Emulsification Characteristics of Insoluble Dietary Fibers from Pomelo Peel: Effects of Acetylation, Enzymatic Hydrolysis, and Wet Ball Milling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PIDF
2.3. Modification of PIDF
2.3.1. Acetylation Modification
2.3.2. Enzymatic Modification
2.3.3. Modification by Wet Ball Milling
2.4. PIDF Chemical Composition and Physicochemical Properties
2.4.1. Chemical Composition Determination
2.4.2. Particle Size Determination
2.4.3. Fourier-Transform Infrared Spectroscopy (FT-IR)
2.4.4. X-ray Diffraction (XRD)
2.4.5. Scanning Electron Microscopy (SEM)
2.4.6. Water Retention Capacity (WRC)
2.4.7. Water Swelling Capacity (WSC)
2.4.8. Oil Retention Capacity (ORC)
2.4.9. Zeta Potential Measurement
2.5. Emulsion Preparation and Property Characterization
2.5.1. Preparation and Macroscopic Evaluation of Emulsions
2.5.2. Droplet Size Analysis of Emulsions
2.5.3. Confocal Laser Scanning Microscopy (CLSM)
2.5.4. Rheological Behavior Assessment
2.6. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition and Particle Size Analysis
3.2. FT-IR Analysis
3.3. XRD Analysis
3.4. SEM Analysis
3.5. Hydration Properties Analysis
3.6. Zeta Potential Analysis
3.7. Properties of O/W Emulsions Stabilized by Different PIDFs
3.7.1. Emulsion Appearance and Particle Size Analysis
3.7.2. Storage Stability of Emulsions
3.7.3. Microstructure Analysis
3.7.4. Rheological Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shah, B.R.; Li, Y.; Jin, W.; An, Y.; He, L.; Li, Z.; Xu, W.; Li, B. Preparation and Optimization of Pickering Emulsion Stabilized by Chitosan-Tripolyphosphate Nanoparticles for Curcumin Encapsulation. Food Hydrocoll. 2016, 52, 369–377. [Google Scholar] [CrossRef]
- Cui, F.; Zhao, S.; Guan, X.; McClements, D.J.; Liu, X.; Liu, F.; Ngai, T. Polysaccharide-Based Pickering Emulsions: Formation, Stabilization and Applications. Food Hydrocoll. 2021, 119, 106812. [Google Scholar] [CrossRef]
- Yan, X.; Ma, C.; Cui, F.; McClements, D.J.; Liu, X.; Liu, F. Protein-Stabilized Pickering Emulsions: Formation, Stability, Properties, and Applications in Foods. Trends Food Sci. Technol. 2020, 103, 293–303. [Google Scholar] [CrossRef]
- Lin, J.; Meng, H.; Yu, S.; Wang, Z.; Ai, C.; Zhang, T.; Guo, X. Genipin-Crosslinked Sugar Beet Pectin-Bovine Serum Albumin Nanoparticles as Novel Pickering Stabilizer. Food Hydrocoll. 2021, 112, 106306. [Google Scholar] [CrossRef]
- Gao, K.; Liu, Y.; Liu, T.; Song, X.; Ruan, R.; Feng, S.; Wang, X.; Cui, X. OSA Improved the Stability and Applicability of Emulsions Prepared with Enzymatically Hydrolyzed Pomelo Peel Insoluble Fiber. Food Hydrocoll. 2022, 132, 107806. [Google Scholar] [CrossRef]
- Tocmo, R.; Pena-Fronteras, J.; Calumba, K.F.; Mendoza, M.; Johnson, J.J. Valorization of Pomelo (Citrus grandis Osbeck) Peel: A Review of Current Utilization, Phytochemistry, Bioactivities, and Mechanisms of Action. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1969–2012. [Google Scholar] [CrossRef]
- Sang, J.; Li, L.; Wen, J.; Liu, H.; Wu, J.; Yu, Y.; Xu, Y.; Gu, Q.; Fu, M.; Lin, X. Chemical Composition, Structural and Functional Properties of Insoluble Dietary Fiber Obtained from the Shatian Pomelo Peel Sponge Layer Using Different Modification Methods. LWT 2022, 165, 113737. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Shen, M.; Yi, C.; Yu, Q.; Chen, X.; Xie, J.; Xie, M. Acetylated Polysaccharides: Synthesis, Physicochemical Properties, Bioactivities, and Food Applications. Crit. Rev. Food Sci. Nutr. 2022, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, Y.; Zhao, P.; Guo, L.; Huang, L.; Li, X.; Gao, W. Naturally and Chemically Acetylated Polysaccharides: Structural Characteristics, Synthesis, Activities, and Applications in the Delivery System: A Review. Carbohydr. Polym. 2023, 313, 120746. [Google Scholar] [CrossRef]
- Huang, Z.; Zong, M.-H.; Lou, W.-Y. Effect of Acetylation Modification on the Emulsifying and Antioxidant Properties of Polysaccharide from Millettia Speciosa Champ. Food Hydrocoll. 2022, 124, 107217. [Google Scholar] [CrossRef]
- Belmiro, R.H.; de Carvalho Oliveira, L.; Geraldi, M.V.; Junior, M.R.M.; Cristianini, M. Modification of Coffee Coproducts By-Products by Dynamic High Pressure, Acetylation and Hydrolysis by Cellulase: A Potential Functional and Sustainable Food Ingredient. Innov. Food Sci. Emerg. Technol. 2021, 68, 102608. [Google Scholar] [CrossRef]
- Yao, X.; Lin, R.; Liang, Y.; Jiao, S.; Zhong, L. Characterization of Acetylated Starch Nanoparticles for Potential Use as an Emulsion Stabilizer. Food Chem. 2023, 400, 133873. [Google Scholar] [CrossRef] [PubMed]
- Ke, S.; Wang, X.; Wang, A.; Zhuang, M.; Zhou, Z. Study of the Acetylation-Induced Changes in the Physicochemical and Functional Characteristics of Insoluble Dietary Fiber from Wheat Bran. J. Sci. Food Agric. 2023, 104, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Huang, G. Improving Method, Properties and Application of Polysaccharide as Emulsifier. Food Chem. 2022, 376, 131937. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Liu, T.; Cao, L.; Liu, Y.; Zhang, Q.; Ruan, R.; Feng, S.; Wu, X. Feasibility of Pomelo Peel Dietary Fiber as Natural Functional Emulsifier for Preparation of Pickering-Type Emulsion. J. Sci. Food Agric. 2022, 102, 4491–4499. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Ye, F.; Zhou, G.; Gao, R.; Qin, D.; Zhao, G. Micronized Apple Pomace as a Novel Emulsifier for Food O/W Pickering Emulsion. Food Chem. 2020, 330, 127325. [Google Scholar] [CrossRef] [PubMed]
- Gan, J.; Xie, L.; Peng, G.; Xie, J.; Chen, Y.; Yu, Q. Systematic Review on Modification Methods of Dietary Fiber. Food Hydrocoll. 2021, 119, 106872. [Google Scholar] [CrossRef]
- Zheng, H.; Li, Y. Physicochemical and Functional Properties of Coconut (Cocos nucifera L) Cake Dietary Fibres: Effects of Cellulase Hydrolysis, Acid Treatment and Particle Size Distribution. Food Chem. 2018, 257, 135–142. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, M.; Huang, Y.; Ma, C.; Mu, S.; Li, H.; Liu, X.; Ma, Y.; Liu, Y.; Hou, J. Comparison and Characterization of the Structure and Physicochemical Properties of Three Citrus Fibers: Effect of Ball Milling Treatment. Foods 2022, 11, 2665. [Google Scholar] [CrossRef]
- Phillips, D.L.; Liu, H.; Pan, D.; Corke, H. General Application of Raman Spectroscopy for the Determination of Level of Acetylation in Modified Starches. Cereal Chem. J. 1999, 76, 439–443. [Google Scholar] [CrossRef]
- Szymańska-Chargot, M.; Chylińska, M.; Gdula, K.; Kozioł, A.; Zdunek, A. Isolation and Characterization of Cellulose from Different Fruit and Vegetable Pomaces. Polymers 2017, 9, 495. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Guo, Z.; Long, Y.; Zhou, W.; Xiao, N.; Cai, J. Effects of Various Persulfate Oxidation Pretreatments on Enzymatic Saccharification Efficiency of Sugarcane Bagasse Biomass and the Related Mechanism. Ind. Crops Prod. 2023, 202, 116956. [Google Scholar] [CrossRef]
- Segal, L.; Creely, J.J.; Martin, A.E.; Conrad, C.M. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, J.; Zeng, W.; Huang, Y.; Yang, X. Properties of Dietary Fiber from Citrus Obtained through Alkaline Hydrogen Peroxide Treatment and Homogenization Treatment. Food Chem. 2020, 311, 125873. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, H.; Yuan, F.; Fan, R.; Gao, Y. Preparation and Physicochemical Properties of Soluble Dietary Fiber from Orange Peel Assisted by Steam Explosion and Dilute Acid Soaking. Food Chem. 2015, 185, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Qi, J.; Liao, J.; Yang, X. Enzymatic and Enzyme-Physical Modification of Citrus Fiber by Xylanase and Planetary Ball Milling Treatment. Food Hydrocoll. 2021, 121, 107015. [Google Scholar] [CrossRef]
- Li, J.; Hu, X.; Li, X.; Ma, Z. Effects of Acetylation on the Emulsifying Properties of Artemisia Sphaerocephala Krasch Polysaccharide. Carbohydr. Polym. 2016, 144, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Mu, T. Modification of Deoiled Cumin Dietary Fiber with Laccase and Cellulase under High Hydrostatic Pressure. Carbohydr. Polym. 2016, 136, 87–94. [Google Scholar] [CrossRef]
- Gao, K.; Liu, T.; Zhang, Q.; Wang, Y.; Song, X.; Luo, X.; Ruan, R.; Deng, L.; Cui, X.; Liu, Y. Stabilization of Emulsions Prepared by Ball Milling and Cellulase Treated Pomelo Peel Insoluble Dietary Fiber: Integrity of Porous Fiber Structure Dominates the Stability. Food Chem. 2024, 440, 138189. [Google Scholar] [CrossRef]
- Lamothe, L.M.; Srichuwong, S.; Reuhs, B.L.; Hamaker, B.R. Quinoa (Chenopodium quinoa W.) and Amaranth (Amaranthus caudatus L.) Provide Dietary Fibres High in Pectic Substances and Xyloglucans. Food Chem. 2015, 167, 490–496. [Google Scholar] [CrossRef]
- Zheng, Y.; Xu, B.; Shi, P.; Tian, H.; Li, Y.; Wang, X.; Wu, S.; Liang, P. The Influences of Acetylation, Hydroxypropylation, Enzymatic Hydrolysis and Crosslinking on Improved Adsorption Capacities and in Vitro Hypoglycemic Properties of Millet Bran Dietary Fibre. Food Chem. 2022, 368, 130883. [Google Scholar] [CrossRef]
- Sang, J.; Li, L.; Wen, J.; Gu, Q.; Wu, J.; Yu, Y.; Xu, Y.; Fu, M.; Lin, X. Evaluation of the Structural, Physicochemical and Functional Properties of Dietary Fiber Extracted from Newhall Navel Orange By-Products. Foods 2021, 10, 2772. [Google Scholar] [CrossRef]
- Ai, C.; Meng, H.; Lin, J.; Tang, X.; Guo, X. Emulsification Properties of Alkaline Soluble Polysaccharide from Sugar Beet Pulp: Effect of Acetylation and Methoxylation. Food Hydrocoll. 2022, 124, 107361. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Wang, Y.; Liu, Z.; Ni, Y. Effects of Extraction Methods on the Structural Characteristics and Functional Properties of Dietary Fiber Extracted from Kiwifruit (Actinidia deliciosa). Food Hydrocoll. 2021, 110, 106162. [Google Scholar] [CrossRef]
- Zhang, M.-Y.; Liao, A.-M.; Thakur, K.; Huang, J.-H.; Zhang, J.-G.; Wei, Z.-J. Modification of Wheat Bran Insoluble Dietary Fiber with Carboxymethylation, Complex Enzymatic Hydrolysis and Ultrafine Comminution. Food Chem. 2019, 297, 124983. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, J.; Wang, X.; Guo, M.; Cheng, C.; Zhang, Y. Effects of Three Biological Combined with Chemical Methods on the Microstructure, Physicochemical Properties and Antioxidant Activity of Millet Bran Dietary Fibre. Food Chem. 2023, 411, 135503. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Yi, C.; Quan, K.; Lin, B. Chemical Composition, Structure, Physicochemical and Functional Properties of Rice Bran Dietary Fiber Modified by Cellulase Treatment. Food Chem. 2021, 342, 128352. [Google Scholar] [CrossRef]
- Song, Y.; Qi, J.; Yang, X.; Liao, J.; Liu, Z.; Ruan, C. Hydrophobic Surface Modification of Citrus Fiber Using Octenyl Succinic Anhydride (OSA): Preparation, Characterization and Emulsifying Properties. Food Hydrocoll. 2022, 132, 107832. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Tian, H. Effects of Carboxymethylation, Acidic Treatment, Hydroxypropylation and Heating Combined with Enzymatic Hydrolysis on Structural and Physicochemical Properties of Palm Kernel Expeller Dietary Fiber. LWT-Food Sci. Technol. 2020, 133, 109909. [Google Scholar] [CrossRef]
- Yang, T.; Yan, H.-L.; Tang, C.-H. Wet Media Planetary Ball Milling Remarkably Improves Functional and Cholesterol-Binding Properties of Okara. Food Hydrocoll. 2021, 111, 106386. [Google Scholar] [CrossRef]
- Zheng, Y.; Tian, H.; Li, Y.; Wang, X.; Shi, P. Effects of Carboxymethylation, Hydroxypropylation and Dual Enzyme Hydrolysis Combination with Heating on Physicochemical and Functional Properties and Antioxidant Activity of Coconut Cake Dietary Fibre. Food Chem. 2021, 336, 127688. [Google Scholar] [CrossRef] [PubMed]
- Mende, S.; Stenger, F.; Peukert, W.; Schwedes, J. Mechanical Production and Stabilization of Submicron Particles in Stirred Media Mills. Powder Technol. 2003, 132, 64–73. [Google Scholar] [CrossRef]
- Qi, J.; Song, L.; Zeng, W.; Liao, J. Citrus Fiber for the Stabilization of O/W Emulsion through Combination of Pickering Effect and Fiber-Based Network. Food Chem. 2021, 343, 128523. [Google Scholar] [CrossRef] [PubMed]
PIDF | PIDF-A | PIDF-E | PIDF-M | |
---|---|---|---|---|
Cellulose (%) | 60.05 ± 0.98 a | 46.32 ± 1.06 c | 38.41 ± 1.14 d | 50.49 ± 0.89 b |
Hemicellulose (%) | 18.43 ± 0.67 a | 14.59 ± 0.36 c | 15.80 ± 0.69 b | 13.72 ± 0.64 c |
Lignin (%) | 8.58 ± 0.83 a | 6.82 ± 0.31 b | 6.48 ± 0.23 b | 7.44 ± 0.35 b |
Mannose (%) | 4.78 ± 0.08 b | 4.91 ± 0.05 b | 5.65 ± 0.06 a | 4.52 ± 0.06 c |
Rhamnose (%) | 2.31 ± 0.04 c | 2.27 ± 0.07 c | 3.74 ± 0.07 a | 3.59 ± 0.05 b |
Glucuronic acid (%) | 0.54 ± 0.06 a | 0.59 ± 0.04 a | 0.57 ± 0.05 a | 0.57 ± 0.03 a |
Galacturonic acid (%) | 0.98 ± 0.04 a | 1.02 ± 0.06 a | 0.98 ± 0.06 a | 0.70 ± 0.03 b |
Glucose (%) | 49.57 ± 0.42 a | 35.66 ± 0.33 c | 30.83 ± 0.09 d | 41.09 ± 0.19 b |
Galactose (%) | 10.10 ± 0.17 d | 15.19 ± 0.19 a | 13.72 ± 0.04 b | 12.17 ± 0.07 c |
Xylose (%) | 8.72 ± 0.08 d | 9.14 ± 0.07 c | 14.17 ± 0.11 a | 11.71 ± 0.06 b |
Arabinose (%) | 23.00 ± 0.32 d | 31.22 ± 0.18 a | 30.33 ± 0.13 b | 25.65 ± 0.06 c |
Moisture (%) | 3.24 ± 0.22 a | 3.30 ± 0.16 a | 3.31 ± 0.10 a | 3.27 ± 0.16 a |
Ash (%) | 2.36 ± 0.28 a | 2.40 ± 0.13 a | 2.29 ± 0.15 a | 2.51 ± 0.18 a |
Protein (%) | 2.65 ± 0.13 a | 1.85 ± 0.14 c | 2.39 ± 0.11 b | 1.34 ± 0.06 d |
Fat (%) | 0.63 ± 0.05 a | 0.60 ± 0.04 a | 0.54 ± 0.11 a | 0.57 ± 0.14 a |
D4,3 (μm) | 145.21 ± 3.33 a | 78.17 ± 0.69 b | 66.13 ± 1.66 c | 57.63 ± 3.91 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, K.; Yao, J.; Shi, K.; Yang, C.; Xu, Y.; Zhang, P.; Pan, S. Emulsification Characteristics of Insoluble Dietary Fibers from Pomelo Peel: Effects of Acetylation, Enzymatic Hydrolysis, and Wet Ball Milling. Foods 2024, 13, 624. https://doi.org/10.3390/foods13040624
Yang K, Yao J, Shi K, Yang C, Xu Y, Zhang P, Pan S. Emulsification Characteristics of Insoluble Dietary Fibers from Pomelo Peel: Effects of Acetylation, Enzymatic Hydrolysis, and Wet Ball Milling. Foods. 2024; 13(4):624. https://doi.org/10.3390/foods13040624
Chicago/Turabian StyleYang, Kuimin, Jieqiong Yao, Kaixin Shi, Chenxi Yang, Yang Xu, Peipei Zhang, and Siyi Pan. 2024. "Emulsification Characteristics of Insoluble Dietary Fibers from Pomelo Peel: Effects of Acetylation, Enzymatic Hydrolysis, and Wet Ball Milling" Foods 13, no. 4: 624. https://doi.org/10.3390/foods13040624
APA StyleYang, K., Yao, J., Shi, K., Yang, C., Xu, Y., Zhang, P., & Pan, S. (2024). Emulsification Characteristics of Insoluble Dietary Fibers from Pomelo Peel: Effects of Acetylation, Enzymatic Hydrolysis, and Wet Ball Milling. Foods, 13(4), 624. https://doi.org/10.3390/foods13040624