Comparative Study of the Nutritional, Phytochemical, Sensory Characteristics and Glycemic Response of Cookies Enriched with Lupin Sprout Flour and Lupin Green Sprout
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Ingredients and Cookie Production
2.1.1. Obtaining Sprouts and Preparing Composite Flours
2.1.2. Cookie Preparation
2.2. Determining the Proximate Composition of Lupin Sprout Cookies
2.3. Daily Intakes (Dis) of Lupin Sprout Cookies
- Dis—daily intakes (%);
- p—protein content per 100 g sample;
- l—lipid content per 100 g sample;
- c—carbohydrate content per 100 g sample.
2.4. Phytochemical Profile of Lupin Sprout Cookies
2.4.1. Total Phenolic Content (TPC)
2.4.2. Antioxidant Capacity
2.4.3. Assessment of Individual Polyphenols
2.5. Physical Evaluation of Lupin Sprout Cookies
2.6. Sensory Analysis of Lupin Sprout Cookies
- Appearance: 1—unattractive, 2—slightly unattractive, 3—moderate, 4—attractive, and 5—very attractive.
- Flavor: 1—dislike, 2—neither like nor dislike, 3—like slightly, 4—like moderately, and 5—like very much.
- Texture: 1—very poor, 2—poor, 3—fair, 4—good, and 5—very good.
- Taste: 1—very poor, 2—poor, 3—fair, 4—good, and 5—very good.
- Overall acceptance: 1—dislike, 2—neither like nor dislike, 3—like slightly, 4—like moderately, and 5—like very much.
2.7. Determination of the Glycemic Index (GI) of Lupin Sprout Cookies
2.7.1. Safety Objectives
2.7.2. The Population Included in the Study
2.7.3. Description of Testing on Healthy Volunteers to Determine the Glycemic Index of the Lupin Sprout Cookies
2.8. Statistical Analysis
3. Results and Discussion
3.1. Nutritional Characteristics and Daily Intakes (Dis) of Composite Cookies
3.2. Phytochemical Profile of Composite Cookies
3.3. Individual Polyphenols in Lupin Sprouts Cookies
3.4. Physical Evaluation of Lupin Sprout Cookies
3.5. Sensory Property of Lupin Sprout Cookies
3.6. Glycemic Index (GI) of Lupin Sprout Cookies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lombardo, M.; Ascione, A.; Feraco, A.; Camajani, E.; Gorini, S.; Armani, A.; Caprio, M.; Amoah, I. Promoting Legume Consumption: Strategies for Health, Nutrition, and Culinary Applications. Biol. Life Sci. Forum 2023, 26, 65. [Google Scholar]
- Abreu, B.; Lima, J.; Rocha, A. Consumer Perception and Acceptability of Lupin-Derived Products: A Systematic Review. Foods 2023, 12, 1241. [Google Scholar] [CrossRef]
- Bera, I.; O’sullivan, M.; Flynn, D.; Shields, D.C. Relationship between Protein Digestibility and the Proteolysis of Legume Proteins during Seed Germination. Molecules 2023, 28, 3204. [Google Scholar] [CrossRef] [PubMed]
- Gan, R.-Y.; Lui, W.-Y.; Wu, K.; Chan, C.-L.; Dai, S.-H.; Sui, Z.-Q.; Corke, H. Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends Food Sci. Technol. 2017, 59, 1–14. [Google Scholar] [CrossRef]
- De Angelis, M.; Minervini, F.; Siragusa, S.; Rizzello, C.G.; Gobbetti, M. Wholemeal wheat flours drive the microbiome and functional features of wheat sourdoughs. Int. J. Food Microbiol. 2019, 302, 35–46. [Google Scholar] [CrossRef]
- Benincasa, P.; Falcinelli, B.; Lutts, S.; Stagnari, F.; Galieni, A. Sprouted Grains: A Comprehensive Review. Nutrients 2019, 11, 421. [Google Scholar] [CrossRef]
- Ikram, A.; Saeed, F.; Afzaal, M.; Imran, A.; Niaz, B.; Tufail, T.; Hussain, M.; Anjum, F.M. Nutritional and end-use perspectives of sprouted grains: A comprehensive review. Food Sci. Nutr. 2021, 9, 4617–4628. [Google Scholar] [CrossRef]
- Perri, G.; Calabrese, F.M.; Rizzello, C.G.; De Angelis, M.; Gobbetti, M.; Calasso, M. Sprouting process affects the lactic acid bacteria and yeasts of cereal, pseudocereal and legume flours. LWT 2020, 126, 109314. [Google Scholar] [CrossRef]
- Świeca, M.; Gawlik-Dziki, U.; Złotek, U.; Kapusta, I.; Kordowska-Wiater, M.; Baraniak, B. Effect of cold storage on the potentially bioaccessible isoflavones and antioxidant activities of soybean sprouts enriched with Lactobacillus plantarum 299v. LWT 2020, 118, 108820. [Google Scholar] [CrossRef]
- Świeca, M.; Baraniak, B.; Gawlik-Dziki, U. In vitro digestibility and starch content, predicted glycemic index and potential in vitro antidiabetic effect of lentil sprouts obtained by different germination techniques. Food Chem. 2013, 138, 1414–1420. [Google Scholar] [CrossRef]
- Owuamanam, C.; Ogueke, C.; Iwouno, J.; Edom, T. Use of Seed Sprouting in Modification of Food Nutrients and Pasting Profile of Tropical Legume Flours. Niger. Food J. 2014, 32, 117–125. [Google Scholar] [CrossRef]
- Nontasan, S.; Chottanom, P.; Raikos, V.; Moongngarm, A. Enhancement of the concentration of melatonin and its precursors in legume sprouts germinated under salinity stress and evaluation of the feasibility of using legume sprouts to develop melatonin-rich instant beverage. LWT 2022, 159, 113168. [Google Scholar] [CrossRef]
- Schmidt, H.d.O.; Oliveira, V.R.d. Overview of the Incorporation of Legumes into New Food Options: An Approach on Versatility, Nutritional, Technological, and Sensory Quality. Foods 2023, 12, 2586. [Google Scholar] [CrossRef]
- Farag, M.A.; Naser, A.F.A.; Zayed, A.; El-Dine, M.G.S. Comparative Insights into Four Major Legume Sprouts Efficacies for Diabetes Management and Its Complications: Untargeted versus Targeted NMR Biochemometrics Approach. Metabolites 2022, 13, 63. [Google Scholar] [CrossRef]
- Gawlik-Dziki, U.; Baraniak, B.; Sikora, M.; Jakubczyk, A.; Kapusta, I.; Świeca, M. Potentially Bioaccessible Phenolic and Antioxidant Potential of Fresh and Stored Lentil Sprouts—Effect of Lactobacillus plantarum 299v Enrichment. Molecules 2021, 26, 2109. [Google Scholar] [CrossRef]
- Wang, K.; Liu, H.; Hu, Q.; Wang, L.; Liu, J.; Zheng, Z.; Zhang, W.; Ren, J.; Zhu, F.; Liu, G.-H. Epigenetic regulation of aging: Implications for interventions of aging and diseases. Signal Transduct. Target. Ther. 2022, 7, 374. [Google Scholar] [CrossRef] [PubMed]
- García, S.N.C.; Rodríguez-Herrera, R.; Flores, S.N.; Silva-Belmares, S.Y.; Esparza-González, S.C.; Ascacio-Valdés, J.A.; Flores-Gallegos, A.C. Sprouts as probiotic carriers: A new trend to improve consumer nutrition. Food Chem. Mol. Sci. 2023, 7, 100185. [Google Scholar] [CrossRef]
- Plustea, L.; Negrea, M.; Cocan, I.; Radulov, I.; Tulcan, C.; Berbecea, A.; Popescu, I.; Obistioiu, D.; Hotea, I.; Suster, G.; et al. Lupin (Lupinus spp.)-Fortified Bread: A Sustainable, Nutritionally, Functionally, and Technologically Valuable Solution for Bakery. Foods 2022, 11, 2067. [Google Scholar] [CrossRef] [PubMed]
- Bermejo, N.F.; Munné-Bosch, S. Mixing chia seeds and sprouts at different developmental stages: A cost-effective way to improve antioxidant vitamin composition. Food Chem. 2023, 405, 134880. [Google Scholar] [CrossRef]
- Li, H.; Xia, Y.; Liu, H.Y.; Guo, H.; He, X.Q.; Liu, Y.; Wu, D.-T.; Mai, Y.-H.; Li, H.-B.; Zou, L.; et al. Nutritional values, beneficial effects, and food applications of broccoli (Brassica oleracea var. italica Plenck). Trends Food Sci. Technol. 2022, 119, 288–308. [Google Scholar] [CrossRef]
- Khang, D.T.; Dung, T.N.; Elzaawely, A.A.; Xuan, T.D. Phenolic Profiles and Antioxidant Activity of Germinated Legumes. Foods 2016, 5, 27. [Google Scholar] [CrossRef]
- Estivi, L.; Brandolini, A.; Gasparini, A.; Hidalgo, A. Lupin as a Source of Bioactive Antioxidant Compounds for Food Products. Molecules 2023, 28, 7529. [Google Scholar] [CrossRef]
- Dueñas, M.; Hernández, T.; Estrella, I.; Fernández, D. Germination as a process to increase the polyphenol content and antioxidant activity of lupin seeds (Lupinus angustifolius L.). Food Chem. 2009, 117, 599–607. [Google Scholar] [CrossRef]
- Atudorei, D.; Ropciuc, S.; Codină, G.G. Possibilities to Use Germinated Lupine Flour as an Ingredient in Breadmaking to Improve the Final Product Quality. Agronomy 2022, 12, 667. [Google Scholar] [CrossRef]
- Atudorei, D.; Mironeasa, S.; Codină, G.G. Dough Rheological Behavior and Bread Quality as Affected by Addition of Soybean Flour in a Germinated Form. Foods 2023, 12, 1316. [Google Scholar] [CrossRef]
- Atudorei, D.; Atudorei, O.; Codină, G.G. The Impact of Germinated Chickpea Flour Addition on Dough Rheology and Bread Quality. Plants 2022, 11, 1225. [Google Scholar] [CrossRef] [PubMed]
- Atudorei, D.; Mironeasa, S.; Codină, G.G. Effects of Germinated Lentil Flour on Dough Rheological Behavior and Bread Quality. Foods 2022, 11, 2982. [Google Scholar] [CrossRef]
- Koyama, M.; Nakamura, C.; Nakamura, K. Changes in phenols contents from buckwheat sprouts during growth stage. J. Food Sci. Technol. 2013, 50, 86–93. [Google Scholar] [CrossRef]
- Sghaier, A.H.; Tarnawa, A.; Khaeim, H.; Kovács, G.P.; Gyuricza, C.; Kende, Z. The Effects of Temperature and Water on the Seed Germination and Seedling Development of Rapeseed (Brassica napus L.). Plants 2022, 11, 2819. [Google Scholar] [CrossRef] [PubMed]
- Chopra, N.; Dhillon, B.; Puri, S. Formulation of Buckwheat Cookies and their Nutritional, Physical, Sensory and Microbiological Analysis. Int. J. Adv. Biotechnol. Res. 2014, 5, 381–387. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of AOAC International; AOAC: Rockville, MD, USA, 2000. [Google Scholar]
- Dossa, S.; Dragomir, C.; Plustea, L.; Dinulescu, C.; Cocan, I.; Negrea, M.; Berbecea, A.; Alexa, E.; Rivis, A. Gluten-Free Cookies Enriched with Baobab Flour (Adansonia digitata L.) and Buckwheat Flour (Fagopyrum esculentum). Appl. Sci. 2023, 13, 12908. [Google Scholar] [CrossRef]
- Cocan, I.; Alexa, E.; Danciu, C.; Radulov, I.; Galuscan, A.; Obistioiu, D.; Morvay, A.A.; Sumalan, R.M.; Poiana, M.; Pop, G.; et al. Phytochemical screening and biological activity of Lamiaceae family plant extracts. Exp. Ther. Med. 2018, 15, 1863–1870. [Google Scholar] [CrossRef]
- Floares, D.; Cocan, I.; Alexa, E.; Poiana, M.-A.; Berbecea, A.; Boldea, M.V.; Negrea, M.; Obistioiu, D.; Radulov, I. Influence of Extraction Methods on the Phytochemical Profile of Sambucus nigra L. Agronomy 2023, 13, 3061. [Google Scholar] [CrossRef]
- Duca, A.; Sturza, A.; Moacă, E.-A.; Negrea, M.; Lalescu, V.-D.; Lungeanu, D.; Dehelean, C.-A.; Muntean, D.-M.; Alexa, E. Identification of Resveratrol as Bioactive Compound of Propolis from Western Romania and Characterization of Phenolic Profile and Antioxidant Activity of Ethanolic Extracts. Molecules 2019, 24, 3368. [Google Scholar] [CrossRef]
- Arun, K.B.; Persia, F.; Aswathy, P.S.; Chandran, J.; Sajeev, M.S.; Jayamurthy, P.; Nisha, P. Plantain peel—A potential source of antioxidant dietary fibre for developing functional cookies. J. Food Sci. Technol. 2015, 52, 6355–6364. [Google Scholar] [CrossRef]
- Iannario, M.; Manisera, M.; Piccolo, D.; Zuccolotto, P. Sensory analysis in the food industry as a tool for marketing decisions. Adv. Data Anal. Classif. 2012, 6, 303–321. [Google Scholar] [CrossRef]
- Pestorić, M.; Sakač, M.; Pezo, L.; Škrobot, D.; Nedeljković, N.; Jovanov, P.; Šimurina, O.; Mandić, A. Physicochemical characteristics as the markers in predicting the self-life of gluten-free cookies. J. Cereal Sci. 2017, 77, 172–179. [Google Scholar] [CrossRef]
- Available online: https://ec.europa.eu/research/participants/data/ref/fp7/89847/research-food_en.pdf (accessed on 1 February 2024).
- Wolever, T.M.; Meynier, A.; Jenkins, A.L.; Brand-Miller, J.C.; Atkinson, F.S.; Gendre, D.; Leuillet, S.; Cazaubiel, M.; Housez, B.; Vinoy, S. Glycemic Index and Insulinemic Index of Foods: An Interlaboratory Study Using the ISO 2010 Method. Nutrients 2019, 11, 2218. [Google Scholar] [CrossRef]
- Giacco, R.; Costabile, G.; Riccardi, G. Metabolic effects of dietary carbohydrates: The importance of food digestion. Food Res. Int. 2016, 88, 336–341. [Google Scholar] [CrossRef]
- Zakaria, M.K.; Matanjun, P.; George, R.; Pindi, W.; Mamat, H.; Surugau, N.; Seelan, J.S.S. Nutrient Composition, Antioxidant Activities and Glycaemic Response of Instant Noodles with Wood Ear Mushroom (Auricularia cornea) Powder. Appl. Sci. 2022, 12, 12671. [Google Scholar] [CrossRef]
- Alomari, D.Z.; Abdul-Hussain, S.S. Effect of Lupin Flour Supplementation on Chemical, Physical and Sensory Properties of Mediterranean Flat Bread. Int. J. Food Sci. Nutr. Eng. 2013, 3, 5. [Google Scholar]
- Kohajdová, Z.; Karovičová, J.; Schmidt, Š. Lupin composition and possible use in bakery—A review. Czech J. Food Sci. 2011, 29, 203–211. [Google Scholar] [CrossRef]
- Yaver, E.; Bilgiçli, N. Effect of ultrasonicated lupin flour and resistant starch (type 4) on the physical and chemical properties of pasta. Food Chem. 2021, 357, 129758. [Google Scholar] [CrossRef]
- Mir, S.A.; Farooq, S.; Shah, M.A.; Sofi, S.A.; Dar, B.; Hamdani, A.M.; Khaneghah, A.M. An overview of sprouts nutritional properties, pathogens and decontamination technologies. LWT 2021, 141, 110900. [Google Scholar] [CrossRef]
- Hettiarachchi, H.A.C.O.; Gunathilake, K.D.P.P. Physicochemical and functional properties of seed flours obtained from germinated and non-germinated Canavalia gladiata and Mucuna pruriens. Heliyon 2023, 9, e19653. [Google Scholar] [CrossRef]
- Bryant, L.; Rangan, A.; Grafenauer, S. Lupins and Health Outcomes: A Systematic Literature Review. Nutrients 2022, 14, 327. [Google Scholar] [CrossRef]
- Wandersleben, T.; Morales, E.; Burgos-Díaz, C.; Barahona, T.; Labra, E.; Rubilar, M.; Salvo-Garrido, H. Enhancement of functional and nutritional properties of bread using a mix of natural ingredients from novel varieties of flaxseed and lupine. LWT 2018, 91, 48–54. [Google Scholar] [CrossRef]
- Nkhata, S.G.; Ayua, E.; Kamau, E.H.; Shingiro, J. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci. Nutr. 2018, 6, 2446–2458. [Google Scholar] [CrossRef]
- Ertaş, N. Technological and chemical characteristics of breads made with lupin sprouts. Qual. Assur. Saf. Crops Foods 2014, 1, 1–7. [Google Scholar] [CrossRef]
- Available online: https://www.who.int/news/item/31-01-2013-who-issues-new-guidance-on-dietary-salt-and-potassium (accessed on 1 February 2024).
- Giannoutsos, K.; Zalidis, A.P.; Koukoumaki, D.I.; Menexes, G.; Mourtzinos, I.; Sarris, D.; Gkatzionis, K. Production of functional crackers based on non-conventional flours. Study of the physicochemical and sensory properties. Food Chem. Adv. 2023, 2, 100194. [Google Scholar] [CrossRef]
- Karamać, M.; Orak, H.H.; Amarowicz, R.; Orak, A.; Piekoszewski, W. Phenolic contents and antioxidant capacities of wild and cultivated white lupin (Lupinus albus L.) seeds. Food Chem. 2018, 258, 1–7. [Google Scholar] [CrossRef]
- Vollmannova, A.; Lidikova, J.; Musilova, J.; Snirc, M.; Bojnanska, T.; Urminska, D.; Tirdilova, I.; Zetochova, E. White Lupin as a Promising Source of Antioxidant Phenolics for Functional Food Production. J. Food Qual. 2021, 2021, 5512236. [Google Scholar] [CrossRef]
- Ben Hassine, A.; Rocchetti, G.; Zhang, L.; Senizza, B.; Zengin, G.; Mahomoodally, M.F.; Ben-Attia, M.; Rouphael, Y.; Lucini, L.; El-Bok, S. Untargeted Phytochemical Profile, Antioxidant Capacity and Enzyme Inhibitory Activity of Cultivated and Wild Lupin Seeds from Tunisia. Molecules 2021, 26, 3452. [Google Scholar] [CrossRef]
- Đurović, V.; Radovanović, M.; Mandić, L.; Knežević, D.; Zornić, V.; Đukić, D. Chemical and microbial evaluation of biscuits made from wheat flour substituted with wheat sprouts. Food Sci. Technol. Int. 2020, 27, 172–183. [Google Scholar] [CrossRef]
- Hu, W.; Guan, Y.; Feng, K. Biosynthesis of Phenolic Compounds and Antioxidant Activity in Fresh-Cut Fruits and Vegetables. Front. Microbiol. 2022, 13, 906069. [Google Scholar] [CrossRef]
- Lemus-Conejo, A.; Rivero-Pino, F.; la Paz, S.M.-D.; Millan-Linares, M.C. Nutritional composition and biological activity of narrow-leafed lupins (Lupinus angustifolius L.) hydrolysates and seeds. Food Chem. 2023, 420, 136104. [Google Scholar] [CrossRef]
- Shivashankara, A.R.; Venkatesh, S.; Bhat, H.P.; Palatty, P.L.; Baliga, M.S. Chapter 17—Can Phytochemicals Be Effective in Preventing Ethanol-Induced Hepatotoxicity in the Geriatric Population? An Evidence-Based Revisit. In Foods and Dietary Supplements in the Prevention and Treatment of Disease in Older Adults; Watson, R.R., Ed.; Academic Press: San Diego, CA, USA, 2015; pp. 163–170. [Google Scholar]
- Brandolini, A.; Glorio-Paulet, P.; Estivi, L.; Locatelli, N.; Cordova-Ramos, J.S.; Hidalgo, A. Tocopherols, carotenoids and phenolics changes during Andean lupin (Lupinus mutabilis Sweet) seeds processing. J. Food Compos. Anal. 2022, 106, 104335. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Alamri, M.S.; Hussain, S.; Ibraheem, M.A.; Qasem, A.A.A.; Shamlan, G.; Ababtain, I.A. Effect of Ziziphus and Cordia Gums on Dough Properties and Baking Performance of Cookies. Molecules 2022, 27, 3066. [Google Scholar] [CrossRef]
- Kefale, B.; Bethel, Y. Evaluation of bread prepared from composite flour of sweet lupine and Bread wheat variety. J. Food Sci. Nutr. Ther. 2020, 6, 007–010. [Google Scholar]
- Obeidat, B.A.; Abdul-Hussain, S.S.; Al Omari, D.Z. Effect of addition of germinated lupin flour on the physiochemical and organoleptic properties of cookies. J. Food Process. Preserv. 2013, 37, 637–643. [Google Scholar] [CrossRef]
- Augustin, L.S.A.; Kendall, C.W.C.; Jenkins, D.J.A.; Willett, W.C.; Astrup, A.; Barclay, A.W.; Björck, I.; Brand-Miller, J.C.; Brighenti, F.; Buyken, A.E.; et al. Glycemic index, glycemic load and glycemic response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutr. Metab. Cardiovasc. Dis. 2015, 25, 795–815. [Google Scholar] [CrossRef] [PubMed]
- Oghbaei, M.; Prakash, J.; Yildiz, F. Effect of primary processing of cereals and legumes on its nutritional quality: A comprehensive review. Cogent Food Agric. 2016, 2, 1136015. [Google Scholar] [CrossRef]
Samples | Ingredients | ||||||
---|---|---|---|---|---|---|---|
Lupin Sprout Flour (g) | Lupin Green Sprout (g) | Wheat Flour-Type 650 (g) | Baking Powder (g) | Butter 82% (g) | Eggs (pcs) | Sugar (g) | |
CC | - | - | 100 | 1.4 | 50 | 1 | 34 |
CLSF1 | 10 | - | 90 | 1.4 | 50 | 1 | 34 |
CLSF2 | 20 | - | 80 | 1.4 | 50 | 1 | 34 |
CLSF3 | 30 | - | 70 | 1.4 | 50 | 1 | 34 |
CLGS1 | - | 10 | 90 | 1.4 | 50 | 1 | 34 |
CLGS2 | - | 20 | 80 | 1.4 | 50 | 1 | 34 |
CLGS3 | - | 30 | 70 | 1.4 | 50 | 1 | 34 |
Nutritional Characteristics | ||||||||
---|---|---|---|---|---|---|---|---|
Samples | Moisture (%) | Mineral Content (%) | Proteins (%) | Dis 1 Protein (%) | Lipids (%) | Dis Lipid 2 (%) | Carbo-Hydrates (%) | Dis Carbo- Hydrates 3 (%) |
LGS | 58.5 ± 0.4 | 0.98 ± 0.10 | 33.9 ± 0.17 | 87.9 | 1.0 ± 0.1 | 1.4 | 8.5 | 3.2 |
LSF | 10.2 ± 0.4 | 5.7 ± 0.21 | 28.2 ± 0.21 | 56.4 | 5.5 ± 0.3 | 7.9 | 50.2 | 19.3 |
CC | 6.7 ± 0.2 d | 1.0 ± 0.1 a | 7.91 ± 0.13 e | 15.8 | 19.1 ± 0.1 d | 27.3 | 65.2 | 25.1 |
Cookies with Lupin Sprout Flour | ||||||||
CLSF1 | 6.7 ± 0.2 d | 1.0 ± 0.1 a | 9.0 ± 0.1 c | 18.1 | 22.1 ±0.2 a | 31.6 | 61.1 | 23.5 |
CLSF2 | 6.1± 0.1 a | 1.3 ± 0.0 a | 12.1± 0.17 b | 24.3 | 22.3± 0.2 a | 31.9 | 57.9 | 22.3 |
CLSF3 | 5.8± 0.2 e | 1.3 ± 0.0 a | 13.3 ± 0.1 a | 26.6 | 22.4± 0.15 a | 32.0 | 57.0 | 21.9 |
Cookies with Lupin Green Sprouts | ||||||||
CLGS1 | 7.5± 0.4 c | 1.1 ± 0.1 a | 7.9± 0.1 e | 15.9 | 19.6 ± 0.1 c | 28.1 | 63.7 | 24.5 |
CLGS2 | 9.3 ± 0.5 b | 1.3 ± 0.1 a | 8.4± 0.1 d | 16.9 | 20.3± 0.1 b | 29.1 | 60.6 | 23.3 |
CLGS3 | 11.3 ± 0.4 a | 1.5± 0.1 a | 8.6± 0.1 d | 17.2 | 22.1± 0.1 a | 31.6 | 56.3 | 21.6 |
Samples | Macro- and Microelement Contents (mg/kg) | |||||||
---|---|---|---|---|---|---|---|---|
Cu | Ni | Mn | K | Ca | Mg | Fe | Zn | |
LGS | 10.75 ± 0.21 | 2.80 ± 0.22 | 364.85 ± 0.180 | 1249.44 ± 0.22 | 2195.23 ± 0.22 | 718.83 ± 0.17 | 15.52 ± 0.19 | 18.83 ± 0.16 |
LSF | 12.02 ± 0.21 | 4.94 ± 0.19 | 1150.64 ± 0.21 | 1878.72 ± 0.20 | 1375.03 ± 0.17 | 3482.71 ± 0.19 | 41.82 ± 0.18 | 57.32 ± 0.19 |
CC | 1.81 ± 0.2 c | 1.05 ± 0.17 c | 3.26 ± 0.18 f | 563.08 ± 0.19 c | 332.88 ± 0.15 d | 164.57 ± 0.20 d | 8.44 ± 0.18 c | 6.65 ± 0.21 c |
Cookies with Lupin Sprout Flour | ||||||||
CLSF1 | 3.17 ± 0.19 b | 1.15 ± 0.19 c | 69.97 ± 0.20 c | 583.40 ± 0.1 b | 402.96 ± 0.16 c | 205.55 ± 0.20 c | 10.15 ± 0.20 b | 10.17 ± 0.19 b |
CLSF2 | 3.94 ± 0.17 a | 1.74 ± 0.14 b | 170.52 ± 0.16 b | 613.15 ± 0.20 a | 428.93 ± 0.18 b | 212.75 ± 0.21 b | 11.12 ± 0.19 b | 12.54 ± 0.19 a |
CLSF3 | 4.14 ± 0.18 a | 2.02 ± 0.18 a | 242.70 ± 0.20 a | 544.07 ± 0.17 d | 463.09 ± 0.19 a | 248.10 ± 0.22 a | 14.70 ± 0.20 a | 12.94 ± 0.18 a |
Cookies with Lupin Green Sprout | ||||||||
CLGS1 | 0.97 ± 0.148 e | 0.24 ± 0.13 e | 7.13 ± 0.81 e | 303.27 ± 0.81 f | 87.73 ± 0.97 f | 76.54 ± 0.72 f | 8.15 ± 0.82 c | 3.82 ± 0.88 e |
CLGS2 | 0.99 ± 0.165 e | 0.38 ± 0.1 d | 19.44 ± 0.85 d | 329.48 ± 0.87 e | 109.9 ± 0.99 e | 79.14 ± 0.86 e | 8.21 ± 0.86 c | 5.75 ± 0.84 d |
CLGS3 | 1.25 ± 0.183 d | 0.45 ± 0.12 d | 19.61 ± 0.88 d | 330.73 ± 0.90 e | 111.47 ± 0.75 e | 80.61 ± 0.80 e | 8.64 ± 0.8 c | 6.13 ± 0.81 c |
Samples | Total Polyphenol Content (TPC) (mg/100 g) | Antioxidant Activity, DPPH (µgTROLOX/mL) | FRAP (µg Fe2+/g) |
---|---|---|---|
LGS | 828.51 ± 0.01 | 104.57 ± 1.04 | 1081.37 ± 21.22 |
LSF | 1512.28 ± 0.25 | 189.75 ± 1.61 | 2511.62 ± 3.65 |
CC | 51.86 ± 0.01 g | 1.32 ± 0.03 e | 164.16 ± 1.52 g |
Cookies with Lupin Sprout Flour | |||
CLSF1 | 273.15 ± 1.01 c | 19.41 ± 0.38 c | 1182.56 ± 6.08 c |
CLSF2 | 436.45 ± 1.01 b | 34.37 ± 1.20 b | 1916.72 ± 22.8 b |
CLSF3 | 546.33 ± 0.02 a | 44.89 ± 1.57 a | 2433.52 ± 19.76 a |
Cookies with Lupin Green Sprout | |||
CLGS1 | 63.04 ± 0.05 f | 0.70 ± 0.02 f | 194.56 ± 1.52 f |
CLGS2 | 69.22 ± 0.05 e | 0.31 ± 0.01 g | 244.72 ± 1.52 e |
CLGS3 | 79.48 ± 0.02 d | 1.77 ± 0.06 d | 316.16 ± 1.52 d |
Samples | Individual Polyphenols (µg/g) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Epicatechin | Caffeic Acid | Rutin | Rosmarinic Acid | Quercetin | Gallic Acid | Coumaric Acid | Ferulic Acid | Beta- Resorcylic Acid | |
CC | 73.8 ± 3.1 a | 17.4 ± 0.5 a | Nd * | 68.0 ± 1.7 a | 15.7 ± 3.1 a | 16.9 ± 0.7 b | 41.9 ± 1.8 b | 125.1 ± 9 a | 175.2 ± 9.5 a |
Cookies with Lupin Sprout Flour | |||||||||
CLSF1 | 74.2 ± 3.1 a | 17.5 ± 2 a | Nd * | 68.1 ± 1.5 a | 15.8 ± 4.2 a | 17.1 ± 0.9 b | 40.9 ± 1.2 b | 125.4 ± 8.1 a | 175.3 ± 9.1 a |
CLSF2 | 74.8 ± 3.1 a | 17.7 ± 1.2 a | Nd * | 68.3 ± 5.1 a | 16.0 ± 3.5 a | 18.7 ± 0.8 a | 40.5 ± 1.7 b | 125.1 ± 7.8 a | 175.7 ± 8.5 a |
CLSF3 | 74.8 ± 3.1 a | 17.9 ± 2.7 a | Nd * | 69.1 ± 2.4 a | 16.0 ± 1.9 a | 18.7 ± 0.8 a | 41.6 ± 0.8 b | 126.1 ± 7.9 a | 176.4 ± 8.1 a |
Cookies with Lupin Green Sprout | |||||||||
CLGS1 | 74.2 ± 2 a | 17.4 ± 0.2 a | 78.3 ± 7.5 a | 68.0 ± 1.7 a | 15.8 ± 2.9 a | 16.7 ± 0.7 b | 41.4 ± 1.5 b | 124.9 ± 6.8 a | 175 ± 7.5 a |
CLGS2 | 73.9 ± 1.5 a | 17.5 ± 0.4 a | 79.3 ± 7.5 a | 68.8 ± 0.5 a | 15.7 ± 2.3 a | 17.0 ± 1 b | 41.1 ± 1.5 b | 125.3 ± 7.5 a | 175.1 ± 6.1 a |
CLGS3 | 73.9 ± 1.2 a | 18.6 ± 0.4 a | 79.8 ± 7.5 a | 68.1 ± 1.3 a | 15.7 ± 0.9 a | 17.4 ± 0.5 b | 43 ± 1.6 a | 126.9 ± 7.1 a | 177.1 ± 7.6 a |
Samples | Physical Characteristics | ||
---|---|---|---|
Diameter (mm) | Thickness (mm) | Spread Ratio | |
Cookies with Lupin Green Sprouts | |||
CC | 49.00 ± 0.25 e | 5.25 ± 0.15 a | |
CLSF1 | 51.50 ± 1.42 c | 4.95 ± 0.20 b | 10.42 b |
CLSF2 | 50.80 ± 0.63 d | 4.80 ± 0.34 b | 10.94 b |
CLSF3 | 4.70 ± 0.10,b | 11.23 a | |
Cookies with Lupin Green Sprouts | |||
CLGS1 | 50.40 ± 0.38 d | 4.40 ± 1.42,b | 11.45 a |
CLGS2 | 52.25 ± 0.75 b | 4.55 ± 1.42 b | 11.48 a |
CLGS3 | 54.55 ± 0.25 a | 4.65 ± 1.42 b | 11.73 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plustea, L.; Dossa, S.; Dragomir, C.; Cocan, I.; Negrea, M.; Obistioiu, D.; Poiana, M.-A.; Voica, D.; Berbecea, A.; Alexa, E. Comparative Study of the Nutritional, Phytochemical, Sensory Characteristics and Glycemic Response of Cookies Enriched with Lupin Sprout Flour and Lupin Green Sprout. Foods 2024, 13, 656. https://doi.org/10.3390/foods13050656
Plustea L, Dossa S, Dragomir C, Cocan I, Negrea M, Obistioiu D, Poiana M-A, Voica D, Berbecea A, Alexa E. Comparative Study of the Nutritional, Phytochemical, Sensory Characteristics and Glycemic Response of Cookies Enriched with Lupin Sprout Flour and Lupin Green Sprout. Foods. 2024; 13(5):656. https://doi.org/10.3390/foods13050656
Chicago/Turabian StylePlustea, Loredana, Sylvestre Dossa, Christine Dragomir, Ileana Cocan, Monica Negrea, Diana Obistioiu, Mariana-Atena Poiana, Daniela Voica, Adina Berbecea, and Ersilia Alexa. 2024. "Comparative Study of the Nutritional, Phytochemical, Sensory Characteristics and Glycemic Response of Cookies Enriched with Lupin Sprout Flour and Lupin Green Sprout" Foods 13, no. 5: 656. https://doi.org/10.3390/foods13050656
APA StylePlustea, L., Dossa, S., Dragomir, C., Cocan, I., Negrea, M., Obistioiu, D., Poiana, M. -A., Voica, D., Berbecea, A., & Alexa, E. (2024). Comparative Study of the Nutritional, Phytochemical, Sensory Characteristics and Glycemic Response of Cookies Enriched with Lupin Sprout Flour and Lupin Green Sprout. Foods, 13(5), 656. https://doi.org/10.3390/foods13050656