Application of Tryptophan and Methionine in Broccoli Seedlings Enhances Formation of Anticancer Compounds Sulforaphane and Indole-3-Carbinol and Promotes Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Tryptophan (Trp) and Methionine (Met) Treatment
2.3. Determination of Amino Acids
2.4. Determination of Indole-3-Acetic Acid (IAA) and Its Precursors
2.5. Extraction and Analysis of Glucosinolates
2.6. Determination of Melatonin and Its Precursors
2.7. Myrosinase Activity Assay
2.8. Determination of Sulforaphane (SFN) and Indole-3-Carbinol (I3C)
2.9. Determination of Flavonoids
2.10. Quantitative Real-Time Polymerase Chain Reaction Analysis
2.11. Statistical Analysis
3. Results
3.1. Effect of Met and Trp Application on Indole-3-Acetic Acid and Melatonin Metabolism and Growth
3.2. Effect of Met and Trp Application on Glucosinolates and Their Degraded Products
3.3. Effect of Met and Trp Application on Myrosinase Activity
3.4. Effect of Met and Trp Application on the Amino Acid Content
3.5. Effect of Met and Trp Application on Flavonoid Content
4. Discussion
4.1. Application of Trp and Met Is Beneficial in Augmenting the Content of Anticancer Compounds
4.2. Application of Trp and Met Promotes Accumulation of Other Beneficial Phytochemicals in Broccoli Seedlings
4.3. Application of Trp and Met Improves Yield and Potential Stress Tolerance of Broccoli Seedlings
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choe, U.; Yu, L.L.; Wang, T.T.Y. The science behind microgreens as an exciting new food for the 21st century. J. Agric. Food Chem. 2018, 66, 11519–11530. [Google Scholar] [CrossRef]
- Wojdyło, A.; Nowicka, P.; Tkacz, K.; Turkiewicz, I.P. Sprouts vs. Microgreens as novel functional foods: Variation of nutritional and phytochemical profiles and their in vitro bioactive properties. Molecules 2020, 25, 4648. [Google Scholar] [CrossRef] [PubMed]
- Ebert, A.W. Sprouts and microgreens-novel food sources for healthy diets. Plants 2022, 11, 571. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Shree, B.; Sharma, D.; Kumar, S.; Kumar, V.; Sharma, R.; Saini, R. Vegetable microgreens: The gleam of next generation super foods, their genetic enhancement, health benefits and processing approaches. Food Res. Int. 2022, 155, 111038. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Yang, J.; He, Y.; Zhu, Z. Bioactive compounds in cruciferous sprouts and microgreens and the effects of sulfur nutrition. J. Sci. Food Agric. 2023, 103, 7323–7332. [Google Scholar] [CrossRef] [PubMed]
- Hansen, B.G.; Halkier, B.A. New insight into the biosynthesis and regulation of indole compounds in Arabidopsis thaliana. Planta 2005, 221, 603–606. [Google Scholar] [CrossRef] [PubMed]
- Baenas, N.; Silván, J.M.; Medina, S.; de Pascual-Teresa, S.; García-Viguera, C. Metabolism and antiproliferative effects of sulforaphane and broccoli sprouts in human intestinal (Caco-2) and hepatic (HepG2) cells. Phytochem. Rev. 2015, 14, 1035–1044. [Google Scholar] [CrossRef]
- Garcia-Oliveira, P.; Otero, P.; Pereira, A.G.; Chamorro, F.; Carpena, M.; Echave, J.; Fraga-Corral, M.; Simal-Gandara, J.; Prieto, M.A. Status and challenges of plant-anticancer compounds in cancer treatment. Pharmaceuticals 2021, 14, 157. [Google Scholar] [CrossRef] [PubMed]
- Janczewski, Ł. Sulforaphane and its bifunctional analogs: Synthesis and biological activity. Molecules 2022, 27, 1750. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, S.; Liu, Y.; Fang, Z.; Yang, L.; Zhuang, M.; Zhang, Y.; Lv, H.; Wang, Y.; Xu, D. Characterization of glucosinolates in 80 broccoli genotypes and different organs using UHPLC-Triple-TOF-MS method. Food Chem. 2021, 334, 127519. [Google Scholar] [CrossRef]
- Williams, D.E. Indoles derived from glucobrassicin: Cancer chemoprevention by indole-3-carbinol and 3,3′-diindolylmethane. Front. Nutr. 2021, 8, 734334. [Google Scholar] [CrossRef]
- Hanschen, F.S.; Schreiner, M. Isothiocyanates, nitriles, and epithionitriles from glucosinolates are affected by genotype and developmental stage in Brassica oleracea varieties. Front. Plant Sci. 2017, 8, 1095. [Google Scholar] [CrossRef]
- Rangkadilok, N.; Nicolas, M.E.; Bennett, R.N.; Eagling, D.R.; Premier, R.R.; Taylor, P.W. The effect of sulfur fertilizer on glucoraphanin levels in broccoli (B. oleracea L. var. italica) at different growth stages. J. Agric. Food Chem. 2004, 52, 2632–2639. [Google Scholar] [CrossRef]
- Wang, J.; Mao, S.; Wu, Q.; Yuan, Y.; Liang, M.; Wang, S.; Huang, K.; Wu, Q. Effects of LED illumination spectra on glucosinolate and sulforaphane accumulation in broccoli seedlings. Food Chem. 2021, 356, 129550. [Google Scholar] [CrossRef]
- Zhuang, L.; Xu, K.; Zhu, Y.; Wang, F.; Xiao, J.; Guo, L. Calcium affects glucoraphanin metabolism in broccoli sprouts under ZnSO4 stress. Food Chem. 2021, 334, 127520. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M. Analysis, nutrition, and health benefits of tryptophan. Int. J. Tryptophan Res. 2018, 11, 1178646918802282. [Google Scholar] [CrossRef]
- Li, R.; Jiang, J.; Jia, S.; Zhu, X.; Su, H.; Li, J. Overexpressing broccoli tryptophan biosynthetic genes BoTSB1 and BoTSB2 promotes biosynthesis of IAA and indole glucosinolates. Physiol. Plant. 2020, 168, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Chu, J.; Yu, T.; Xu, Q.; Sun, X.; Yuan, J.; Xiong, G.; Wang, G.; Wang, Y.; Li, J. Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis. Proc. Natl. Acad. Sci. USA 2015, 112, 4821–4826. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Hu, Q.; Zhang, X.; Jiang, J.; Zhang, Y.; Zhang, Z. Melatonin biosynthesis and signal transduction in plants in response to environmental conditions. J. Exp. Bot. 2022, 73, 5818–5827. [Google Scholar] [CrossRef]
- Song, Z.; Wang, P.; Chen, X.; Peng, Y.; Cai, B.; Song, J.; Yin, G.; Jia, S.; Zhang, H. Melatonin alleviates cadmium toxicity and abiotic stress by promoting glandular trichome development and antioxidant capacity in Nicotiana tabacum. Ecotoxicol. Environ. Saf. 2022, 236, 113437. [Google Scholar] [CrossRef] [PubMed]
- Cajochen, C.; Kräuchi, K.; Wirz-Justice, A. Role of melatonin in the regulation of human circadian rhythms and sleep. J. Neuroendocrinol. 2003, 15, 432–437. [Google Scholar] [CrossRef]
- Dauchy, R.T.; Hill, S.M.; Blask, D.E. A method for growing tissue-isolated human tumor xenografts in nude rats for melatonin/cancer studies. Methods Mol. Biol. 2022, 2550, 489–496. [Google Scholar] [PubMed]
- Pattyn, J.; Vaughan-Hirsch, J.; Van de Poel, B. The regulation of ethylene biosynthesis: A complex multilevel control circuitry. New Phytol. 2021, 229, 770–782. [Google Scholar] [CrossRef]
- Jin, N.; Jin, L.; Luo, S.; Tang, Z.; Liu, Z.; Wei, S.; Liu, F.; Zhao, X.; Yu, J.; Zhong, Y. Comprehensive evaluation of amino acids and polyphenols in 69 varieties of green cabbage (Brassica oleracea L. var. capitata L.) based on multivariate statistical analysis. Molecules 2021, 26, 5355. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, H.; Lv, J.; Luo, S.; Hu, L.; Wang, J.; Li, L.; Zhang, G.; Xie, J.; Yu, J. Effects of plant hormones, metal ions, salinity, sugar, and chemicals pollution on glucosinolate biosynthesis in cruciferous plant. Front. Plant Sci. 2022, 13, 856442. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhou, Z.; Zhang, T.; Zhang, Q.; Li, R.; Li, J. Overexpression of BoLSU1 and BoLSU2 confers tolerance to sulfur deficiency in Arabidopsis by manipulating glucosinolate metabolism. Int. J. Mol. Sci. 2023, 24, 13520. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Bian, L.; Jiao, Z.; Yu, K.; Wan, Y.; Zhang, G.; Guo, D. Molecular cloning and characterization of a grapevine (Vitis vinifera L.) serotonin N-acetyltransferase (VvSNAT2) gene involved in plant defense. BMC Genom. 2019, 20, 880. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.; Lee, K.; Park, S.; Byeon, Y.; Back, K. Molecular cloning of rice serotonin N-acetyltransferase, the penultimate gene in plant melatonin biosynthesis. J. Pineal Res. 2013, 55, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, R.; Li, R.; Kuwahara, A.; Nakabayashi, R.; Sotta, N.; Mori, T.; Ito, T.; Ohkama-Ohtsu, N.; Fujiwara, T.; Saito, K.; et al. Retrograde sulfur flow from glucosinolates to cysteine in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2021, 118, e2017890118. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, W.; Fu, D.; Zhang, T.; Liang, Z.; Yan, L.; Liu, C.; Zheng, L. Microwave bag cooking affects the quality, glucosinolates content and hydrolysate production of broccoli florets. Food Res. Int. 2023, 164, 112401. [Google Scholar] [CrossRef]
- Davuluri, G.R.; van Tuinen, A.; Fraser, P.D.; Manfredonia, A.; Newman, R.; Burgess, D.; Brummell, D.A.; King, S.R.; Palys, J.; Uhlig, J.; et al. Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat. Biotechnol. 2005, 23, 890–895. [Google Scholar] [CrossRef]
- Lawrence, R.A. A pocket calculator program for Duncan’s New Multiple Range Test and analysis of variance. Comput. Biol. Med. 1984, 14, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Back, K. Melatonin metabolism, signaling and possible roles in plants. Plant J. 2021, 105, 376–391. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Roy, S.; Arnao, M.B. Nanovehicles for melatonin: A new journey for agriculture. Trends Plant Sci. 2024, 29, 232–248. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Xie, Y.; Zhang, Z.; Chen, L. Melatonin: A multifunctional factor in plants. Int. J. Mol. Sci. 2018, 19, 1528. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; King, G.J.; Borpatragohain, P.; Zou, J. Developing multifunctional crops by engineering Brassicaceae glucosinolate pathways. Plant Commun. 2023, 4, 100565. [Google Scholar] [CrossRef]
- Halkier, B.A.; Gershenzon, J. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 2006, 57, 303–333. [Google Scholar] [CrossRef]
- Shirakawa, M.; Hara-Nishimura, I. Specialized vacuoles of myrosin cells: Chemical defense strategy in Brassicales plants. Plant Cell Physiol. 2018, 59, 1309–1316. [Google Scholar] [CrossRef]
- Zhang, L.; Kawaguchi, R.; Enomoto, T.; Nishida, S.; Burow, M.; Maruyama-Nakashita, A. Glucosinolate Catabolism Maintains Glucosinolate Profiles and Transport in Sulfur-Starved Arabidopsis. Plant Cell Physiol. 2023, 64, 1534–1550. [Google Scholar] [CrossRef]
- Ling, Z.N.; Jiang, Y.F.; Ru, J.N.; Lu, J.H.; Ding, B.; Wu, J. Amino acid metabolism in health and disease. Signal Transduct Target Ther. 2023, 8, 345. [Google Scholar] [CrossRef]
- Sønderby, I.E.; Geu-Flores, F.; Halkier, B.A. Biosynthesis of glucosinolates-gene discovery and beyond. Trends Plant Sci. 2010, 15, 283–290. [Google Scholar] [CrossRef]
- Singh, A.A.; Patil, M.P.; Kang, M.-J.; Niyonizigiye, I.; Kim, G.-D. Biomedical application of indole-3-carbinol: A mini-review. Phytochem. Lett. 2021, 41, 49–54. [Google Scholar] [CrossRef]
- Wei, L.; Liu, C.; Zheng, H.; Zheng, L. Melatonin treatment affects the glucoraphanin-sulforaphane system in postharvest fresh-cut broccoli (Brassica oleracea L.). Food Chem. 2020, 307, 125562. [Google Scholar] [CrossRef]
- Ku, K.M.; Jeffery, E.H.; Juvik, J.A. Optimization of methyl jasmonate application to broccoli florets to enhance health-promoting phytochemical content. J. Sci. Food Agric. 2014, 94, 2090–2096. [Google Scholar] [CrossRef]
- Shawon, R.A.; Kang, B.S.; Lee, S.G.; Kim, S.K.; Ju Lee, H.; Katrich, E.; Gorinstein, S.; Ku, Y.G. Influence of drought stress on bioactive compounds, antioxidant enzymes and glucosinolate contents of Chinese cabbage (Brassica rapa). Food Chem. 2020, 308, 125657. [Google Scholar] [CrossRef]
- Sugiyama, R.; Hirai, M.Y. Atypical myrosinase as a mediator of glucosinolate functions in plants. Front. Plant Sci. 2019, 10, 1008. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Huang, H.; Childs, H.; Wu, Y.; Yu, L.; Pehrsson, P.R. Glucosinolates in Brassica vegetables: Characterization and factors that influence distribution, content, and intake. Annu. Rev. Food Sci. Technol. 2021, 12, 485–511. [Google Scholar] [CrossRef] [PubMed]
- Saw, C.L.; Cintrón, M.; Wu, T.Y.; Guo, Y.; Huang, Y.; Jeong, W.S.; Kong, A.N. Pharmacodynamics of dietary phytochemical indoles I3C and DIM: Induction of Nrf2-mediated phase II drug metabolizing and antioxidant genes and synergism with isothiocyanates. Biopharm. Drug Dispos. 2011, 32, 289–300. [Google Scholar] [CrossRef]
- Galili, G.; Amir, R.; Fernie, A.R. The regulation of essential amino acid synthesis and accumulation in plants. Annu. Rev. Plant Biol. 2016, 67, 153–178. [Google Scholar] [CrossRef]
- Serafini, M.; Peluso, I.; Raguzzini, A. Flavonoids as anti-inflammatory agents. Proc. Nutr. Soc. 2010, 69, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Nicolucci, C.; Padovani, M.; Rodrigues, F.C.; Fritsch, L.N.; Santos, A.C.; Priolli, D.G.; Sciani, J.M. Flavonoids: The use in mental health and related diseases. Nat. Prod. Res. 2023, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kawade, K.; Tabeta, H.; Ferjani, A.; Hirai, M.Y. The roles of functional amino acids in plant growth and development. Plant Cell Physiol. 2023, 64, 1482–1493. [Google Scholar] [CrossRef] [PubMed]
- Roager, H.M.; Licht, T.R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 2018, 9, 3294. [Google Scholar] [CrossRef]
Flavonoid Content (ng g−1 FW) | Control | Trp Treatment | Met Treatment | Trp + Met Treatment |
---|---|---|---|---|
Gallic acid | 12.03 ± 1.16 | 18..69 ± 1.33 ** | 11.79 ± 1.28 | 17.40 ± 1.65 ** |
Protocatechuic acid | 12.00 ± 1.17 | 18.12 ± 1.51 ** | 11.82 ± 1.28 | 17.98 ± 1.80 ** |
Protocatechualdehyde | 7.18 ± 0.48 | 12.10 ± 1.04 ** | 7.09 ± 0.37 | 11.96 ± 0.72 ** |
Chlorogenic acid | 75.89 ± 8.08 | 168.07 ± 36.33 ** | 79.13 ± 9.26 | 159.62 ± 25.93 ** |
Caffeic acid | 24.80 ± 2.51 | 45.83 ± 6.40 ** | 24.97 ± 2.95 | 47.77 ± 4.20 ** |
Homoorientin | 5.13 ± 0.65 | 16.59 ± 2.61 ** | 4.99 ± 0.36 | 16.37 ± 0.90 ** |
Neohesperidin | 5.91 ± 0.85 | 11.41 ± 0.61 ** | 5.98 ± 1.00 | 11.65 ± 0.66 ** |
Hyperoside | 2.89 ± 0.54 | 6.45 ± 1.05 ** | 2.83 ± 0.34 | 6.39 ± 0.79 ** |
Quercetin | 3.76 ± 0.48 | 8.39 ± 0.77 ** | 3.96 ± 0.58 | 8.44 ± 0.75 ** |
Bergapten | 300.66 ± 34.30 | 975.72 ± 209.55 ** | 316.92 ± 41.33 | 899.63 ± 150.12 ** |
Kaempferol | 11.84 ± 0.95 | 27.50 ± 2.60 ** | 11.59 ± 0.94 | 26.29 ± 3.50 ** |
Umbelliferone | 5.32 ± 0.48 | 8.71 ± 0.64 ** | 5.15 ± 0.24 | 9.14 ± 1.02 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Zhou, Z.; Zhao, X.; Li, J. Application of Tryptophan and Methionine in Broccoli Seedlings Enhances Formation of Anticancer Compounds Sulforaphane and Indole-3-Carbinol and Promotes Growth. Foods 2024, 13, 696. https://doi.org/10.3390/foods13050696
Li R, Zhou Z, Zhao X, Li J. Application of Tryptophan and Methionine in Broccoli Seedlings Enhances Formation of Anticancer Compounds Sulforaphane and Indole-3-Carbinol and Promotes Growth. Foods. 2024; 13(5):696. https://doi.org/10.3390/foods13050696
Chicago/Turabian StyleLi, Rui, Zihuan Zhou, Xiaofei Zhao, and Jing Li. 2024. "Application of Tryptophan and Methionine in Broccoli Seedlings Enhances Formation of Anticancer Compounds Sulforaphane and Indole-3-Carbinol and Promotes Growth" Foods 13, no. 5: 696. https://doi.org/10.3390/foods13050696
APA StyleLi, R., Zhou, Z., Zhao, X., & Li, J. (2024). Application of Tryptophan and Methionine in Broccoli Seedlings Enhances Formation of Anticancer Compounds Sulforaphane and Indole-3-Carbinol and Promotes Growth. Foods, 13(5), 696. https://doi.org/10.3390/foods13050696