Production of Novel Bigels from Cold Pressed Chia Seed Oil By-Product: Application in Low-Fat Mayonnaise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Chia Seed Gum Extraction from Chia Seed Oil By-Product
2.2.2. Preparation of Bigels
2.2.3. Preparation of the Low-Fat and Full-Fat Mayonnaise
2.2.4. Rheological Analyses
2.2.5. Textural Properties of Bigels
2.2.6. Microstructural Properties
2.2.7. Statistical Analysis
3. Result and Discussion
3.1. Dynamic Rheological Properties of Oleogels and Hydrogels
3.2. Dynamic Rheological Properties of Oleogels, Hydrogels, and Bigels
3.3. Textural Properties of Bigels
3.4. Microstructural Properties
3.5. Rheological Properties of Mayonnaise Samples Prepared from Bigels
3.5.1. Steady Shear Rheological Properties
3.5.2. Dynamic Rheological Properties
3.5.3. 3-ITT
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- McClements, D.J. Food Emulsions: Principles, Practices, and Techniques; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Patel, A.R.; Nicholson, R.A.; Marangoni, A.G. Applications of fat mimetics for the replacement of saturated and hydrogenated fat in food products. Curr. Opin. Food Sci. 2020, 33, 61–68. [Google Scholar] [CrossRef]
- Iqbal, S.; Ayyub, A.; Iqbal, H.; Chen, X.D. Protein microspheres as structuring agents in lipids: Potential for reduction of total and saturated fat in food products. J. Sci. Food Agric. 2021, 101, 820–830. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.; Smith, G.; Degner, B.; McClements, D.J. Reduced fat food emulsions: Physicochemical, sensory, and biological aspects. Crit. Rev. Food Sci. Nutr. 2016, 56, 650–685. [Google Scholar] [CrossRef] [PubMed]
- Pehlivanoğlu, H.; Demirci, M.; Toker, O.S.; Konar, N.; Karasu, S.; Sagdic, O. Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: Production and food-based applications. Crit. Rev. Food Sci. Nutr. 2018, 58, 1330–1341. [Google Scholar] [CrossRef] [PubMed]
- Nutter, J.; Shi, X.; Lamsal, B.; Acevedo, N.C. Plant-based bigels as a novel alternative to commercial solid fats in short dough products: Textural and structural properties of short dough and shortbread. Food Biosci. 2023, 54, 102865. [Google Scholar] [CrossRef]
- Shakeel, A.; Lupi, F.R.; Gabriele, D.; Baldino, N.; De Cindio, B. Bigels: A unique class of materials for drug delivery applications. Soft Mater. 2018, 16, 77–93. [Google Scholar] [CrossRef]
- Francavilla, A.; Corradini, M.G.; Joye, I.J. Bigels as delivery systems: Potential uses and applicability in food. Gels 2023, 9, 648. [Google Scholar] [CrossRef]
- Cho, K.; Tarté, R.; Acevedo, N.C. Development and characterization of the freeze-thaw and oxidative stability of edible rice bran wax-gelatin biphasic gels. LWT 2023, 174, 114330. [Google Scholar] [CrossRef]
- Martins, A.J.; Silva, P.; Maciel, F.; Pastrana, L.M.; Cunha, R.L.; Cerqueira, M.A.; Vicente, A.A. Hybrid gels: Influence of oleogel/hydrogel ratio on rheological and textural properties. Food Res. Int. 2019, 116, 1298–1305. [Google Scholar] [CrossRef]
- Shakeel, A.; Farooq, U.; Iqbal, T.; Yasin, S.; Lupi, F.R.; Gabriele, D. Key characteristics and modelling of bigels systems: A review. Mater. Sci. Eng. C 2019, 97, 932–953. [Google Scholar] [CrossRef]
- Zampouni, K.; Mouzakitis, C.K.; Lazaridou, A.; Moschakis, T.; Katsanidis, E. Physicochemical properties and microstructure of bigels formed with gelatin and κ-carrageenan hydrogels and monoglycerides in olive oil oleogels. Food Hydrocoll. 2023, 140, 108636. [Google Scholar] [CrossRef]
- Tian, W.; Huang, Y.; Liu, L.; Yu, Y.; Cao, Y.; Xiao, J. Tailoring the oral sensation and digestive behavior of konjac glucomannan-gelatin binary hydrogel based bigel: Effects of composition and ratio. Int. J. Biol. Macromol. 2023, 256, 127963. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Zhao, S.; Lu, W.; Chen, N.; Zhu, D.; Li, Y. Preparation and characterization of enzymatically cross-linked gelatin/cellulose nanocrystal composite hydrogels. RSC Adv. 2021, 11, 10794–10803. [Google Scholar] [CrossRef] [PubMed]
- Tachie, C.; Nwachukwu, I.D.; Aryee, A.N. Trends and innovations in the formulation of plant-based foods. Food Prod. Process. Nutr. 2023, 5, 16. [Google Scholar] [CrossRef]
- Alimentarius, C. Codex standard for named vegetable oils, CODEX STAN 210-1999. Codex Aliment. 2001, 8, 11–25. [Google Scholar]
- Chew, S.C. Cold-pressed rapeseed (Brassica napus) oil: Chemistry and functionality. Food Res. Int. 2020, 131, 108997. [Google Scholar] [CrossRef]
- Jadhav, H.B.; Annapure, U.S.; Deshmukh, R.R. Non-thermal technologies for food processing. Front. Nutr. 2021, 8, 657090. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Zúñiga, M.; Lugo-Cervantes, E.; Rodríguez-Campos, J.; Sanchez-Vega, R.; Rodríguez-Roque, M.; Valdivia-Nájar, C. Pulsed light processing in the preservation of juices and fresh-cut fruits: A review. Food Bioprocess Technol. 2023, 16, 510–525. [Google Scholar] [CrossRef]
- Ferreira, D.M.; Nunes, M.A.; Santo, L.E.; Machado, S.; Costa, A.S.; Álvarez-Ortí, M.; Pardo, J.E.; Oliveira, M.B.P.; Alves, R.C. Characterization of chia seeds, cold-pressed oil, and defatted cake: An ancient grain for modern food production. Molecules 2023, 28, 723. [Google Scholar] [CrossRef]
- Atik, I.; Tekin Cakmak, Z.H.; Avcı, E.; Karasu, S. The effect of cold press chia seed oil by-products on the rheological, microstructural, thermal, and sensory properties of low-fat ice cream. Foods 2021, 10, 2302. [Google Scholar] [CrossRef]
- Mondor, M. Chia (Salvia hispanica) Seed Oil Extraction By-Product and Its Edible Applications. Food Rev. Int. 2023, 40, 115–134. [Google Scholar] [CrossRef]
- Akcicek, A.; Karasu, S. Utilization of cold pressed chia seed oil waste in a low-fat salad dressing as natural fat replacer. J. Food Process Eng. 2018, 41, e12694. [Google Scholar] [CrossRef]
- Segura-Campos, M.R.; Ciau-Solís, N.; Rosado-Rubio, G.; Chel-Guerrero, L.; Betancur-Ancona, D. Chemical and functional properties of chia seed (Salvia hispanica L.) gum. Int. J. Food Sci. 2014, 2014, 241053. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Wang, B.; Adhikari, R.; Adhikari, B. Preparation and characterization of chia seed protein isolate–chia seed gum complex coacervates. Food Hydrocoll. 2016, 52, 554–563. [Google Scholar] [CrossRef]
- Hijazi, T.; Karasu, S.; Tekin-Çakmak, Z.H.; Bozkurt, F. Extraction of natural gum from cold-pressed chia seed, flaxseed, and rocket seed oil by-product and application in low fat vegan mayonnaise. Foods 2022, 11, 363. [Google Scholar] [CrossRef] [PubMed]
- Hashim, A.F.; El-Sayed, S.M.; El-Sayed, H.S. Bigel formulations based on sesame oleogel with probiotics alginate hydrogel: A novel structure for nutritious spreadable butter. Int. J. Biol. Macromol. 2023, 242, 124782. [Google Scholar] [CrossRef] [PubMed]
- Baltuonytė, G.; Eisinaitė, V.; Kazernavičiūtė, R.; Vinauskienė, R.; Jasutienė, I.; Leskauskaitė, D. Novel formulation of bigel-based vegetable oil spreads enriched with lingonberry pomace. Foods 2022, 11, 2213. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Tang, C.; Wu, S.; McClements, D.J.; Liu, S.; Li, B.; Li, Y. Fabrication of chitosan-cinnamaldehyde-glycerol monolaurate bigels with dual gelling effects and application as cream analogs. Food Chem. 2022, 384, 132589. [Google Scholar] [CrossRef] [PubMed]
- Kibler, N.D.; Acevedo, N.C.; Cho, K.; Zuber-McQuillen, E.A.; Carvajal, Y.B.; Tarté, R. Novel biphasic gels can mimic and replace animal fat in fully-cooked coarse-ground sausage. Meat Sci. 2022, 194, 108984. [Google Scholar] [CrossRef] [PubMed]
- Samui, T.; Goldenisky, D.; Rosen-Kligvasser, J.; Davidovich-Pinhas, M. The development and characterization of novel in-situ bigel formulation. Food Hydrocoll. 2021, 113, 106416. [Google Scholar] [CrossRef]
- Liu, L.; Tian, W.; Chen, Μ.; Huang, Y.; Xiao, J. Oral sensation and gastrointestinal digestive profiles of bigels tuned by the mass ratio of konjac glucomannan to gelatin in the binary hydrogel matrix. Carbohydr. Polym. 2023, 312, 120765. [Google Scholar] [CrossRef]
- Kanelaki, A.; Zampouni, K.; Mourtzinos, I.; Katsanidis, E. Hydrogels, oleogels and bigels as edible coatings of sardine fillets and delivery systems of rosemary extract. Gels 2022, 8, 660. [Google Scholar] [CrossRef]
- Nutter, J.; Shi, X.; Lamsal, B.; Acevedo, N.C. Designing and characterizing multicomponent, plant-based bigels of rice bran wax, gums, and monoglycerides. Food Hydrocoll. 2023, 138, 108425. [Google Scholar] [CrossRef]
- Martins, A.J.; Guimarães, A.; Fuciños, P.; Sousa, P.; Venâncio, A.; Pastrana, L.M.; Cerqueira, M.A. Food-grade bigels: Evaluation of hydrogel: Oleogel ratio and gelator concentration on their physicochemical properties. Food Hydrocoll. 2023, 143, 108893. [Google Scholar] [CrossRef]
- Ferro, A.C.; Okuro, P.K.; Badan, A.P.; Cunha, R.L. Role of the oil on glyceryl monostearate based oleogels. Food Res. Int. 2019, 120, 610–619. [Google Scholar] [CrossRef]
- Cerqueira, M.A.; Fasolin, L.H.; Picone, C.S.; Pastrana, L.M.; Cunha, R.L.; Vicente, A.A. Structural and mechanical properties of organogels: Role of oil and gelator molecular structure. Food Res. Int. 2017, 96, 161–170. [Google Scholar] [CrossRef]
- Yang, X.; Li, A.; Yu, W.; Li, X.; Sun, L.; Xue, J.; Guo, Y. Structuring oil-in-water emulsion by forming egg yolk/alginate complexes: Their potential application in fabricating low-fat mayonnaise-like emulsion gels and redispersible solid emulsions. Int. J. Biol. Macromol. 2020, 147, 595–606. [Google Scholar] [CrossRef]
- Liu, X.; Guo, J.; Wan, Z.-L.; Liu, Y.-Y.; Ruan, Q.-J.; Yang, X.-Q. Wheat gluten-stabilized high internal phase emulsions as mayonnaise replacers. Food Hydrocoll. 2018, 77, 168–175. [Google Scholar] [CrossRef]
- YOO, B.; Rao, M. Creep and dynamic rheological behavior of tomato concentrates: Effect of concentration and finisher screen size. J. Texture Stud. 1996, 27, 451–459. [Google Scholar] [CrossRef]
- Alves Barroso, L.; Grossi Bovi Karatay, G.; Dupas Hubinger, M. Effect of Potato Starch Hydrogel:Glycerol Monostearate Oleogel Ratio on the Physico-Rheological Properties of Bigels. Gels 2022, 8, 694. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Mao, L.; Cui, M.; Liu, J.; Gao, Y. Development of food-grade bigels based on κ-carrageenan hydrogel and monoglyceride oleogels as carriers for β-carotene: Roles of oleogel fraction. Food Hydrocoll. 2020, 105, 105855. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Y.; Yu, J.; Gao, Y.; Mao, L. Rheology and Tribology of Ethylcellulose-Based Oleogels and W/O Emulsions as Fat Substitutes: Role of Glycerol Monostearate. Foods 2022, 11, 2364. [Google Scholar] [CrossRef] [PubMed]
- Sacco, P.; Lipari, S.; Cok, M.; Colella, M.; Marsich, E.; Lopez, F.; Donati, I. Insights into mechanical behavior and biological properties of chia seed mucilage hydrogels. Gels 2021, 7, 47. [Google Scholar] [CrossRef] [PubMed]
- Timilsena, Y.P.; Adhikari, R.; Kasapis, S.; Adhikari, B. Rheological and microstructural properties of the chia seed polysaccharide. Int. J. Biol. Macromol. 2015, 81, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, B.; Varidi, M.; Jafari, S.M. Fabrication and characterization of novel whey protein-based bigels as structured materials with high-mechanical properties. Food Hydrocoll. 2023, 145, 109082. [Google Scholar] [CrossRef]
- Fernandes, A.S.; Neves, B.V.; Mazzo, T.M.; Longo, E.; Jacob-Lopez, E.; Zepka, L.Q.; de Rosso, V.V. Bigels as potential inks for extrusion-based 3d food printing: Effect of oleogel fraction on physical characterization and printability. Food Hydrocoll. 2023, 144, 108986. [Google Scholar] [CrossRef]
- Patel, A.; Mankoč, B.; Sintang, M.B.; Lesaffer, A.; Dewettinck, K. Fumed silica-based organogels and ‘aqueous-organic’bigels. RSC Adv. 2015, 5, 9703–9708. [Google Scholar] [CrossRef]
- Rehman, K.; Amin, M.C.I.M.; Zulfakar, M.H. Development and physical characterization of polymer-fish oil bigel (hydrogel/oleogel) system as a transdermal drug delivery vehicle. J. Oleo Sci. 2014, 63, 961–970. [Google Scholar] [CrossRef]
- Di Michele, L.; Fiocco, D.; Varrato, F.; Sastry, S.; Eiser, E.; Foffi, G. Aggregation dynamics, structure, and mechanical properties of bigels. Soft Matter. 2014, 10, 3633–3648. [Google Scholar] [CrossRef]
- Xie, D.; Hu, H.; Huang, Q.; Lu, X. Development and characterization of food-grade bigel system for 3D printing applications: Role of oleogel/hydrogel ratios and emulsifiers. Food Hydrocoll. 2023, 139, 108565. [Google Scholar] [CrossRef]
- Li, J.; Han, J.; Xiao, Y.; Guo, R.; Liu, X.; Zhang, H.; Bi, Y.; Xu, X. Fabrication and Characterization of Novel Food-Grade Bigels Based on Interfacial and Bulk Stabilization. Foods 2023, 12, 2546. [Google Scholar] [CrossRef]
- Zhu, Q.; Gao, J.; Han, L.; Han, K.; Wei, W.; Wu, T.; Li, J.; Zhang, M. Development and characterization of novel bigels based on monoglyceride-beeswax oleogel and high acyl gellan gum hydrogel for lycopene delivery. Food Chem. 2021, 365, 130419. [Google Scholar] [CrossRef]
- Wakhet, S.; Singh, V.K.; Sahoo, S.; Sagiri, S.S.; Kulanthaivel, S.; Bhattacharya, M.K.; Kumar, N.; Banerjee, I.; Pal, K. Characterization of gelatin–agar based phase separated hydrogel, emulgel and bigel: A comparative study. J. Mater. Sci. Mater. Med. 2015, 26, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Liu, R.; Liang, B.; Wu, T.; Sui, W.; Zhang, M. Microparticulated whey protein-pectin complex: A texture-controllable gel for low-fat mayonnaise. Food Res. Int. 2018, 108, 151–160. [Google Scholar] [CrossRef]
- Al Khatib, M.; Wilson, S. The development of Poiseuille flow of a yield-stress fluid. J. Non-Newton. Fluid Mech. 2001, 100, 1–8. [Google Scholar] [CrossRef]
- Rha, C. Theories and principles of viscosity. In Theory, Determination and Control of Physical Properties of Food Materials; Springer: Berlin/Heidelberg, Germany, 1975; pp. 7–24. [Google Scholar]
- Yalmanci, D.; Dertli, E.; Tekin-Cakmak, Z.H.; Karasu, S. Utilization of exopolysaccharide produced by Leuconostoc lactis GW-6 as an emulsifier for low-fat mayonnaise production. Int. J. Biol. Macromol. 2023, 226, 772–779. [Google Scholar] [CrossRef]
- Li, L.; Kim, H.; Yoon, J. Rheological characteristics of mayonnaises with different oil contents. Food Eng. Prog. 2012, 16, 7–13. [Google Scholar]
- Li, A.; Gong, T.; Hou, Y.; Yang, X.; Guo, Y. Alginate-stabilized thixotropic emulsion gels and their applications in fabrication of low-fat mayonnaise alternatives. Int. J. Biol. Macromol. 2020, 146, 821–831. [Google Scholar] [CrossRef] [PubMed]
- Yalmanci, D.; Dertli, E.; Tekin-Cakmak, Z.H.; Karasu, S. The stabilisation of low-fat mayonnaise by whey protein isolate-microbial exopolysaccharides (Weissella confusa W-16 strain) complex. Int. J. Food Sci. Technol. 2023, 58, 1307–1316. [Google Scholar] [CrossRef]
- Lu, Z.; Zhou, S.; Ye, F.; Zhou, G.; Gao, R.; Qin, D.; Zhao, G. A novel cholesterol-free mayonnaise made from Pickering emulsion stabilized by apple pomace particles. Food Chem. 2021, 353, 129418. [Google Scholar] [CrossRef]
- Yang, X.; Gong, T.; Lu, Y.-h.; Li, A.; Sun, L.; Guo, Y. Compatibility of sodium alginate and konjac glucomannan and their applications in fabricating low-fat mayonnaise-like emulsion gels. Carbohydr. Polym. 2020, 229, 115468. [Google Scholar] [CrossRef] [PubMed]
Sample Name | Emulsifier | Hydrogel:Oleogel Ratio |
---|---|---|
Oleogel | - | 0:100 |
CSGB-70%-O | Chia Seed Gum (3%) | 30:70 |
CSGB-50%-O | Chia Seed Gum (3%) | 50:50 |
CSGB-30%-O | Chia Seed Gum (3%) | 70:30 |
GB-70%-O | Gelatin | 30:70 |
GB-50%-O | Gelatin | 50:50 |
GB-30%-O | Gelatin | 70:30 |
WPCB-70%-O | WPC35 | 30:70 |
WPCB-50%-O | WPC35 | 50:50 |
WPCB-30%-O | WPC35 | 70:30 |
CSGH | Chia Seed Gum (%3) | 100:0 |
GH | Gelatin | 100:0 |
WPCH | WPC35 | 100:0 |
Sample Name | K′ (Pasn) | n′ | R2 | K″ (Pasn) | n″ | R2 |
---|---|---|---|---|---|---|
Oleogel | 5.333± 0.345 f | 0.444 ± 0.03 | 0.947 | 2.265 ± 0.136 g | 0.083 ± 0.01 | 0.932 |
CSGB-70%-O | 1552.92 ± 24.61 c | 0.215 ± 0.01 | 0.997 | 660.29 ± 26.010 c | 0.313 ± 0.004 | 0.996 |
CSGB-50%-O | 461.04 ± 7.81 def | 0.220 ± 0.013 | 0.999 | 198.60 ± 17.012 ef | 0.171 ± 0.012 | 0.997 |
CSGB-30%-O | 227.14 ± 18.01 ef | 0.202 ± 0.03 | 0.998 | 60.46 ± 22.172 efg | 0.251 ± 0.028 | 0.996 |
GB-70%-O | 2671.68 ± 490.991 b | 0.138 ± 0.005 | 0.996 | 730.35 ± 175.686 bc | 0.011 ± 0.006 | 0.854 |
GB-50%-O | 2347.90 ± 348.62 b | 0.186 ± 0.005 | 0.997 | 850.74 ± 78.43 ab | 0.072 ± 0.005 | 0.991 |
GB -30%-O | 1632.11 ± 317.244 c | 0.156 ± 0.004 | 0.999 | 456.48 ± 83.471 d | 0.06 ± 0.006 | 0.999 |
WPC B-70%-O | 701.69 ± 142.719 de | 0.179 ± 0.007 | 0.995 | 221.89 ± 51.337 e | 0.115 ± 0.023 | 0.883 |
WPC B-50%-O | 1440.21 ± 97.54 c | 0.218 ± 0.003 | 0.989 | 636.274 ± 68.45 c | 0.063 ± 0.005 | 0.987 |
WPC B-30%-O | 542.51 ± 48.333 def | 0.149 ± 0.002 | 0.982 | 194.40 ± 20.633 ef | 0.049 ± 0.009 | 0.985 |
CSGH | 140.94 ± 16.82 ef | 0.165 ± 0.101 | 0.998 | 25.09 ± 6.56 fg | 0.289 ± 0.01 | 0.988 |
GH | 1111.09 ± 219.205 cd | 0.064 ± 0.006 | 0.979 | 83.88 ± 6.434 efg | 0.159 ± 0.010 | 0.946 |
WPCH | 4829.41 ± 429.47 a | 0.129 ± 0.009 | 0.999 | 989.82 ± 57.39 a | 0.124 ± 0.008 | 0.982 |
Sample Name | Hardness (g) | Springness | Cohesiveness |
---|---|---|---|
Oleogel | 626.55 ± 39.07 f | 0.976 ± 0.007 | 0.372 ± 0.060 |
CSGB-70%-O | 3849.62 ± 93.75 b | 0.978 ± 0.002 | 0.992 ± 0.004 |
CSGB-50%-O | 2928.56 ± 53.51 c | 0.985 ± 0.004 | 0.975 ± 0.005 |
CSGB-30%-O | 749.78 ± 73.20 ef | 0.983 ± 0.000 | 1.004 ± 0.002 |
GB-70%-O | 4300 ± 31.64 a | 0.995 ± 0.000 | 1.218 ± 0.040 |
GB-50%-O | 3550.62 ± 17.91 b | 0.996 ± 0.001 | 0.826 ± 0.032 |
GB -30%-O | 1758.36 ± 52.51 d | 0.993 ± 0.003 | 0.830 ± 0.016 |
WPC B-70%-O | 3330.94 ± 242.13 b | 0.918 ± 0.035 | 0.929 ± 0.013 |
WPC B-50%-O | 2517.07 ± 30.05 d | 0.977 ± 0.014 | 0.99 ± 0.001 |
WPC B-30%-O | 645.87 ± 55.96 f | 0.982 ± 0.002 | 0.991 ± 0.007 |
CSGH | 607.912 ± 63.11 f | 0.9835 ± 0.002 | 0.9812 ± 0.008 |
GH | 659.41 ± 4.234 f | 0.997 ± 0.001 | 0.728 ± 0.040 |
WPCH | 774.79 ± 41.81 e | 0.988 ± 0.004 | 0.590 ± 0.002 |
Rheological Analysis | Parameters | FF | LF GB | LF CSGB | LF WPCB |
---|---|---|---|---|---|
Steady Shear | K (Pasn) | 9.11 ± 0.65 b | 21.71 ± 1.43 a | 7.95 ± 0.57 b | 0.75 ± 0.01 c |
n | 0.32 ± 0.021 | 0.38 ± 0.019 | 0.29 ± 0.024 | 0.95 ± 0.078 | |
R2 | 0.999 ± 0.001 | 0.995 ± 0.002 | 0.99 ± 0.02 | 0.9950.003 | |
Dynamic Rheological Behavior | K′ (Pasn) | 11.31 ± 0.87 c | 145.60 ± 7.65 a | 19.48 ± 2.14 b | 0.166 ± 0.031 d |
n′ | 0.55442 ± 0.04 | 0.1977 ± 0.001 | 0.32 ± 0.015 | 1.09 ± 0.05 | |
R2 | 0.978 ± 0.002 | 0.998 ± 0.001 | 0.987 ± 0.003 | 0.992 ± 0.004 | |
K″ (Pasn) | 6.51 ± 0.33 b | 39.42 ± 3.15 a | 5.14 ± 0.24 b | 0.083 ± 0.004 c | |
n″ | 0.47 ± 0.001 | 0.21 ± 0.002 | 0.48 ± 0.003 | 1.102 ± 0.04 | |
R2 | 0.988 ± 0.001 | 0.995 ± 0.0014 | 0.997 ± 0.004 | 0.983 ± 0.003 | |
3-ITT Rheological Behavior | Ge’ | 45.7± 3.27 b | 205 ± 11.24 a | 33.3 ± 1.54 b | nm |
G0′ | 22.85 ± 1.89 b | 135 ± 6.53 a | 16.52 ± 0.87 b | nm | |
Ge’/Go’ | 2.00 ± 0.11 a | 1.51 ± 0.09 b | 1.97 ± 0.15 a | nm | |
k | 5.2 ± 0.27 a | 4.52 ± 0.28 a | 4.65 ± 0.35 a | nm | |
R2 | 0.995 ± 0.02 | 0.915 ± 0.03 | 0.988 ± 0009 | nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkabaa, A.S.; Akcicek, A.; Taylan, O.; Balubaid, M.; Alamoudi, M.; Gulzar, W.A.; Alidrisi, H.; Dertli, E.; Karasu, S. Production of Novel Bigels from Cold Pressed Chia Seed Oil By-Product: Application in Low-Fat Mayonnaise. Foods 2024, 13, 574. https://doi.org/10.3390/foods13040574
Alkabaa AS, Akcicek A, Taylan O, Balubaid M, Alamoudi M, Gulzar WA, Alidrisi H, Dertli E, Karasu S. Production of Novel Bigels from Cold Pressed Chia Seed Oil By-Product: Application in Low-Fat Mayonnaise. Foods. 2024; 13(4):574. https://doi.org/10.3390/foods13040574
Chicago/Turabian StyleAlkabaa, Abdulaziz S., Alican Akcicek, Osman Taylan, Mohammed Balubaid, Mohammed Alamoudi, Waqar Ahmad Gulzar, Hisham Alidrisi, Enes Dertli, and Salih Karasu. 2024. "Production of Novel Bigels from Cold Pressed Chia Seed Oil By-Product: Application in Low-Fat Mayonnaise" Foods 13, no. 4: 574. https://doi.org/10.3390/foods13040574
APA StyleAlkabaa, A. S., Akcicek, A., Taylan, O., Balubaid, M., Alamoudi, M., Gulzar, W. A., Alidrisi, H., Dertli, E., & Karasu, S. (2024). Production of Novel Bigels from Cold Pressed Chia Seed Oil By-Product: Application in Low-Fat Mayonnaise. Foods, 13(4), 574. https://doi.org/10.3390/foods13040574