Preparation and Physicochemical Analysis of Camellia sinensis cv. ‘Ziyan’ Anthocyanin Microcapsules
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of ZYAC Powder
2.3. Screening of Wall Materials for MAC
2.4. Determination of the Embedding Rate of MAC
2.5. Stability Testing of MAC
2.6. Optimization of the Preparation Process of MAC
2.7. Microencapsulation Property Testing
2.7.1. Detection of Physical Properties of MAC
2.7.2. The Morphology of MAC
2.7.3. Fourier Infrared Spectroscopy Analysis
2.7.4. Thermal Stability Analysis
2.7.5. Test Equipment
2.8. Data Processing
3. Results and Discussion
3.1. Wall Screening Results of MAC
3.1.1. Comparison of MAC Embedding Rates
3.1.2. Results of Degradation Kinetics Tests
3.2. Optimization of the Preparation Process of Anthocyanin Microcapsules
3.3. Physicochemical Characterization of Microcapsules
3.4. Result of Fourier Infrared Spectroscopy Analysis
3.5. Results of DSC-TGA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lai, Y.S.; Li, S.; Tang, Q.; Li, H.X.; Chen, S.X.; Li, P.W.; Xu, J.Y.; Xu, Y.; Guo, X. The Dark-Purple Tea Cultivar ‘Ziyan’ Accumulates a Large Amount of Delphinidin-Related Anthocyanins. J. Agric. Food Chem. 2016, 64, 2719–2726. [Google Scholar] [CrossRef] [PubMed]
- Burin, V.M.; Rossa, P.N.; Ferreira-Lima, N.E.; Hillmann, M.C.R.; Boirdignon-Luiz, M.T. Anthocyanins: Optimisation of extraction from Cabernet Sauvignon grapes, microcapsulation and stability in soft drink. Int. J. Food Sci. Technol. 2011, 46, 186–193. [Google Scholar] [CrossRef]
- Coklar, H.; Akbulut, M. Anthocyanins and phenolic compounds of Mahonia aquifolium berries and their contributions to antioxidant activity. J. Funct. Foods 2017, 35, 166–174. [Google Scholar] [CrossRef]
- Enaru, B.; Drețcanu, G.; Pop, T.D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors Affecting Their Stability and Degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, R.N.; Santos, D.T.; Meireles, M.A.A. Non-thermal stabilization mechanisms of anthocyanins in model and food systemsâ—An overview. Food Res. Int. 2011, 44, 499–509. [Google Scholar] [CrossRef]
- Yan, C.; Kim, S.-R.; Ruiz, D.; Farmer, J. Microencapsulation for Food Applications: A Review. ACS Appl. Bio Mater. 2022, 5, 5497–5512. [Google Scholar] [CrossRef]
- Kanha, N.; Regenstein, J.M.; Surawang, S.; Pitchakarn, P.; Laokuldilok, T. Properties and kinetics of the in vitro release of anthocyanin-rich microcapsules produced through spray and freeze-drying complex coacervated double emulsions. Food Chem. 2021, 340, 127950. [Google Scholar] [CrossRef]
- Betz, M.; Steiner, B.; Schantz, M.; Oidtmann, J.; Mäder, K.; Richling, E.; Kulozik, U. Antioxidant capacity of bilberry extract microencapsulated in whey protein hydrogels. Food Res. Int. 2012, 47, 51–57. [Google Scholar] [CrossRef]
- Ab Rashid, S.; Tong, W.Y.; Leong, C.R.; Abdul Ghazali, N.M.; Taher, M.A.; Ahmad, N.; Tan, W.-N.; Teo, S.H. Anthocyanin Microcapsule from Clitoria ternatea: Potential Bio-preservative and Blue Colorant for Baked Food Products. Arab. J. Sci. Eng. 2021, 46, 65–72. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, L.; Li, J.; Oliveira, H.; Yang, N.; Jin, W.; Zhu, Z.; Li, S.; He, J. Microencapsulation of anthocyanins extracted from grape skin by emulsification/internal gelation followed by spray/freeze-drying techniques: Characterization, stability and bioaccessibility. LWT 2020, 123, 109097. [Google Scholar] [CrossRef]
- Seke, F.; Adiamo, O.Q.; Sultanbawa, Y.; Sivakumar, D. In Vitro Antioxidant Activity, Bioaccessibility, and Thermal Stability of Encapsulated Strawberry Fruit (Fragaria × ananassa) Polyphenols. Foods 2023, 12, 4045. [Google Scholar] [CrossRef]
- Berg, S.; Bretz, M.; Hubbermann, E.M.; Schwarz, K. Influence of different pectins on powder characteristics of microencapsulated anthocyanins and their impact on drug retention of shellac coated granulate. J. Food Eng. 2012, 108, 158–165. [Google Scholar] [CrossRef]
- Moser, P.; Gallo, T.C.B.; Zuanon, L.A.C.; Pereira, G.E.; Nicoletti, V.R. Water sorption and stickiness of spray-dried grape juice and anthocyanins stability. J. Food Process. Preserv. 2018, 42, e13830. [Google Scholar] [CrossRef]
- Wyspiańska, D.; Kucharska, A.Z.; Sokół-Łętowska, A.; Kolniak-Ostek, J. Effect of microencapsulation on concentration of isoflavones during simulated in vitro digestion of isotonic drink. Food Sci. Nutr. 2019, 7, 805–816. [Google Scholar] [CrossRef]
- Laokuldilok, T.; Kanha, N. Microencapsulation of Black Glutinous Rice Anthocyanins Using Maltodextrins Produced from Broken Rice Fraction as Wall Material by Spray Drying and Freeze Drying: Microencapsulation of Black Rice Anthocyanins. J. Food Process. Preserv. 2016, 41, e12877. [Google Scholar] [CrossRef]
- Gong, Z.; Yu, M.; Wang, W.; Shi, X. Functionality of spray-dried strawberry powder: Effects of whey protein isolate and maltodextrin. Int. J. Food Prop. 2018, 21, 2229–2238. [Google Scholar] [CrossRef]
- Yu, Y.; Lv, Y. Degradation kinetic of anthocyanins from rose (Rosa rugosa) as prepared by microencapsulation in freeze-drying and spray-drying. Int. J. Food Prop. 2019, 22, 2009–2021. [Google Scholar] [CrossRef]
- Antonio-Gomez, M.; Salinas-Moreno, Y.; Hernandez, F.; Martínez-Bustos, F.; Andrade-González, I.; Herrera, A. Optimized Extraction, Microencapsulation, and Stability of Anthocyanins from Ardisia compressa K. Fruit. Pol. J. Food Nutr. Sci. 2021, 71, 299–310. [Google Scholar] [CrossRef]
- Tonon, R.V.; Brabet, C.; Hubinger, M.D. Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. J. Food Eng. 2008, 88, 411–418. [Google Scholar] [CrossRef]
- de Souza, V.B.; Thomazini, M.; Balieiro, J.C.d.C.; Fávaro-Trindade, C.S. Effect of spray drying on the physicochemical properties and color stability of the powdered pigment obtained from vinification byproducts of the Bordo grape (Vitis labrusca). Food Bioprod. Process. 2015, 93, 39–50. [Google Scholar] [CrossRef]
- Odabaş, H.İ.; Koca, I. Process for production of microencapsulated anthocyanin pigments from Rosa pimpinellifolia L. fruits: Optimization of aqueous two-phase extraction, microencapsulation by spray and freeze-drying, and storage stability evaluation. Int. J. Food Eng. 2020, 16, 20200057. [Google Scholar] [CrossRef]
- Shahidi Noghabi, M.; Molaveisi, M. The effect of wall formulation on storage stability and physicochemical properties of cinnamon essential oil microencapsulated by spray drying. Chem. Pap. 2020, 74, 3455–3465. [Google Scholar] [CrossRef]
- Ferrari, C.C.; Germer, S.P.M.; Alvim, I.D.; Vissotto, F.Z.; de Aguirre, J.M. Influence of carrier agents on the physicochemical properties of blackberry powder produced by spray drying. Int. J. Food Sci. Technol. 2012, 47, 1237–1245. [Google Scholar] [CrossRef]
- Mahalleh, A.A.; Sharayei, P.; Azarpazhooh, E. Investigating the Characteristics of the Nepeta binaludensis Encapsulated Extract and Its Release Kinetics in Laboratory Conditions. Food Bioprocess. Technol. 2021, 14, 164–176. [Google Scholar] [CrossRef]
- Zhao, M.; Cao, W.; Li, L.; Ren, A.; Ang, Y.; Chen, J.; Bhandari, B.; Wang, Z.; Ren, X.; Ren, G.; et al. Effects of different proteins and maltodextrin combinations as wall material on the characteristics of Cornus officinalis flavonoids microcapsules. Front. Nutr. 2022, 9, 1007863. [Google Scholar] [CrossRef]
- Mansour, M.; Salah, M.; Xu, X. Effect of microencapsulation using soy protein isolate and gum arabic as wall material on red raspberry anthocyanin stability, characterization, and simulated gastrointestinal conditions. Ultrason. Sonochem. 2020, 63, 104927. [Google Scholar] [CrossRef]
- Li, B.; Zhao, Y.; Wang, M.; Guan, W.; Liu, J.; Zhao, H.; Brennan, C.S. Microencapsulation of roselle anthocyanins with β-cyclodextrin and proteins enhances the thermal stability of anthocyanins. J. Food Process. Preserv. 2022, 46, e16612. [Google Scholar] [CrossRef]
- Guan, Y.; Zhong, Q. The improved thermal stability of anthocyanins at pH 5.0 by gum arabic. LWT-Food Sci. Technol. 2015, 64, 706–712. [Google Scholar] [CrossRef]
- Edelmann, A.; Diewok, J.; Schuster, K.C.; Lendl, B. Rapid method for the discrimination of red wine cultivars based on mid-infrared spectroscopy of phenolic wine extracts. J. Agric. Food Chem. 2001, 49, 1139–1145. [Google Scholar] [CrossRef]
Considerations | Level (of Achievement etc.) | ||
---|---|---|---|
1 | 2 | 3 | |
A—Encapsulation time (min) | 20 | 30 | 40 |
B—Solids content (%) | 25 | 30 | 35 |
C—Core-to-wall ratio (g/g) | 6 | 8 | 10 |
Serial No. | Instrument Name | Model and Manufacturer |
---|---|---|
1 | Field-emission scanning electron microscope (FESEM) | FEI-NOVASEM 230; FEI Company (Hillsboro, OR, USA) |
2 | High speed homogenizer | FSH-2A; Shanghai Yao Technology Development Co. (Shanghai, China) |
3 | Fourier infrared spectrometer | iS5; Thermo Fisher Scientific (Waltham, MA, USA) |
4 | Synchronized thermal analyzer | STA 449 F5; NETZSCH Scientific Instruments Trading Ltd. (Shanghai, China) |
Ratio of Wall Materials | Encapsulation Efficiency | ||
---|---|---|---|
MD + GA | MD + SPI | SPI + GA | |
9:1 | 85.56 ± 1.02 e | 96.31 ± 1.14 ab | 96.55 ± 1.28 a |
8:2 | 89.5 ± 1.28 d | 98.01 ± 0.78 a | 95.61 ± 0.97 a |
7:3 | 93.3 ± 1.43 bc | 96.77 ± 0.99 ab | 96.16 ± 1.04 a |
6:4 | 91.29 ± 0.88 cd | 92.8 ± 1.05 bc | 95.22 ± 1.15 a |
5:5 | 94.74 ± 0.61 ab | 96.37 ± 0.78 ab | 95.78 ± 0.59 a |
4:6 | 95.45 ± 0.72 ab | 90.92 ± 0.86 cd | 96.96 ± 0.61 a |
3:7 | 96.26 ± 0.33 ab | 87.78 ± 1.42 d | 97.71 ± 0.85 a |
2:8 | 97.13 ± 0.87 a | 80.48 ± 1.72 e | 97.92 ± 0.33 a |
1:9 | 97.13 ± 0.32 a | 76.69 ± 1.09 e | 95.26 ± 1.43 a |
Storage Conditions | Sample | Zero-Level Reaction Kinetics Ct = C0 − kt | Primary Reaction Kinetics ln (Ct/C0) = −kt | Second-Order Reaction Kinetics 1/Ct = 1/C0 + kt | Half-Life t1/2 (d) |
---|---|---|---|---|---|
4 °C Dark | AC | Ct = 0.01 − 0.0015 t R2 = 0.9551 | ln (Ct/C0) = −0.0023 t R2 = 0.9501 | 1/Ct = 100 + 0.1656 t R2 = 0.9447 | 305.4 d |
M1 | Ct = 0.01 − 0.0084 t R2 = 0.9565 | ln (Ct/C0) = −0.0009 t R2 = 0.9364 | 1/Ct = 100 + 1.428 t R2 = 0.9630 | 753.0 a | |
M2 | Ct = 0.01 − 0.0133 t R2 = 0.7774 | ln (Ct/C0) = −0.0010 t R2 = 0.9692 | 1/Ct = 100 + 3.683 t R2 = 0.9379 | 673.0 c | |
M3 | Ct = 0.01 − 0.0148 t R2 = 0.9447 | ln (Ct/C0) = −0.0010 t R2 = 0.9534 | 1/Ct = 100 + 5.624 t R2 = 0.8488 | 702.4 b | |
25 °C Dark | AC | Ct = 0.01 − 0.0047 t R2 = 0.9503 | ln (Ct/C0) = −0.0154 t R2 = 0.9755 | 1/Ct = 100 + 0.0657 t R2 = 0.93377 | 44.92 d |
M1 | Ct = 0.01 − 0.0006 t R2 = 0.9394 | ln (Ct/C0) = −0.0077 t R2 = 0.9493 | 1/Ct = 100 + 0.6160 t R2 = 0.9437 | 90.49 a | |
M2 | Ct = 0.01 − 0.0075 t R2 = 0.9587 | ln (Ct/C0) = −0.0091 t R2 = 0.9498 | 1/Ct = 100 + 1.163 t R2 = 0.9826 | 76.59 b | |
M3 | Ct = 0.01 − 0.0085 t R2 = 0.9523 | ln (Ct/C0) = −0.0106 t R2 = 0.9550 | 1/Ct = 100 + 1.460 t R2 = 0.9679 | 65.51 c | |
25 °C Ultraviolet | AC | Ct = 0.01 − 0.0007 t R2 = 0.9698 | ln (Ct/C0) = −0.0301 t R2 = 0.9871 | 1/Ct = 100 + 0.0737 t R2 = 0.9687 | 23.09 c |
M1 | Ct = 0.01 − 0.0054 t R2 = 0.9538 | ln (Ct/C0) = −0.0132 t R2 = 0.9891 | 1/Ct = 100 + 0.7472 t R2 = 0.9397 | 52.67 a | |
M2 | Ct = 0.01 − 0.0103 t R2 = 0.9267 | ln (Ct/C0) = −0.0202 t R2 = 0.9832 | 1/Ct = 100 + 2.041 t R2 = 0.9724 | 34.27 b | |
M3 | Ct = 0.01 − 0.0083 t R2 = 0.9871 | ln (Ct/C0) = −0.0224 t R2 = 0.9897 | 1/Ct = 100 + 1.415 t R2 = 0.9123 | 31.01 b | |
37 °C Dark | AC | Ct = 0.01 − 0.0007 t R2 = 0.9523 | ln (Ct/C0) = −0.0375 t R2 = 0.9784 | 1/Ct = 100 + 0.0704 t R2 = 0.9538 | 18.49 c |
M1 | Ct = 0.01 − 0.0062 t R2 = 0.9693 | ln (Ct/C0) = −0.0157 t R2 = 0.9918 | 1/Ct = 100 + 0.9018 t R2 = 0.9305 | 44.15 a | |
M2 | Ct = 0.01 − 0.0065 t R2 = 0.9534 | ln (Ct/C0) = −0.0152 t R2 = 0.9718 | 1/Ct = 100 + 2.355 t R2 = 0.9656 | 45.63 a | |
M3 | Ct = 0.01 − 0.068 t R2 = 0.9235 | ln (Ct/C0) = −0.0208 t R2 = 0.9889 | 1/Ct = 100 + 2.123 t R2 = 0.9647 | 33.37 b |
Test No. | A—Encapsulation Time | B—Solids Content | C—Core-to-Wall Ratio | Recovery (%) |
---|---|---|---|---|
1 | 1 (20) | 1 (25) | 1 (6) | 72.68 ± 0.16 |
2 | 1 | 2 (30) | 2 (8) | 80.56 ± 0.57 |
3 | 1 | 3 (35) | 3 (10) | 79.12 ± 0.32 |
4 | 2 (30) | 1 | 2 | 93.55 ± 1.05 |
5 | 2 | 2 | 3 | 95.58 ± 0.71 |
6 | 2 | 3 | 1 | 88.34 ± 0.98 |
7 | 3 (40) | 1 | 3 | 81.20 ± 0.46 |
8 | 3 | 2 | 1 | 79.25 ± 0.78 |
9 | 3 | 3 | 2 | 79.93 ± 0.68 |
K1 | 232.36 | 247.43 | 240.29 | |
K2 | 277.49 | 255.39 | 254.04 | |
K3 | 240.38 | 247.41 | 255.90 | |
k1 | 77.45 | 82.48 | 80.10 | |
k2 | 92.50 | 85.13 | 84.68 | |
k3 | 80.13 | 82.47 | 85.30 | |
R | 15.04 | 2.66 | 5.20 |
Origin | SS | Df | MS | F | p |
---|---|---|---|---|---|
A | 386.4655 | 2 | 193.2327 | 166.598 | 0.006 ** |
B | 14.1158 | 2 | 7.0579 | 6.085 | 0.141 |
C | 48.4660 | 2 | 24.2330 | 20.893 | 0.046 * |
e | 2.3198 | 2 | 1.1599 |
Physical Property | Anthocyanin | Microencapsulation |
---|---|---|
Packing density (g/cm3) | 0.40 ± 0.01 a | 0.42 ± 0.01 a |
Solidification density (g/cm3) | 0.50 ± 0.01 a | 0.48 ± 0.01 a |
Carr index (CI) | 20.38 ± 1.54 a | 13.08 ± 1.37 b |
Hausner ratios (HR) | 1.26 ± 0.02 a | 1.15 ± 0.02 b |
Moisture content (%) | 4.64 ± 0.30 a | 4.29 ± 0.18 a |
Solubility (%) | 80.89 ± 2.55 b | 94.48 ± 1.11 a |
Absorbance (g/100 g) | 10.98 ± 0.30 b | 13.27 ± 0.55 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, R.; Yuan, X.; Jiang, H.; Huang, H.; Luo, X.; Li, P. Preparation and Physicochemical Analysis of Camellia sinensis cv. ‘Ziyan’ Anthocyanin Microcapsules. Foods 2024, 13, 618. https://doi.org/10.3390/foods13040618
Xue R, Yuan X, Jiang H, Huang H, Luo X, Li P. Preparation and Physicochemical Analysis of Camellia sinensis cv. ‘Ziyan’ Anthocyanin Microcapsules. Foods. 2024; 13(4):618. https://doi.org/10.3390/foods13040618
Chicago/Turabian StyleXue, Ruixin, Xiang Yuan, Hong Jiang, Hong Huang, Xiaocong Luo, and Pinwu Li. 2024. "Preparation and Physicochemical Analysis of Camellia sinensis cv. ‘Ziyan’ Anthocyanin Microcapsules" Foods 13, no. 4: 618. https://doi.org/10.3390/foods13040618
APA StyleXue, R., Yuan, X., Jiang, H., Huang, H., Luo, X., & Li, P. (2024). Preparation and Physicochemical Analysis of Camellia sinensis cv. ‘Ziyan’ Anthocyanin Microcapsules. Foods, 13(4), 618. https://doi.org/10.3390/foods13040618