.; Vergara, C.E.; Avila, F.; Valdés, H.; Ortiz-Viedma, J. Avocado Oil: Characteristics, Properties, and Applications. Molecules 2019, 24, 2172. [Google Scholar] [CrossRef]
- Cervantes-Paz, B.; Yahia, E.M. Avocado Oil: Production and Market Demand, Bioactive Components, Implications in Health, and Tendencies and Potential Uses. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4120–4158. [Google Scholar] [CrossRef]
- Rohman, A.; Irnawati; Windarsih, A.; Riswanto, F.D.; Indrayanto, G.; Fadzillah, N.A.; Riyanto, S.; Bakar, N.K. Application of Chromatographic and Spectroscopic-Based Methods for Analysis of Omega-3 (ω-3 FAs) and Omega-6 (ω-6 FAs) Fatty Acids in Marine Natural Products. Molecules 2023, 28, 5524. [Google Scholar] [CrossRef]
- Song, W.; Jiang, N.; Wang, H.; Vincent, J. Use of Smartphone Videos and Pattern Recognition for Food Authentication. Sens. Actuators B Chem. 2020, 304, 127247. [Google Scholar] [CrossRef]
- Nelis, J.L.D.; Tsagkaris, A.S.; Dillon, M.J.; Hajslova, J.; Elliott, C.T. Smartphone-Based Optical Assays in the Food Safety Field. TrAC-Trends Anal. Chem. 2020, 129, 115934. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Saona, L.; Aykas, D.P.; Borba, K.R.; Urtubia, A. Miniaturization of Optical Sensors and Their Potential for High-Throughput Screening of Foods. Food Chem. Biochem. Food Bioprocess. 2020, 31, 136–150. [Google Scholar] [CrossRef]
- Hakonen, A.; Beves, J.E. Hue Parameter Fluorescence Identification of Edible Oils with a Smartphone. ACS Sens. 2018, 3, 2061–2065. [Google Scholar] [CrossRef]
- Resende, L.M.B.; Magalhães, E.J.; Nunes, C.A. Optimization and Validation of a Smartphone-Based Method for the Determination of Total Sterols in Selected Vegetable Oils by Digital Image Colorimetry. J. Food Compos. Anal. 2023, 117, 105111. [Google Scholar] [CrossRef]
- Anconi, A.C.S.A.; Brito, N.C.S.; Nunes, C.A. Determination of Peroxide Value in Edible Oils Based on Digital Image Colorimetry. J. Food Compos. Anal. 2022, 113, 104724. [Google Scholar] [CrossRef]
- Arslan, M.; Tahir, H.E.; Zareef, M.; Shi, J.; Rakha, A.; Bilal, M.; Xiaowei, H.; Zhihua, L.; Xiaobo, Z. Recent Trends in Quality Control, Discrimination and Authentication of Alcoholic Beverages Using Nondestructive Instrumental Techniques. Trends Food Sci. Technol. 2021, 107, 80–113. [Google Scholar] [CrossRef]
- Sanjaya, W.S.M.; Anggraeni, D.; Mira, S.; Maryanti, C.; Wardoyo, L.; Marlina, A.; Roziqin, A. Kusumorini Low-Cost Portable Spectrometer for Lard Detection Based on SVM Method. In Proceedings of the 2018 International Conference on Information and Communications Technology (ICOIACT), Yogyakarta, Indonesia, 6–7 March 2018; pp. 923–928. [Google Scholar]
- Venturini, F.; Sperti, M.; Michelucci, U.; Herzig, I.; Baumgartner, M.; Caballero, J.P.; Jimenez, A.; Deriu, M.A. Exploration of Spanish Olive Oil Quality with a Miniaturized Low-Cost Fluorescence Sensor and Machine Learning Techniques. Foods 2021, 10, 1010. [Google Scholar] [CrossRef] [PubMed]
- Weesepoel, Y.; Alewijn, M.; Wijtten, M.; Müller-Maatsch, J. Detecting Food Fraud in Extra Virgin Olive Oil Using a Prototype Portable Hyphenated Photonics Sensor. J. AOAC Int. 2021, 104, 7–15. [Google Scholar] [CrossRef]
- Huang, L.; Wang, M.; Liu, H. Identification of Adulterated Extra Virgin Olive Oil by Colorimetric Sensor Array. Food Anal. Methods 2022, 15, 647–657. [Google Scholar] [CrossRef]
- Izenman, A.J. Linear Discriminant Analysis. In Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning; Izenman, A.J., Ed.; Springer: New York, NY, USA, 2008; pp. 237–280. ISBN 978-0-387-78189-1. [Google Scholar]
- Wang, H.; Hu, D. Comparison of SVM and LS-SVM for Regression. In Proceedings of the 2005 International Conference on Neural Networks and Brain, Beijing, China, 13–15 October 2005; Volume 1, pp. 279–283. [Google Scholar]
- Suykens, J.; Van Gestel, T.; De Brabanter, J.; De Moor, B.; Vandewalle, J. Least Square Support Vector Machine; World Scientific Pub. Co.: Singapore, 2002. [Google Scholar]
- Eaton, J.W.; Bateman, D.; Hauberg, S. A High-Level Interactive Language for Numerical Computations. In GNU Octave Manual Version 3; Network Theory Ltd.: Surrey, UK, 2008. [Google Scholar]
- Yun, Y.-H. Method of Selecting Calibration Samples. In Chemometric Methods in Analytical Spectroscopy Technology; Chu, X., Huang, Y., Yun, Y.-H., Bian, X., Eds.; Springer: Singapore, 2022; pp. 297–308. ISBN 978-981-19162-5-0. [Google Scholar]
- Grandini, M.; Bagli, E.; Visani, G. Metrics for Multi-Class Classification: An Overview. arXiv 2020, arXiv:200805756. [Google Scholar]
- Sokolova, M.; Lapalme, G. A Systematic Analysis of Performance Measures for Classification Tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Chicco, D.; Jurman, G. The Advantages of the Matthews Correlation Coefficient (MCC) over F1 Score and Accuracy in Binary Classification Evaluation. BMC Genom. 2020, 21, 6. [Google Scholar] [CrossRef] [PubMed]
- Mitra, I.; Saha, A.; Roy, K. Exploring Quantitative Structure–Activity Relationship Studies of Antioxidant Phenolic Compounds Obtained from Traditional Chinese Medicinal Plants. Mol. Simul. 2010, 36, 1067–1079. [Google Scholar] [CrossRef]
- Sikorska, E.; Khmelinskii, I.V.; Sikorski, M.; Caponio, F.; Bilancia, M.T.; Pasqualone, A.; Gomes, T. Fluorescence Spectroscopy in Monitoring of Extra Virgin Olive Oil during Storage. Int. J. Food Sci. Technol. 2008, 43, 52–61. [Google Scholar] [CrossRef]
- Ammari, F.; Cordella, C.B.Y.; Boughanmi, N.; Rutledge, D.N. Independent Components Analysis Applied to 3D-Front-Face Fluorescence Spectra of Edible Oils to Study the Antioxidant Effect of Nigella sativa L. Extract on the Thermal Stability of Heated Oils. Chemom. Intell. Lab. Syst. 2012, 113, 32–42. [Google Scholar] [CrossRef]
- Lleó, L.; Hernández-Sánchez, N.; Ammari, F.; Roger, J.-M. 3D Front-Face Fluorescence Spectroscopy for Characterization of Extra Virgin Olive Oil and Olive Oil According to the Spectral Pattern. CIGR J. 2016, 18, 190–199. [Google Scholar]
- Song, W.; Song, Z.; Vincent, J.; Wang, H.; Wang, Z. Quantification of Extra Virgin Olive Oil Adulteration Using Smartphone Videos. Talanta 2020, 216, 120920. [Google Scholar] [CrossRef]
- de Carvalho, I.M.; da Silva Mutz, Y.; Machado, A.C.; de Lima Santos, A.A.; Magalhães, E.J.; Nunes, C.A. Exploring Strategies to Mitigate the Lightness Effect on the Prediction of Soybean Oil Content in Blends of Olive and Avocado Oil Using Smartphone Digital Image Colorimetry. Foods 2023, 12, 3436. [Google Scholar] [CrossRef]
- Esteki, M.; Shahsavari, Z.; Simal-Gandara, J. Use of Spectroscopic Methods in Combination with Linear Discriminant Analysis for Authentication of Food Products. Food Control 2018, 91, 100–112. [Google Scholar] [CrossRef]
- Ye, J.; Janardan, R.; Li, Q. Two-Dimensional Linear Discriminant Analysis. In Proceedings of the 2004 Annual Conference on Neural Information Processing Systems, Vancouver, Canada, 13–16 December 2004; Volume 17, pp. 1569–1576. [Google Scholar]
- Yu, L.; Wang, S.; Cao, J. A Modified Least Squares Support Vector Machine Classifier with Application to Credit Risk Analysis. Int. J. Inf. Technol. Decis. Mak. IJITDM 2009, 8, 697–710. [Google Scholar] [CrossRef]
- Payette, J.; Vaussenat, F.; Cloutier, S. Deep Learning Framework for Sensor Array Precision and Accuracy Enhancement. Sci. Rep. 2023, 13, 11237. [Google Scholar] [CrossRef]
- Othman, S.; Mavani, N.R.; Hussain, M.A.; Rahman, N.A.; Mohd Ali, J. Artificial Intelligence-Based Techniques for Adulteration and Defect Detections in Food and Agricultural Industry: A Review. J. Agric. Food Res. 2023, 12, 100590. [Google Scholar] [CrossRef]
- de la Mata-Espinosa, P.; Bosque-Sendra, J.M.; Bro, R.; Cuadros-Rodríguez, L. Olive Oil Quantification of Edible Vegetable Oil Blends Using Triacylglycerols Chromatographic Fingerprints and Chemometric Tools. Talanta 2011, 85, 177–182. [Google Scholar] [CrossRef]
- Aroca-Santos, R.; Lastra-Mejias, M.; Cancilla, J.C.; Torrecilla, J.S. Linear and Non-Linear Quantification of Extra Virgin Olive Oil, Soybean Oil, and Sweet Almond Oil in Blends to Assess Their Commercial Labels. J. Food Compos. Anal. 2019, 75, 70–74. [Google Scholar] [CrossRef]
- Naik, Y.K.; Sharma, V.; Arora, S.; Seth, R. Development and Application of DPPH Impregnated Paper Based Color Sensor Disc to Detect Vegetable Oils Addition in Cow Ghee. J. Food Sci. Technol. 2023, 60, 3014–3023. [Google Scholar] [CrossRef]
- Amit; Jamwal, R.; Kumari, S.; Kelly, S.; Cannavan, A.; Singh, D.K. Rapid Detection of Pure Coconut Oil Adulteration with Fried Coconut Oil Using ATR-FTIR Spectroscopy Coupled with Multivariate Regression Modelling. LWT 2020, 125, 109250. [Google Scholar] [CrossRef]
- Tian, L.; Zeng, Y.; Zheng, X.; Chiu, Y.; Liu, T. Detection of Peanut Oil Adulteration Mixed with Rapeseed Oil Using Gas Chromatography and Gas Chromatography–Ion Mobility Spectrometry. Food Anal. Methods 2019, 12, 2282–2292. [Google Scholar] [CrossRef]
- Jamwal, R.; Amit; Kumari, S.; Balan, B.; Kelly, S.; Cannavan, A.; Singh, D.K. Rapid and Non-Destructive Approach for the Detection of Fried Mustard Oil Adulteration in Pure Mustard Oil via ATR-FTIR Spectroscopy-Chemometrics. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2021, 244, 118822. [Google Scholar] [CrossRef]
- Wang, R.; Liu, K.; Wang, X.; Tan, M. Detection of Sesame Oil Adulteration Using Low-Field Nuclear Magnetic Resonance and Chemometrics. Int. J. Food Eng. 2019, 15, 20180349. [Google Scholar] [CrossRef]
- Su, N.; Weng, S.; Wang, L.; Xu, T. Reflectance Spectroscopy with Multivariate Methods for Non-Destructive Discrimination of Edible Oil Adulteration. Biosensors 2021, 11, 492. [Google Scholar] [CrossRef]
- de Lima, T.K.; Musso, M.; Bertoldo Menezes, D. Using Raman Spectroscopy and an Exponential Equation Approach to Detect Adulteration of Olive Oil with Rapeseed and Corn Oil. Food Chem. 2020, 333, 127454. [Google Scholar] [CrossRef]
- Popa, S.; Milea, M.S.; Boran, S.; Nițu, S.V.; Moșoarcă, G.E.; Vancea, C.; Lazău, R.I. Rapid Adulteration Detection of Cold Pressed Oils with Their Refined Versions by UV–Vis Spectroscopy. Sci. Rep. 2020, 10, 16100. [Google Scholar] [CrossRef]
White Light | UV Light | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LDA | LS-SVM | LDA | LS-SVM | ||||||||||
Overall | Pure | Blended * | Overall | Pure | Blended * | Overall | Pure | Blended * | Overall | Pure | Blended * | ||
calibration | PRE | 42.0 | 0.0 | 84.0 | 100.0 | 100.0 | 100.0 | 92.9 | 100.0 | 85.9 | 95.3 | 92.9 | 97.7 |
REC | 50.0 | 0.0 | 100.0 | 100.0 | 100.0 | 100.0 | 53.3 | 6.7 | 100.0 | 92.7 | 86.7 | 98.8 | |
ACU | 84.0 | 84.0 | 84.0 | 100.0 | 100.0 | 100.0 | 86.0 | 86.0 | 86.0 | 97.0 | 97.0 | 97.0 | |
ERR | 16.0 | 16.0 | 16.0 | 0.0 | 0.0 | 0.0 | 14.0 | 14.0 | 14.0 | 3.0 | 3.0 | 3.0 | |
F1S | 0.46 | 0.00 | 0.91 | 1.00 | 1.00 | 1.00 | 0.52 | 0.13 | 0.92 | 0.94 | 0.90 | 0.98 | |
MCC | 0.00 | 0.00 | 0.00 | 1.00 | 1.00 | 1.00 | 0.24 | 0.24 | 0.24 | 0.88 | 0.88 | 0.88 | |
y-rand. | PRE | 42.0 | 0.0 | 84.0 | 51.5 | 18.2 | 84.9 | 52.5 | 20.0 | 85.1 | 59.0 | 30.0 | 88.1 |
REC | 50.0 | 0.0 | 100.0 | 53.0 | 6.3 | 99.8 | 50.2 | 1.3 | 99.1 | 60.3 | 20.7 | 100.0 | |
ACU | 84.0 | 84.0 | 84.0 | 84.8 | 84.8 | 84.8 | 84.4 | 84.4 | 84.4 | 88.1 | 88.1 | 88.1 | |
ERR | 16.0 | 16.0 | 16.0 | 15.2 | 15.2 | 15.2 | 15.6 | 15.6 | 15.6 | 11.9 | 11.9 | 11.9 | |
F1S | 0.46 | 0.00 | 0.91 | 0.50 | 0.08 | 0.92 | 0.47 | 0.03 | 0.92 | 0.57 | 0.21 | 0.94 | |
MCC | 0.00 | 0.00 | 0.00 | 0.09 | 0.09 | 0.09 | 0.01 | 0.01 | 0.01 | 0.22 | 0.22 | 0.22 | |
test | PRE | 41.0 | 0.0 | 82.0 | 100.0 | 100.0 | 100.0 | 40.0 | 0.0 | 80.0 | 82.7 | 75.0 | 90.5 |
REC | 50.0 | 0.0 | 100.0 | 100.0 | 100.0 | 100.0 | 50.0 | 0.0 | 100.0 | 77.5 | 60.0 | 95.0 | |
ACU | 82.0 | 82.0 | 82.0 | 100.0 | 100.0 | 100.0 | 80.0 | 80.0 | 80.0 | 88.0 | 88.0 | 88.0 | |
ERR | 18.0 | 18.0 | 18.0 | 0.0 | 0.0 | 0.0 | 20.0 | 20.0 | 20.0 | 12.0 | 12.0 | 12.0 | |
F1S | 0.45 | 0.00 | 0.90 | 1.00 | 1.00 | 1.00 | 0.44 | 0.00 | 0.89 | 0.80 | 0.67 | 0.93 | |
MCC | 0.00 | 0.00 | 0.00 | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.60 | 0.60 | 0.60 |
White Light | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LDA | LS−SVM | ||||||||||||||
Overall | Pure | Canola | Sunflower | Corn | Olive | Soybean | Overall | Pure | Canola | Sunflower | Corn | Olive | Soybean | ||
calibration | PRE | 62.1 | 82.4 | 42.2 | 100.0 | 68.2 | 80.0 | 0.0 | 98.5 | 100.0 | 90.9 | 100.0 | 100.0 | 100.0 | 100.0 |
REC | 56.8 | 87.5 | 95.0 | 6.7 | 88.2 | 63.2 | 0.0 | 97.8 | 100.0 | 100.0 | 100.0 | 100.0 | 94.7 | 92.3 | |
ACU | 87.0 | 95.0 | 73.0 | 86.0 | 91.0 | 90.0 | 87.0 | 99.3 | 100.0 | 98.0 | 100.0 | 100.0 | 99.0 | 99.0 | |
ERR | 13.0 | 5.0 | 27.0 | 14.0 | 9.0 | 10.0 | 13.0 | 0.7 | 0.0 | 2.0 | 0.0 | 0.0 | 1.0 | 1.0 | |
F1S | 0.51 | 0.85 | 0.58 | 0.13 | 0.77 | 0.71 | 0.00 | 0.98 | 1.00 | 0.95 | 1.00 | 1.00 | 0.97 | 0.96 | |
MCC | 0.49 | 0.82 | 0.50 | 0.24 | 0.72 | 0.65 | 0.00 | 0.98 | 1.00 | 0.94 | 1.00 | 1.00 | 0.97 | 0.96 | |
y-rand. | PRE | 19.2 | 11.8 | 20.7 | 50.0 | 17.7 | 15.3 | 0.0 | 38.2 | 28.2 | 38.7 | 35.2 | 45.3 | 45.2 | 36.8 |
REC | 16.2 | 12.5 | 46.5 | 3.3 | 22.9 | 12.1 | 0.0 | 36.7 | 76.9 | 75.5 | 8.0 | 15.3 | 18.9 | 25.4 | |
ACU | 72.7 | 71.0 | 53.6 | 85.0 | 68.8 | 70.6 | 87.0 | 79.4 | 63.7 | 69.7 | 86.0 | 84.5 | 83.3 | 89.3 | |
ERR | 27.3 | 29.0 | 46.4 | 15.0 | 31.2 | 29.4 | 13.0 | 20.6 | 36.3 | 30.3 | 14.0 | 15.5 | 16.7 | 10.7 | |
F1S | 0.1 | 0.1 | 0.3 | 0.1 | 0.2 | 0.1 | 0.0 | 0.30 | 0.41 | 0.51 | 0.12 | 0.22 | 0.24 | 0.29 | |
MCC | 0.01 | −0.05 | 0.02 | 0.10 | 0.01 | −0.04 | 0.00 | 0.26 | 0.28 | 0.36 | 0.15 | 0.22 | 0.23 | 0.28 | |
test | PRE | 26.6 | 63.6 | 16.7 | 0.0 | 54.5 | 25.5 | 0.0 | 89.7 | 100.0 | 38.5 | 100.0 | 100.0 | 100.0 | 100.0 |
REC | 41.6 | 77.8 | 80.0 | 0.0 | 75.0 | 16.7 | 0.0 | 86.7 | 100.0 | 100.0 | 70.0 | 100.0 | 83.3 | 66.7 | |
ACU | 78.7 | 88.0 | 58.0 | 80.0 | 86.0 | 84.0 | 76.0 | 94.7 | 100.0 | 84.0 | 94.0 | 100.0 | 98.0 | 92.0 | |
ERR | 21.3 | 12.0 | 42.0 | 20.0 | 14.0 | 16.0 | 24.0 | 5.3 | 0.0 | 16.4 | 6.0 | 0.0 | 2.0 | 8.0 | |
F1S | 0.30 | 0.70 | 0.28 | 0.00 | 0.63 | 0.20 | 0.00 | 0.85 | 1.00 | 0.56 | 0.82 | 1.00 | 0.91 | 0.80 | |
MCC | 0.25 | 0.63 | 0.21 | 0.00 | 0.56 | 0.12 | 0.00 | 0.84 | 1.00 | 0.56 | 0.81 | 1.00 | 0.90 | 0.78 | |
UV Light | |||||||||||||||
LDA | LS−SVM | ||||||||||||||
Overall | Pure | Canola | Sunflower | Corn | Olive | Soybean | Overall | Pure | Canola | Sunflower | Corn | Olive | Soybean | ||
calibration | PRE | 36.0 | 46.7 | 40.0 | 50.0 | 33.3 | 46.2 | 0.0 | 99.0 | 93.8 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
REC | 42.5 | 93.3 | 31.6 | 36.8 | 33.3 | 60.0 | 0.0 | 99.1 | 100.0 | 100.0 | 94.7 | 100.0 | 100.0 | 100.0 | |
ACU | 81.3 | 83.0 | 78.0 | 81.0 | 80.0 | 78.0 | 88.0 | 99.7 | 99.0 | 100.0 | 99.0 | 100.0 | 100.0 | 100.0 | |
ERR | 18.7 | 17.0 | 22.0 | 19.0 | 20.0 | 22.0 | 12.0 | 0.3 | 1.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | |
F1S | 0.38 | 0.62 | 0.35 | 0.42 | 0.33 | 0.52 | 0.00 | 0.99 | 0.97 | 1.00 | 0.97 | 1.00 | 1.00 | 1.00 | |
MCC | 0.29 | 0.58 | 0.22 | 0.32 | 0.22 | 0.39 | 0.00 | 0.99 | 0.96 | 1.00 | 0.97 | 1.00 | 1.00 | 1.00 | |
y-rand. | PRE | 14.0 | 14.0 | 16.0 | 22.9 | 11.3 | 19.6 | 0.0 | 41.7 | 31.6 | 39.7 | 45.6 | 43.9 | 54.3 | 35.0 |
REC | 15.7 | 28.0 | 12.6 | 16.8 | 11.3 | 25.5 | 0.0 | 44.0 | 86.0 | 65.3 | 33.7 | 13.3 | 41.0 | 25.0 | |
ACU | 72.2 | 63.4 | 70.8 | 73.4 | 73.4 | 64.2 | 88.0 | 81.7 | 67.6 | 77.1 | 83.3 | 86.1 | 86.0 | 90.3 | |
ERR | 27.8 | 36.6 | 29.2 | 26.6 | 26.6 | 35.8 | 12.0 | 18.3 | 32.4 | 22.9 | 16.7 | 13.9 | 14.0 | 9.7 | |
F1S | 0.14 | 0.19 | 0.14 | 0.19 | 0.11 | 0.22 | 0.00 | 0.36 | 0.46 | 0.48 | 0.33 | 0.19 | 0.43 | 0.26 | |
MCC | −0.01 | −0.02 | −0.03 | 0.04 | −0.04 | −0.01 | 0.00 | 0.32 | 0.37 | 0.39 | 0.31 | 0.20 | 0.42 | 0.26 | |
test | PRE | 34.9 | 45.0 | 14.3 | 28.6 | 100.0 | 21.4 | 0.0 | 52.1 | 63.6 | 25.0 | 62.5 | 66.7 | 33.3 | 61.5 |
REC | 36.7 | 90.0 | 16.7 | 33.3 | 20.0 | 60.0 | 0.0 | 51.4 | 70.0 | 33.3 | 83.3 | 40.0 | 20.0 | 61.5 | |
ACU | 78.0 | 76.0 | 78.0 | 82.0 | 84.0 | 74.0 | 74.0 | 85.0 | 86.0 | 80.0 | 92.0 | 84.0 | 88.0 | 80.0 | |
ERR | 22.0 | 24.0 | 22.0 | 18.0 | 16.0 | 26.0 | 26.0 | 15.0 | 14.0 | 20.0 | 8.0 | 16.0 | 12.0 | 20.0 | |
F1S | 0.29 | 0.60 | 0.15 | 0.31 | 0.33 | 0.32 | 0.00 | 0.51 | 0.67 | 0.29 | 0.71 | 0.50 | 0.25 | 0.62 | |
MCC | 0.23 | 0.51 | 0.03 | 0.21 | 0.41 | 0.24 | 0.00 | 0.42 | 0.58 | 0.17 | 0.68 | 0.43 | 0.20 | 0.48 |
White Light | UV Light | ||||
---|---|---|---|---|---|
MLR | LS-SVM | MLR | LS-SVM | ||
canola oil | |||||
calibration | RMSE | 6.02 | 1.44 | 7.60 | 5.37 |
R2 | 0.86 | 0.99 | 0.78 | 0.90 | |
y-randomization | RMSE | 20.97 | 9.48 | 21.40 | 13.52 |
R2 | 0.02 | 0.64 | 0.01 | 0.44 | |
cR2p | 0.85 | 0.59 | 0.77 | 0.64 | |
test | RMSE | 6.36 | 2.55 | 7.12 | 7.35 |
R2 | 0.83 | 0.97 | 0.77 | 0.77 | |
R2m | 0.70 | 0.97 | 0.57 | 0.60 | |
sunflower oil | |||||
calibration | RMSE | 3.08 | 1.89 | 2.89 | 2.91 |
R2 | 0.96 | 0.99 | 0.97 | 0.97 | |
y-randomization | RMSE | 22.38 | 6.77 | 21.19 | 10.65 |
R2 | 0.06 | 0.78 | 0.04 | 0.61 | |
cR2p | 0.93 | 0.45 | 0.95 | 0.59 | |
test | RMSE | 2.63 | 1.37 | 3.86 | 3.81 |
R2 | 0.97 | 0.99 | 0.94 | 0.94 | |
R2m | 0.96 | 0.98 | 0.92 | 0.92 | |
corn oil | |||||
calibration | RMSE | 4.38 | 2.29 | 8.95 | 4.61 |
R2 | 0.93 | 0.98 | 0.66 | 0.91 | |
y-randomization | RMSE | 23.37 | 6.03 | 19.95 | 8.25 |
R2 | 0.01 | 0.72 | 0.03 | 0.81 | |
cR2p | 0.93 | 0.51 | 0.64 | 0.30 | |
test | RMSE | 4.31 | 2.62 | 7.53 | 7.91 |
R2 | 0.91 | 0.97 | 0.76 | 0.77 | |
R2m | 0.88 | 0.96 | 0.58 | 0.64 | |
olive oil | |||||
calibration | RMSE | 7.14 | 2.53 | 6.88 | 4.08 |
R2 | 0.82 | 0.98 | 0.82 | 0.94 | |
y-randomization | RMSE | 22.07 | 11.71 | 21.81 | 13.61 |
R2 | 0.02 | 0.60 | 0.01 | 0.57 | |
cR2p | 0.81 | 0.61 | 0.82 | 0.59 | |
test | RMSE | 6.39 | 3.07 | 5.74 | 4.92 |
R2 | 0.75 | 0.93 | 0.87 | 0.90 | |
R2m | 0.54 | 0.87 | 0.53 | 0.75 | |
soybean oil | |||||
calibration | RMSE | 2.45 | 0.90 | 2.20 | 1.54 |
R2 | 0.98 | 1.00 | 0.98 | 0.99 | |
y-randomization | RMSE | 22.26 | 12.79 | 22.37 | 8.07 |
R2 | 0.03 | 0.40 | 0.01 | 0.63 | |
cR2p | 0.96 | 0.77 | 0.97 | 0.60 | |
test | RMSE | 2.23 | 1.17 | 2.27 | 1.62 |
R2 | 0.98 | 0.99 | 0.98 | 0.99 | |
R2m | 0.96 | 0.99 | 0.98 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorenzo, N.D.; da Rocha, R.A.; Papaioannou, E.H.; Mutz, Y.S.; Tessaro, L.L.G.; Nunes, C.A. Feasibility of Using a Cheap Colour Sensor to Detect Blends of Vegetable Oils in Avocado Oil. Foods 2024, 13, 572. https://doi.org/10.3390/foods13040572
Lorenzo ND, da Rocha RA, Papaioannou EH, Mutz YS, Tessaro LLG, Nunes CA. Feasibility of Using a Cheap Colour Sensor to Detect Blends of Vegetable Oils in Avocado Oil. Foods. 2024; 13(4):572. https://doi.org/10.3390/foods13040572
Chicago/Turabian StyleLorenzo, Natasha D., Roney A. da Rocha, Emmanouil H. Papaioannou, Yhan S. Mutz, Leticia L. G. Tessaro, and Cleiton A. Nunes. 2024. "Feasibility of Using a Cheap Colour Sensor to Detect Blends of Vegetable Oils in Avocado Oil" Foods 13, no. 4: 572. https://doi.org/10.3390/foods13040572
APA StyleLorenzo, N. D., da Rocha, R. A., Papaioannou, E. H., Mutz, Y. S., Tessaro, L. L. G., & Nunes, C. A. (2024). Feasibility of Using a Cheap Colour Sensor to Detect Blends of Vegetable Oils in Avocado Oil. Foods, 13(4), 572. https://doi.org/10.3390/foods13040572