Microalgae Proteins as Sustainable Ingredients in Novel Foods: Recent Developments and Challenges
Abstract
:1. Introduction
2. Microalgae for Human Consumption
3. Microalgae Protein Contents and Distribution across Species
4. Extraction Techniques for Microalgae Proteins
5. Amino Acid Composition and Digestibility of Microalgae Proteins
6. Physicochemical and Functional Properties of Microalgae Proteins
6.1. Solubility and Isoelectric Point
6.2. Water- and Oil-Holding Capacities
6.3. Gelation
6.4. Emulsifying Properties
6.5. Foaming Properties
7. Food Formulated with Microalgae Proteins
Product | Microalgae | Observations | References |
---|---|---|---|
Traditional butter cookies | Chlorella vulgaris | Increased firmness | [99] |
High protein content of C. vulgaris reinforced the dough system. | |||
More than 1% C. vulgaris altered the cookies color due to the expression of a pronounced green color | |||
Biscuit | Isochrysis galbana | Improved texture properties | [125] |
Color and texture stability | |||
High content of polyunsaturated fatty acids | |||
Manioc (cassava) based bakery products | A. platensis | Good texture, expansion coefficient, centesimal composition, and sensory acceptance | [115] |
Added inverted sugar hindered the occurrence of green color | |||
Cassava cake | Spirulina platensis | High protein, vitamins, | [117] |
essential fatty acids, and minerals | |||
Good consumer acceptance | |||
Cassava doughnuts | Spirulina platensis | High in protein, minerals, fiber, and lipids | [116] |
Addition of 5.41% S. platensis plus 10.0% inverted sugar resulted in good sensory scores | |||
Bread wheat pasta | Spirulina platensis | High protein content | [62] |
High phenolic compound content and antioxidant activity | |||
Surface heterogenicity with 20% Spirulina | |||
Decrease protein digestibility | |||
Iranian traditional cookies | Spirulina platensis | High iron, protein, and γ-linolenic acid content | [97] |
High sensory scores obtained with 1–1.5% S. platensis | |||
Extruded snacks | Spirulina platensis | Addition of Spirulina sp. LEB 18, temperature in the last zone of the extruder, and feed moisture are critical factors for the snack quality | [124] |
Increasing Spirulina concentration improved protein content and compactness | |||
Wheat cookies | Arthrospira platensis, Chlorella vulgaris Allma, Tetraselmis suecica | Higher protein content obtained with A. platensis and C. vulgaris | [96] |
Phaeodactylum tricornutum | Better texture obtained with A. platensis | ||
Higher antioxidant capacity and total phenolic content | |||
Wheat flour bread | Chlorella vulgaris | Negative impact on bread quality when more than 3% C. vulgaris was added. | [102] |
Gluten network reinforcement (≤3%). | |||
High in bioactive compounds | |||
Increase in water-holding capacity | |||
Wheat crackers | Arthrospira platensis, Chlorella vulgaris Allma, Tetraselmis suecica, Phaeodactylum tricornutum | Higher protein content in cookies obtained with A. platensis and C. vulgaris. Proteins have the claim “source of protein” | [95] |
High-antioxidant crackers obtained with A. platensis, T. suecica, and P. tricornutum | |||
High sensory scores with A. platensis | |||
Low sensory scores with T. suecica and P. tricornutum | |||
Breads and crackers | Tetraselmis and Nannochloropsis | Optimum results obtained with a microalgae concentration of 2.5% for baked crackers and 1.0 or 2.0% for breads | [126] |
Darker and greener color | |||
Improved nutritional value with high protein and antioxidant content | |||
Sourdough “crostini” | Spirulina platensis | “Source of protein” claim with 6% and 10% biomass | [127] |
High in protein and antioxidants | |||
Lower in vitro dry matter and protein digestibility than control, but still above 85% | |||
Gluten-free bread | Nannochloropsis gaditana and Chlamydomonas sp. | More protein, lipids, and ash than the control bread | [114] |
Microalgae had a structuring effect on the gluten-free bread texture: more adhesive and firm structure | |||
Highest sensory score obtained for 3% N. gaditana L2 bread | |||
Gluten free bread | Chlorella sorokiniana | Improved protein content from 67 mg g−1 to 85 mg g−1 | [128] |
Gluten free bread | Tetraselmis chuii | Optimum concentration: 4% Tetraselmis chuii | [129] |
Wheat bread | Tetraselmis chuii | Protein-rich, high-quality bread | [130] |
Treatment of T. chuii with ethanol lowered the unpleasant color and improved dough rheology | |||
Improved protein and bioactivity over control | |||
Wheat tortillas | Nannochloropsis sp. and Tetraselmis sp. | High protein and fat content | [131] |
High antioxidant activity and phenolic content, especially in flour enriched with 3% Nannochloropsis sp. | |||
Bread | Spirulina platensis | 2–6% Spirulina led to more nutritional bread | [101] |
Indonesian milk pie (Pie Susu) made up with modified cassava flour | Spirulina platensis | Good consumer acceptance obtained with 0.5% Spirulina | [118] |
Bread | Spirulina platensis | Greener color with increasing concentration from 1.5 to 2.5% addition. The 2.5% concentration samples were well accepted by consumers, emphasizing the salty flavor as a pleasant feature | [132] |
Muffin | Chlorella vulgaris | Effect on microstructure and texture with 1.5% microalgae | [133] |
Low-saturated-fat bread | Chlorella vulgaris | High protein and low saturated fat. High water content affecting bread’s sensory scores | [134] |
Product | Microalgae | Observations | References |
---|---|---|---|
Fermented acidophilus–bifidus–thermophilus (ABT) milks | Spirulina platensis | Positive effect on the survival of ABT starter bacteria | [93] |
Enrichment in bioactive molecules | |||
Yogurt | Spirulina platensis | Improved viability of lactic acid bacteria | [90] |
Yogurt | Chlorella vulgaris and Arthrospira platensis | Improved viability of yogurt cultures | [108] |
Yogurt | Spirulina platensis | High protein, fat, and iron content | [109] |
Curd strength proportional to microalgae concentration | |||
Sensory score of 0.3% for yogurt was comparable to the control | |||
Higher viability of yogurt culture | |||
Enriched feta cheese containing Lactobacillus acidophilus and Mentha longifolia L. | Spirulina platensis | Stimulatory effect on the growth and viability of probiotic bacteria | [91] |
Improved protein and iron content | |||
Bread | Isochrysis galbana, Tetraselmis suecica, Scenedesmus almeriensis and Nannochloropsis gaditana | Addition of microalga had no significant effect on hardness, chewiness, or resilience over the control sample | [100] |
Ayran (western Asian yogurt-based beverage) | S. platensis | S. platensis improved the growth of probiotics | [89] |
Ice cream | Spirulina platensis | 35% to 53% more proteins in the enriched ice cream | [135] |
High acceptability index (70%) | |||
3D printed cookies | Arthrospira platensis and Chlorella vulgaris | High mechanical resistance | [104] |
High elasticity | |||
Improves the printability | |||
High stability and resistance to baking of 3D structures | |||
Chocolate milk | Spirulina platensis | High protein content and reduced total lipids | [26] |
High antioxidant activity and phenolic content | [136] | ||
Yogurt | Spirulina platensis | High protein content upon the addition of phycocyanin from Spirulina | [137] |
Renneted dairy gels and curd | Nannochloropsis salina | Rennet action undisturbed | [87] |
Whole cells did not change the gel structure | |||
Ruptured cells destroyed casein microstructures | |||
Cheese | Spirulina platensis and Chlorella vulgaris | Significant increase in antioxidant activity, iron, and total phenolic content | [138] |
Product | Microalgae | Observations | References |
---|---|---|---|
Fresh spaghetti | Chlorella vulgaris and Spirulina | Color stable after cooking | [111] |
Maxima | High firmness in raw pasta | ||
High sensory acceptance than control pasta | |||
Semolina spaghetti | Isochrysis galbana and Diacronema | High protein content | [139] |
Vlkianum | High resistance to the thermal treatment | ||
High omega-3 fatty acid content | |||
Microalgae as a substrate for lactic acid fermentation plantarum | Spirulina platensis | High antioxidant content | [105] |
A. platensis is a suitable substrate for L. plantarum growth | |||
Vegetal soybean drink | Spirulina platensis | S. platensis biomass suitable substrate for LAB8014 growth | [106] |
High protein content | |||
Better digestibility | |||
Pasta | Spirulina | Microencapsulation of Spirulina contributes to antioxidant preservation | [140] |
Gluten-free pasta | Spirulina platensis | Products 2% Arthrospira platensis had consumer acceptance | [113] |
No significant change in pasta texture caused by the addition of microalgae | |||
Higher protein and antioxidant content | |||
Mocaf noodles | Spirulina platensis | More chewy, dense, and not easily broken noodle | [119] |
Pasta | Chlorella sorokiniana | Appearance of fish flavor when more than 5% C. sorokiniana was added | [112] |
High in protein and PUFA | |||
High antioxidant content | |||
Whole wheat Pasta | Himanthalia elongata and Spirulina | Increase in fat, protein, ash, total amino acid contents, and antioxidant activity | [141] |
Product | Microalgae | Observations | References |
---|---|---|---|
Vegetable-based gelled desserts (pea protein isolate) | Spirulina maxima and Diacronema Vlkianum | Microalgae cells were resistant to thermal treatments D. vlkianum conferred more firmness than S. maxima | [110] |
Gels prepared from pea protein, κ-carrageenan and starch | Spirulina and Haematococcus | More structured gels obtained upon temperature increase (70–90 °C) | [26] |
Cheese analogue | Chlorella vulgaris | Improved protein, carbohydrate, and fiber contents Product with more firmness and strong network | [94] |
Enriched dehydrated soup | Spirulina platensis | High in protein, fiber, lipids, antioxidant activity, and total phenolic content | [142] |
Occurrence of a characteristic green color and herb flavor | |||
Good consumer acceptability and intent to purchase | |||
Broccoli soup | Spirulina sp., Chlorella sp., or | Higher concentration of bioaccessible polyphenols | [143] |
Tetraselmis sp. | Higher consumer acceptance (70%) | ||
Vegan kefir | Spirulina platensis | High lactobacilli and lactococci count | [92] |
Increased total phenolic content of kefir | |||
Decreased pH | |||
Soy protein isolate hydrogel (SPI) | Spirulina platensis | Improved rigidity and compactness of SPI hydrogel | [121] |
Plant-based meat alternatives | Spirulina and Chlorella | Higher gumminess and chewiness | [144] |
Vegetable creams | Arthrospira platensis (Spirulina), Chlorella vulgaris, Tetraselmis chui, or Nannochloropsis oceanica | Improved protein content and amino acid nutritional profile. No significant differences in protein digestibility | [145] |
Vegan oil-in-water emulsion | Spirulina platensis | Interesting rheological parameters compared with a more traditional protein source such as chickpea | [146] |
8. Challenges and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amorim, M.L.; Soares, J.; dos Reis Coimbra, J.S.; de Oliviera Leite, M.; Albino, L.F.T.; Martins, M.A. Microalgae Proteins: Production, Separation, Isolation, Quantification, and Application in Food and Feed. Crit. Rev. Food Sci. Nutr. 2021, 61, 1976–2002. [Google Scholar] [CrossRef] [PubMed]
- Falcon, W.P.; Naylor, R.L.; Shankar, N.D. Rethinking Global Food Demand for 2050. Popul. Dev. Rev. 2022, 48, 921–957. [Google Scholar] [CrossRef]
- Caporgno, M.P.; Mathys, A. Trends in Microalgae Incorporation into Innovative Food Products with Potential Health Benefits. Front. Nutr. 2018, 5, 58. [Google Scholar] [CrossRef] [PubMed]
- Eilam, Y.; Khattib, H.; Pintel, N.; Avni, D. Microalgae—Sustainable Source for Alternative Proteins and Functional Ingredients Promoting Gut and Liver Health. Glob. Chall. 2023, 7, 2200177. [Google Scholar] [CrossRef]
- Brasil, B.d.S.A.F.; de Siqueira, F.G.; Salum, T.F.C.; Zanette, C.M.; Spier, M.R. Microalgae and Cyanobacteria as Enzyme Biofactories. Algal Res. 2017, 25, 76–89. [Google Scholar] [CrossRef]
- Grossmann, L.; Hinrichs, J.; Weiss, J. Cultivation and Downstream Processing of Microalgae and Cyanobacteria to Generate Protein-Based Technofunctional Food Ingredients. Crit. Rev. Food Sci. Nutr. 2019, 60, 2961–2989. [Google Scholar] [CrossRef]
- Koyande, A.K.; Chew, K.W.; Rambabu, K.; Tao, Y.; Chu, D.T.; Show, P.L. Microalgae: A Potential Alternative to Health Supplementation for Humans. Food Sci. Hum. Wellness 2019, 8, 16–24. [Google Scholar] [CrossRef]
- Polaris Market Research Microalgae Market Size, Share Global Analysis Report, 2023–2032. Available online: https://www.polarismarketresearch.com/industry-analysis/microalgae-market/toc (accessed on 12 October 2023).
- Health Canada. Available online: https://www.canada.ca/en/health-canada/services/food-nutrition/genetically-modified-foods-other-novel-foods/approved-products/whole-algal-protein.html (accessed on 15 December 2023).
- Soto-Sierra, L.; Stoykova, P.; Nikolov, Z.L. Extraction and Fractionation of Microalgae-Based Protein Products. Algal Res. 2018, 36, 175–192. [Google Scholar] [CrossRef]
- Torres-Tiji, Y.; Fields, F.J.; Mayfield, S.P. Microalgae as a Future Food Source. Biotechnol. Adv. 2020, 41, 107536. [Google Scholar] [CrossRef] [PubMed]
- Baier, T.; Kros, D.; Feiner, R.C.; Lauersen, K.J.; Müller, K.M.; Kruse, O. Engineered Fusion Proteins for Efficient Protein Secretion and Purification of a Human Growth Factor from the Green Microalga Chlamydomonas reinhardtii. ACS Synth. Biol. 2018, 7, 2547–2557. [Google Scholar] [CrossRef] [PubMed]
- Becker, E.W. Microalgae for Human and Animal Nutrition. In Handbook of Microalgal Culture; John Wiley & Sons, Ltd.: Oxford, UK, 2013; pp. 461–503. [Google Scholar]
- Krishna Koyande, A.; Tanzil, V.; Murraly Dharan, H.; Subramaniam, M.; Robert, R.N.; Lau, P.L.; Khoiroh, I.; Show, P.L. Integration of Osmotic Shock Assisted Liquid Biphasic System for Protein Extraction from Microalgae Chlorella Vulgaris. Biochem. Eng. J. 2020, 157, 107532. [Google Scholar] [CrossRef]
- Sousa, I.; Gouveia, L.; Batista, A.P.; Raymundo, A.; Bandarra, N.M. Microalgae in Novel Food Products. In Food Chemistry Research Developments; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2008; pp. 75–112. ISBN 978-1-60456-262-0. [Google Scholar]
- Petrus, M.; Culerrier, R.; Campistron, M.; Barre, A.; Rougé, P. First Case Report of Anaphylaxis to Spirulin: Identification of Phycocyanin as Responsible Allergen. Allergy 2010, 65, 924–925. [Google Scholar] [CrossRef] [PubMed]
- Bianco, M.; Ventura, G.; Calvano, C.D.; Losito, I.; Cataldi, T.R.I. A New Paradigm to Search for Allergenic Proteins in Novel Foods by Integrating Proteomics Analysis and in Silico Sequence Homology Prediction: Focus on Spirulina and Chlorella Microalgae. Talanta 2022, 240, 123188. [Google Scholar] [CrossRef] [PubMed]
- Rzymski, P.; Budzulak, J.; Niedzielski, P.; Klimaszyk, P.; Proch, J.; Kozak, L.; Poniedziałek, B. Essential and Toxic Elements in Commercial Microalgal Food Supplements. J. Appl. Phycol. 2019, 31, 3567–3579. [Google Scholar] [CrossRef]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial Applications of Microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef]
- Chen, P.; Min, M.; Chen, Y.; Wang, L.; Li, Y.; Chen, Q.; Wang, C.; Wan, Y.; Wang, X.; Cheng, Y.; et al. Review of the Biological and Engineering Aspects of Algae to Fuels Approach. Int. J. Agric. Biol. Eng. 2009, 2, 1–30. [Google Scholar]
- Sheehan, J.; Dunahay, T.; Benemann, J.; Roessler, P. Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae; Close-Out Report; National Renewable Energy Laboratory: Golden, CO, USA, 1998.
- Timira, V.; Meki, K.; Li, Z.; Lin, H.; Xu, M.; Pramod, S.N. A Comprehensive Review on the Application of Novel Disruption Techniques for Proteins Release from Microalgae. Crit. Rev. Food Sci. Nutr. 2022, 62, 4309–4325. [Google Scholar] [CrossRef]
- Fu, Y.; Chen, T.; Chen, S.H.Y.; Liu, B.; Sun, P.; Sun, H.; Chen, F. The Potentials and Challenges of Using Microalgae as an Ingredient to Produce Meat Analogues. Trends Food Sci. Technol. 2021, 112, 188–200. [Google Scholar] [CrossRef]
- Szabo, N.J.; Matulka, R.A.; Chan, T. Safety Evaluation of Whole Algalin Protein (WAP) from Chlorella protothecoides. Food Chem. Toxicol. 2013, 59, 34–45. [Google Scholar] [CrossRef]
- Hu, Q. Environmental Effects on Cell Composition. In Handbook of Microalgal Culture: Applied Phycology and Biotechnology, 2nd ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 114–122. [Google Scholar] [CrossRef]
- Batista, A.P.; Gouveia, L.; Bandarra, N.M.; Franco, J.M.; Raymundo, A. Comparison of Microalgal Biomass Profiles as Novel Functional Ingredient for Food Products. Algal Res. 2013, 2, 164–173. [Google Scholar] [CrossRef]
- Xing, Q.; de Wit, M.; Kyriakopoulou, K.; Boom, R.M.; Schutyser, M.A.I. Protein Enrichment of Defatted Soybean Flour by Fine Milling and Electrostatic Separation. Innov. Food Sci. Emerg. Technol. 2018, 50, 42–49. [Google Scholar] [CrossRef]
- Hoogenkamp, H.; Kumagai, H.; Wanasundara, J.P.D. Rice Protein and Rice Protein Products. In Sustainable Protein Sources; Elsevier: Amsterdam, The Netherlands, 2017; pp. 47–65. [Google Scholar]
- Asen, N.D.; Badamasi, A.T.; Gborigo, J.T.; Aluko, R.E.; Girgih, A.T. Comparative Evaluation of the Antioxidant Properties of Whole Peanut Flour, Defatted Peanut Protein Meal, and Peanut Protein Concentrate. Front. Sustain. Food Syst. 2021, 5, 765364. [Google Scholar] [CrossRef]
- Takalloo, Z.; Nikkhah, M.; Nemati, R.; Jalilian, N.; Sajedi, R.H. Autolysis, Plasmolysis and Enzymatic Hydrolysis of Baker’s Yeast (Saccharomyces cerevisiae): A Comparative Study. World J. Microbiol. Biotechnol. 2020, 36, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Srimongkol, P.; Sangtanoo, P.; Songserm, P.; Watsuntorn, W.; Karnchanatat, A.; Shiong Khoo, K.; Wei Lim, J. Microalgae-Based Wastewater Treatment for Developing Economic and Environmental Sustainability: Current Status and Future Prospects. Front. Bioeng. Biotechnol. 2022, 10, 904046. [Google Scholar] [CrossRef]
- Guccione, A.; Biondi, N.; Sampietro, G.; Rodolfi, L.; Bassi, N.; Tredici, M.R. Chlorella for Protein and Biofuels: From Strain Selection to Outdoor Cultivation in a Green Wall Panel Photobioreactor. Biotechnol. Biofuels 2014, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Vandamme, D.; Foubert, I.; Muylaert, K. Flocculation as a Low-Cost Method for Harvesting Microalgae for Bulk Biomass Production. Trends Biotechnol. 2013, 31, 233–239. [Google Scholar] [CrossRef]
- Shkolnikov Lozober, H.; Okun, Z.; Shpigelman, A. The Impact of High-Pressure Homogenization on Thermal Gelation of Arthrospira platensis (Spirulina) Protein Concentrate. Innov. Food Sci. Emerg. Technol. 2021, 74, 102857. [Google Scholar] [CrossRef]
- Grossmann, L.; Ebert, S.; Hinrichs, J.; Weiss, J. Production of Protein-Rich Extracts from Disrupted Microalgae Cells: Impact of Solvent Treatment and Lyophilization. Algal Res. 2018, 36, 67–76. [Google Scholar] [CrossRef]
- Phong, W.N.; Show, P.L.; Le, C.F.; Tao, Y.; Chang, J.S.; Ling, T.C. Improving Cell Disruption Efficiency to Facilitate Protein Release from Microalgae Using Chemical and Mechanical Integrated Method. Biochem. Eng. J. 2018, 135, 83–90. [Google Scholar] [CrossRef]
- Sari, Y.W.; Bruins, M.E.; Sanders, J.P.M. Enzyme Assisted Protein Extraction from Rapeseed, Soybean, and Microalgae Meals. Ind. Crops Prod. 2013, 43, 78–83. [Google Scholar] [CrossRef]
- Buchmann, L.; Bertsch, P.; Böcker, L.; Krähenmann, U.; Fischer, P.; Mathys, A. Adsorption Kinetics and Foaming Properties of Soluble Microalgae Fractions at the Air/Water Interface. Food Hydrocoll. 2019, 97, 105182. [Google Scholar] [CrossRef]
- Safi, C.; Olivieri, G.; Campos, R.P.; Engelen-Smit, N.; Mulder, W.J.; van den Broek, L.A.M.; Sijtsma, L. Biorefinery of Microalgal Soluble Proteins by Sequential Processing and Membrane Filtration. Bioresour. Technol. 2017, 225, 151–158. [Google Scholar] [CrossRef]
- Schwenzfeier, A.; Wierenga, P.A.; Gruppen, H. Isolation and Characterization of Soluble Protein from the Green Microalgae Tetraselmis sp. Bioresour. Technol. 2011, 102, 9121–9127. [Google Scholar] [CrossRef]
- Schwenzfeier, A.; Helbig, A.; Wierenga, P.A.; Gruppen, H. Emulsion Properties of Algae Soluble Protein Isolate from Tetraselmis sp. Food Hydrocoll. 2013, 30, 258–263. [Google Scholar] [CrossRef]
- Schwenzfeier, A.; Lech, F.; Wierenga, P.A.; Eppink, M.H.M.; Gruppen, H. Foam Properties of Algae Soluble Protein Isolate: Effect of PH and Ionic Strength. Food Hydrocoll. 2013, 33, 111–117. [Google Scholar] [CrossRef]
- Dai, L.; Hinrichs, J.; Weiss, J. Emulsifying Properties of Acid-Hydrolyzed Insoluble Protein Fraction from Chlorella protothecoides: Formation and Storage Stability of Emulsions. Food Hydrocoll. 2020, 108, 105954. [Google Scholar] [CrossRef]
- Bertsch, P.; Böcker, L.; Mathys, A.; Fischer, P. Proteins from Microalgae for the Stabilization of Fluid Interfaces, Emulsions, and Foams. Trends Food Sci. Technol. 2021, 108, 326–342. [Google Scholar] [CrossRef]
- Cavonius, L.R.; Albers, E.; Undeland, I. PH-Shift Processing of Nannochloropsis oculata Microalgal Biomass to Obtain a Protein-Enriched Food or Feed Ingredient. Algal Res. 2015, 11, 95–102. [Google Scholar] [CrossRef]
- Waghmare, A.G.; Salve, M.K.; Leblanc, J.G.; Arya, S.S. Concentration and Characterization of Microalgae Proteins from Chlorella pyrenoidosa. Bioresour. Bioprocess. 2016, 3, 16. [Google Scholar] [CrossRef]
- Suarez Ruiz, C.A.; Kwaijtaal, J.; Peinado, O.C.; Van Den Berg, C.; Wijffels, R.H.; Eppink, M.H.M. Multistep Fractionation of Microalgal Biomolecules Using Selective Aqueous Two-Phase Systems. ACS Sustain. Chem. Eng. 2020, 8, 2441–2452. [Google Scholar] [CrossRef]
- Suarez Garcia, E.; van Leeuwen, J.; Safi, C.; Sijtsma, L.; Eppink, M.H.M.; Wijffels, R.H.; van den Berg, C. Selective and Energy Efficient Extraction of Functional Proteins from Microalgae for Food Applications. Bioresour. Technol. 2018, 268, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Caporgno, M.P.; Haberkorn, I.; Böcker, L.; Mathys, A. Cultivation of Chlorella protothecoides under Different Growth Modes and Its Utilisation in Oil/Water Emulsions. Bioresour. Technol. 2019, 288, 121476. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, L.; Hinrichs, J.; Weiss, J. Solubility and Aggregation Behavior of Protein Fractions from the Heterotrophically Cultivated Microalga Chlorella protothecoides. Food Res. Int. 2019, 116, 283–290. [Google Scholar] [CrossRef]
- Schwenzfeier, A.; Wierenga, P.A.; Eppink, M.H.M.; Gruppen, H. Effect of Charged Polysaccharides on the Techno-Functional Properties of Fractions Obtained from Algae Soluble Protein Isolate. Food Hydrocoll. 2014, 35, 9–18. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L.; Navarro-Juárez, R.; López-Martínez, J.C.; Campra-Madrid, P.; Rebolloso-Fuentes, M. Functional Properties of the Biomass of Three Microalgal Species. J. Food Eng. 2004, 65, 511–517. [Google Scholar] [CrossRef]
- Medina, C.; Rubilar, M.; Shene, C.; Torres, S.; Verdugo, M. Protein Fractions with Techno-Functional and Antioxidant Properties from Nannochloropsis gaditana Microalgal Biomass. J. Biobased Mater. Bioenergy 2015, 9, 417–425. [Google Scholar] [CrossRef]
- Dunford, N.T. Food and Industrial Bioproducts and Bioprocessing; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 1119946069. [Google Scholar]
- Volkman, J.K.; Brown, M.R. Nutritional Value of Microalgae and Applications. In Algal Cultures, Analogues of Blooms and Applications; Science Publishers: Rawalpindi, Pakistan, 2006; Volume 1, pp. 407–457. [Google Scholar]
- Xie, W.; Li, X.; Xu, H.; Chen, F.; Cheng, K.-W.; Liu, H.; Liu, B. Optimization of Heterotrophic Culture Conditions for the Microalgae Euglena Gracilis to Produce Proteins. Mar. Drugs 2023, 21, 519. [Google Scholar] [CrossRef]
- Sui, Y.; Muys, M.; Vermeir, P.; D’Adamo, S.; Vlaeminck, S.E. Light Regime and Growth Phase Affect the Microalgal Production of Protein Quantity and Quality with Dunaliella Salina. Bioresour. Technol. 2019, 275, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Bleakley, S.; Hayes, M. Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods 2017, 6, 33. [Google Scholar] [CrossRef]
- Schaafsma, G. The Protein Digestibility–Corrected Amino Acid Score. J. Nutr. 2000, 130, 1865S–1867S. [Google Scholar] [CrossRef]
- Wang, Y.; Tibbetts, S.M.; Berrue, F.; McGinn, P.J.; MacQuarrie, S.P.; Puttaswamy, A.; Patelakis, S.; Schmidt, D.; Melanson, R.; MacKenzie, S.E. A Rat Study to Evaluate the Protein Quality of Three Green Microalgal Species and the Impact of Mechanical Cell Wall Disruption. Foods 2020, 9, 1531. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tibbetts, S.M.; McGinn, P.J. Microalgae as Sources of High-Quality Protein for Human Food and Protein Supplements. Foods 2021, 10, 3002. [Google Scholar] [CrossRef]
- Rodríguez De Marco, E.; Steffolani, M.E.; Martínez, C.S.; León, A.E. Effects of Spirulina Biomass on the Technological and Nutritional Quality of Bread Wheat Pasta. LWT 2014, 58, 102–108. [Google Scholar] [CrossRef]
- Grossmann, L.; Ebert, S.; Hinrichs, J.; Weiss, J. Effect of Precipitation, Lyophilization, and Organic Solvent Extraction on Preparation of Protein-Rich Powders from the Microalgae Chlorella protothecoides. Algal Res. 2018, 29, 266–276. [Google Scholar] [CrossRef]
- Grossmann, L.; Hinrichs, J.; Goff, H.D.; Weiss, J. Heat-Induced Gel Formation of a Protein-Rich Extract from the Microalga Chlorella sorokiniana. Innov. Food Sci. Emerg. Technol. 2019, 56, 102176. [Google Scholar] [CrossRef]
- Haque, M.A.; Timilsena, Y.P.; Adhikari, B. Food Proteins, Structure, and Function. Ref. Modul. Food Sci. 2016. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, X.; Zhang, X.; Liu, H. Extraction, Structural and Functional Properties of Haematococcus pluvialis Protein after Pigment Removal. Int. J. Biol. Macromol. 2019, 140, 1073–1083. [Google Scholar] [CrossRef]
- Dai, L.; Shivananda, R.; Hinrichs, J.; Weiss, J. Foaming of Acid-Hydrolyzed Insoluble Microalgae Proteins from Chlorella protothecoides. Food Biophys. 2020, 15, 368–375. [Google Scholar] [CrossRef]
- Ebert, S.; Grossmann, L.; Hinrichs, J.; Weiss, J. Emulsifying Properties of Water-Soluble Proteins Extracted from the Microalgae Chlorella sorokiniana and Phaeodactylum tricornutum. Food Funct. 2019, 10, 754–764. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, J.; Chang, C.; Chen, J.; Cao, F.; Zhao, J.; Zheng, Y.; Zhu, J. Physicochemical and Functional Properties of Proteins Extracted from Three Microalgal Species. Food Hydrocoll. 2019, 96, 510–517. [Google Scholar] [CrossRef]
- Pelegrine, D.H.G.; Gasparetto, C.A. Whey Proteins Solubility as Function of Temperature and PH. LWT Food Sci. Technol. 2005, 38, 77–80. [Google Scholar] [CrossRef]
- Böcker, L.; Bertsch, P.; Wenner, D.; Teixeira, S.; Bergfreund, J.; Eder, S.; Fischer, P.; Mathys, A. Effect of Arthrospira platensis Microalgae Protein Purification on Emulsification Mechanism and Efficiency. J. Colloid Interface Sci. 2021, 584, 344–353. [Google Scholar] [CrossRef]
- Pereira, A.M.; Lisboa, C.R.; Costa, J.A.V. High Protein Ingredients of Microalgal Origin: Obtainment and Functional Properties. Innov. Food Sci. Emerg. Technol. 2018, 47, 187–194. [Google Scholar] [CrossRef]
- Benelhadj, S.; Gharsallaoui, A.; Degraeve, P.; Attia, H.; Ghorbel, D. Effect of PH on the Functional Properties of Arthrospira (Spirulina) platensis Protein Isolate. Food Chem. 2016, 194, 1056–1063. [Google Scholar] [CrossRef]
- Dickinson, E. Food Polymers, Gels and Colloids; Elsevier: Amsterdam, The Netherlands, 1991; ISBN 1845698339. [Google Scholar]
- Chronakis, I.S. Gelation of Edible Blue-Green Algae Protein Isolate (Spirulina platensis Strain Pacifica): Thermal Transitions, Rheological Properties, and Molecular Forces Involved. J. Agric. Food Chem. 2001, 49, 888–898. [Google Scholar] [CrossRef]
- Batista, A.P.; Nunes, M.C.; Fradinho, P.; Gouveia, L.; Sousa, I.; Raymundo, A.; Franco, J.M. Novel Foods with Microalgal Ingredients–Effect of Gel Setting Conditions on the Linear Viscoelasticity of Spirulina and Haematococcus Gels. J. Food Eng. 2012, 110, 182–189. [Google Scholar] [CrossRef]
- Batista, A.P.; Nunes, M.C.; Raymundo, A.; Gouveia, L.; Sousa, I.; Cordobés, F.; Guerrero, A.; Franco, J.M. Microalgae Biomass Interaction in Biopolymer Gelled Systems. Food Hydrocoll. 2011, 25, 817–825. [Google Scholar] [CrossRef]
- Grossmann, L.; Ebert, S.; Hinrichs, J.; Weiss, J. Formation and Stability of Emulsions Prepared with a Water-Soluble Extract from the Microalga Chlorella protothecoides. J. Agric. Food Chem. 2019, 67, 6551–6558. [Google Scholar] [CrossRef] [PubMed]
- Ba, F.; Ursu, A.V.; Laroche, C.; Djelveh, G. Haematococcus pluvialis Soluble Proteins: Extraction, Characterization, Concentration/Fractionation and Emulsifying Properties. Bioresour. Technol. 2016, 200, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Ursu, A.V.; Marcati, A.; Sayd, T.; Sante-Lhoutellier, V.; Djelveh, G.; Michaud, P. Extraction, Fractionation and Functional Properties of Proteins from the Microalgae Chlorella vulgaris. Bioresour. Technol. 2014, 157, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Nirmala, C.; Prakash, V.; Venkataraman, L.V. Physico-Chemical and Functional Properties of Proteins from Spray Dried Algae (Spirulina platensis). Food/Nahrung 1992, 36, 569–577. [Google Scholar] [CrossRef]
- Teuling, E.; Schrama, J.W.; Gruppen, H.; Wierenga, P.A. Characterizing Emulsion Properties of Microalgal and Cyanobacterial Protein Isolates. Algal Res. 2019, 39, 101471. [Google Scholar] [CrossRef]
- Law, S.Q.K.; Mettu, S.; Ashokkumar, M.; Scales, P.J.; Martin, G.J.O. Emulsifying Properties of Ruptured Microalgae Cells: Barriers to Lipid Extraction or Promising Biosurfactants? Colloids Surf. B Biointerfaces 2018, 170, 438–446. [Google Scholar] [CrossRef]
- Devi, M.A.; Venkataraman, L.V. Functional Properties of Protein Products of Mass Cultivated Blue-Green Alga Spirulina platensia. J. Food Sci. 1984, 49, 24–27. [Google Scholar] [CrossRef]
- Teuling, E.; Wierenga, P.A.; Schrama, J.W.; Gruppen, H. Comparison of Protein Extracts from Various Unicellular Green Sources. J. Agric. Food Chem. 2017, 65, 7989–8002. [Google Scholar] [CrossRef] [PubMed]
- Ferreira de Oliveira, A.P.; Bragotto, A.P.A. Microalgae-Based Products: Food and Public Health. Future Foods 2022, 6, 100157. [Google Scholar] [CrossRef]
- Muñoz-Tebar, N.; Ong, L.; Gamlath, C.J.; Yatipanthalawa, B.S.; Ashokkumar, M.; Gras, S.L.; Berruga, M.I.; Martin, G.J.O. Nutrient Enrichment of Dairy Curd by Incorporation of Whole and Ruptured Microalgal Cells (Nannochloropsis salina). Innov. Food Sci. Emerg. Technol. 2022, 82, 103211. [Google Scholar] [CrossRef]
- Lafarga, T. Effect of Microalgal Biomass Incorporation into Foods: Nutritional and Sensorial Attributes of the End Products. Algal Res. 2019, 41, 101566. [Google Scholar] [CrossRef]
- Çelekli, A.; Alslibi, Z.A.; Bozkurt, H. Influence of Incorporated Spirulina Platensis on the Growth of Microflora and Physicochemical Properties of Ayran as a Functional Food. Algal Res. 2019, 44, 101710. [Google Scholar] [CrossRef]
- Guldas, M.; Irkin, R. Influence of Spirulina Platensis Powder on the Microflora of Yoghurt and Acidophilus Milk. Časopis Za Unaprjeđenje Proizv. Prerade Mlijeka 2010, 60, 237–243. [Google Scholar]
- Mazinani, S.; Fadaei, V.; Khosravi-Darani, K. Impact of Spirulina Platensis on Physicochemical Properties and Viability of Lactobacillus acidophilus of Probiotic UF Feta Cheese. J. Food Process. Preserv. 2016, 40, 1318–1324. [Google Scholar] [CrossRef]
- Sözeri Atik, D.; Gürbüz, B.; Bölük, E.; Palabıyık, İ. Development of Vegan Kefir Fortified with Spirulina Platensis. Food Biosci. 2021, 42, 101050. [Google Scholar] [CrossRef]
- Varga, L.; Szigeti, J.; Kovács, R.; Földes, T.; Buti, S. Influence of a Spirulina platensis Biomass on the Microflora of Fermented ABT Milks during Storage (R1). J. Dairy Sci. 2002, 85, 1031–1038. [Google Scholar] [CrossRef]
- Mohamed, A.G.; Abo-El-Khair, B.E.; Shalaby, S.M. Quality of Novel Healthy Processed Cheese Analogue Enhanced with Marine Microalgae Chlorella vulgaris Biomass. World Appl. Sci. J. 2013, 23, 914–925. [Google Scholar]
- Batista, A.P.; Niccolai, A.; Bursic, I.; Sousa, I.; Raymundo, A.; Rodolfi, L.; Biondi, N.; Tredici, M.R. Microalgae as Functional Ingredients in Savory Food Products: Application to Wheat Crackers. Foods 2019, 8, 611. [Google Scholar] [CrossRef] [PubMed]
- Batista, A.P.; Niccolai, A.; Fradinho, P.; Fragoso, S.; Bursic, I.; Rodolfi, L.; Biondi, N.; Tredici, M.R.; Sousa, I.; Raymundo, A. Microalgae Biomass as an Alternative Ingredient in Cookies: Sensory, Physical and Chemical Properties, Antioxidant Activity and in Vitro Digestibility. Algal Res. 2017, 26, 161–171. [Google Scholar] [CrossRef]
- Shahbazizadeh, S.; Khosravi-Darani, K.; Sohrabvandi, S. Fortification of Iranian Traditional Cookies with Spirulina platensis. Annu. Res. Rev. Biol. 2015, 7, 144–154. [Google Scholar] [CrossRef]
- Kadam, S.U.; Prabhasankar, P. Marine Foods as Functional Ingredients in Bakery and Pasta Products. Food Res. Int. 2010, 43, 1975–1980. [Google Scholar] [CrossRef]
- Gouveia, L.; Batista, A.P.; Miranda, A.; Empis, J.; Raymundo, A. Chlorella Vulgaris Biomass Used as Colouring Source in Traditional Butter Cookies. Innov. Food Sci. Emerg. Technol. 2007, 8, 433–436. [Google Scholar] [CrossRef]
- García-Segovia, P.; Pagán-Moreno, M.J.; Lara, I.F.; Martínez-Monzó, J. Effect of Microalgae Incorporation on Physicochemical and Textural Properties in Wheat Bread Formulation. Food Sci. Technol. Int. 2017, 23, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Saharan, V.; Jood, S. Effect of Storage on Spirulina Platensis Powder Supplemented Breads. J. Food Sci. Technol. 2021, 58, 978–984. [Google Scholar] [CrossRef]
- Graça, C.; Fradinho, P.; Sousa, I.; Raymundo, A. Impact of Chlorella Vulgaris on the Rheology of Wheat Flour Dough and Bread Texture. LWT 2018, 89, 466–474. [Google Scholar] [CrossRef]
- Niccolai, A.; Chini Zittelli, G.; Rodolfi, L.; Biondi, N.; Tredici, M.R. Microalgae of Interest as Food Source: Biochemical Composition and Digestibility. Algal Res. 2019, 42, 101617. [Google Scholar] [CrossRef]
- Uribe-Wandurraga, Z.N.; Igual, M.; Reino-Moyón, J.; García-Segovia, P.; Martínez-Monzó, J. Effect of Microalgae (Arthrospira platensis and Chlorella vulgaris) Addition on 3D Printed Cookies. Food Biophys. 2021, 16, 27–39. [Google Scholar] [CrossRef]
- Niccolai, A.; Shannon, E.; Abu-Ghannam, N.; Biondi, N.; Rodolfi, L.; Tredici, M.R. Lactic Acid Fermentation of Arthrospira platensis (Spirulina) Biomass for Probiotic-Based Products. J. Appl. Phycol. 2019, 31, 1077–1083. [Google Scholar] [CrossRef]
- Niccolai, A.; Bažec, K.; Rodolfi, L.; Biondi, N.; Zlatić, E.; Jamnik, P.; Tredici, M.R. Lactic Acid Fermentation of Arthrospira platensis (Spirulina) in a Vegetal Soybean Drink for Developing New Functional Lactose-Free Beverages. Front. Microbiol. 2020, 11, 2680. [Google Scholar] [CrossRef]
- Parada, J.L.; De Caire, G.Z.; De Mulé, M.C.Z.; De Cano, M.M.S. Lactic Acid Bacteria Growth Promoters from Spirulina Platensis. Int. J. Food Microbiol. 1998, 45, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Beheshtipour, H.; Mortazavian, A.M.; Haratian, P.; Khosravi-Darani, K. Effects of Chlorella Vulgaris and Arthrospira platensis Addition on Viability of Probiotic Bacteria in Yogurt and Its Biochemical Properties. Eur. Food Res. Technol. 2012, 235, 719–728. [Google Scholar] [CrossRef]
- Priyanka, M.; Kempanna, C.; Narasimha, M. Quality Characteristics of Yoghurt Enriched with Spirulina Powder. Mysore J. Agric. Sci. 2013, 47, 354–359. [Google Scholar]
- Gouveia, L.; Batista, A.P.; Raymundo, A.; Bandarra, N. Spirulina maxima and Diacronema vlkianum Microalgae in Vegetable Gelled Desserts. Nutr. Food Sci. 2008, 38, 492–501. [Google Scholar] [CrossRef]
- Fradique, M.; Batista, A.P.; Nunes, M.C.; Gouveia, L.; Bandarra, N.M.; Raymundo, A. Incorporation of Chlorella vulgaris and Spirulina maxima Biomass in Pasta Products. Part 1: Preparation and Evaluation. J. Sci. Food Agric. 2010, 90, 1656–1664. [Google Scholar] [CrossRef] [PubMed]
- Bazarnova, J.; Nilova, L.; Trukhina, E.; Bernavskaya, M.; Smyatskaya, Y.; Aktar, T. Use of Microalgae Biomass for Fortification of Food Products from Grain. Foods 2021, 10, 3018. [Google Scholar] [CrossRef] [PubMed]
- Fradinho, P.; Niccolai, A.; Soares, R.; Rodolfi, L.; Biondi, N.; Tredici, M.R.; Sousa, I.; Raymundo, A. Effect of Arthrospira platensis (Spirulina) Incorporation on the Rheological and Bioactive Properties of Gluten-Free Fresh Pasta. Algal Res. 2020, 45, 101743. [Google Scholar] [CrossRef]
- Khemiri, S.; Khelifi, N.; Nunes, M.C.; Ferreira, A.; Gouveia, L.; Smaali, I.; Raymundo, A. Microalgae Biomass as an Additional Ingredient of Gluten-Free Bread: Dough Rheology, Texture Quality and Nutritional Properties. Algal Res. 2020, 50, 101998. [Google Scholar] [CrossRef]
- Danesi, E.D.G.; Navacchi, M.F.P.; Takeuchi, K.P.; Frata, M.T.; Carvalho, J.C.M. Application of Spirulina platensis in Protein Enrichment of Manioc Based Bakery Products. J. Biotechnol. 2010, 150, 311. [Google Scholar] [CrossRef]
- Rabelo, S.F.; Lemes, A.C.; Takeuchi, K.P.; Frata, M.T.; de Carvalho, J.C.M.; Danesi, E.D.G. Development of Cassava Doughnuts Enriched with Spirulina platensis Biomass. Braz. J. Food Technol. 2013, 16, 42–51. [Google Scholar] [CrossRef]
- Navacchi, M.F.P.; de Carvalho, J.C.M.; Takeuchi, K.P.; Danesi, E.D.G. Development of Cassava Cake Enriched with Its Own Bran and Spirulina Platensis. Acta Sci. Technol. 2012, 34, 465–472. [Google Scholar] [CrossRef]
- Ariani, R.; Ekayani, I.; Masdarini, L. Processing Mocaf into Pie Susu with the Addition of Super Food “Spirulina”. J. Phys. Conf. Ser. 2021, 1810, 12078. [Google Scholar] [CrossRef]
- Al-Baarri, A.N.; Widayat; Aulia, R.; Prahasiwi, E.K.; Mawarid, A.A.; Pangestika, W.; Lestari, F.P. The Hardness Analysis of Noodles Made from Modified Cassava Flour, Spirulina (Spirulina platensis) and Basil Leaves Extract (Ocimum sanctum L.). IOP Conf. Ser. Earth Environ. Sci. 2021, 653, 012051. [Google Scholar] [CrossRef]
- Bernaerts, T.M.M.; Gheysen, L.; Foubert, I.; Hendrickx, M.E.; Van Loey, A.M. The Potential of Microalgae and Their Biopolymers as Structuring Ingredients in Food: A Review. Biotechnol. Adv. 2019, 37, 107419. [Google Scholar] [CrossRef]
- Wang, M.; Yin, Z.; Sun, W.; Zhong, Q.; Zhang, Y.; Zeng, M. Microalgae Play a Structuring Role in Food: Effect of Spirulina Platensis on the Rheological, Gelling Characteristics, and Mechanical Properties of Soy Protein Isolate Hydrogel. Food Hydrocoll. 2023, 136, 108244. [Google Scholar] [CrossRef]
- Castro-Ferreira, C.; Gomes-Dias, J.S.; Ferreira-Santos, P.; Pereira, R.N.; Vicente, A.A.; Rocha, C.M.R. Phaeodactylum tricornutum Extracts as Structuring Agents for Food Applications: Physicochemical and Functional Properties. Food Hydrocoll. 2022, 124, 107276. [Google Scholar] [CrossRef]
- Joshi, S.M.R.; Bera, M.B.; Panesar, P.S. Extrusion Cooking of Maize/Spirulina Mixture: Factors Affecting Expanded Product Characteristics and Sensory Quality. J. Food Process. Preserv. 2014, 38, 655–664. [Google Scholar] [CrossRef]
- Lucas, B.F.; de Morais, M.G.; Santos, T.D.; Costa, J.A.V. Effect of Spirulina Addition on the Physicochemical and Structural Properties of Extruded Snacks. Food Sci. Technol. 2017, 37, 16–23. [Google Scholar] [CrossRef]
- Gouveia, L.; Coutinho, C.; Mendonça, E.; Batista, A.P.; Sousa, I.; Bandarra, N.M.; Raymundo, A. Functional Biscuits with PUFA-Ω3 from Isochrysis Galbana. J. Sci. Food Agric. 2008, 88, 891–896. [Google Scholar] [CrossRef]
- Lafarga, T.; Mayre, E.; Echeverria, G.; Viñas, I.; Villaró, S.; Acién-Fernández, F.G.; Castellari, M.; Aguiló-Aguayo, I. Potential of the Microalgae Nannochloropsis and Tetraselmis for Being Used as Innovative Ingredients in Baked Goods. LWT 2019, 115, 108439. [Google Scholar] [CrossRef]
- Niccolai, A.; Venturi, M.; Galli, V.; Pini, N.; Rodolfi, L.; Biondi, N.; D’Ottavio, M.; Batista, A.P.; Raymundo, A.; Granchi, L. Development of New Microalgae-Based Sourdough “Crostini”: Functional Effects of Arthrospira platensis (Spirulina) Addition. Sci. Rep. 2019, 9, 19433. [Google Scholar] [CrossRef]
- Diprat, A.B.; Silveira Thys, R.C.; Rodrigues, E.; Rech, R. Chlorella sorokiniana: A New Alternative Source of Carotenoids and Proteins for Gluten-Free Bread. LWT 2020, 134, 109974. [Google Scholar] [CrossRef]
- Nunes, M.C.; Fernandes, I.; Vasco, I.; Sousa, I.; Raymundo, A. Tetraselmis chuii as a Sustainable and Healthy Ingredient to Produce Gluten-Free Bread: Impact on Structure, Colour and Bioactivity. Foods 2020, 9, 579. [Google Scholar] [CrossRef] [PubMed]
- Qazi, W.M.; Ballance, S.; Uhlen, A.K.; Kousoulaki, K.; Haugen, J.E.; Rieder, A. Protein Enrichment of Wheat Bread with the Marine Green Microalgae Tetraselmis chuii–Impact on Dough Rheology and Bread Quality. LWT 2021, 143, 111115. [Google Scholar] [CrossRef]
- Hernández-López, I.; Benavente Valdés, J.R.; Castellari, M.; Aguiló-Aguayo, I.; Morillas-España, A.; Sánchez-Zurano, A.; Acién-Fernández, F.G.; Lafarga, T. Utilisation of the Marine Microalgae Nannochloropsis sp. and Tetraselmis sp. as Innovative Ingredients in the Formulation of Wheat Tortillas. Algal Res. 2021, 58, 102361. [Google Scholar] [CrossRef]
- Hernández-López, I.; Alamprese, C.; Cappa, C.; Prieto-Santiago, V.; Abadias, M.; Aguiló-Aguayo, I. Effect of Spirulina in Bread Formulated with Wheat Flours of Different Alveograph Strength. Foods 2023, 12, 3724. [Google Scholar] [CrossRef] [PubMed]
- Marzec, A.; Kramarczuk, P.; Kowalska, H.; Kowalska, J. Effect of Type of Flour and Microalgae (Chlorella vulgaris) on the Rheological, Microstructural, Textural, and Sensory Properties of Vegan Muffins. Appl. Sci. 2023, 13, 7632. [Google Scholar] [CrossRef]
- Pereira, T.; Costa, S.; Barroso, S.; Teixeira, P.; Mendes, S.; Gil, M.M. Development and Optimization of High-Protein and Low-Saturated Fat Bread Formulations Enriched with Lupin and Microalgae. LWT 2024, 191, 115612. [Google Scholar] [CrossRef]
- Tiepo, C.B.V.; Gottardo, F.M.; Mortari, L.M.; Bertol, C.D.; Reinehr, C.O.; Colla, L.M. Addition of Spirulina platensis in Handmade Ice Cream: Phisicochemical and Sensory Effects Adição de Spirulina platensis Em Sorvete Caseiro: Efeitos Físico-Químicos e Sensoriais. Braz. J. Dev. 2021, 7, 88106–88123. [Google Scholar] [CrossRef]
- Batista de Oliveira, T.T.; Miranda dos Reis, I.; Bastos de Souza, M.; da Silva Bispo, E.; Fonseca Maciel, L.; Druzian, J.I.; Lordelo Guimarães Tavares, P.P.; de Oliveira Cerqueira, A.; dos Santos Boa Morte, E.; Abreu Glória, M.B.; et al. Microencapsulation of Spirulina sp. LEB-18 and Its Incorporation in Chocolate Milk: Properties and Functional Potential. LWT 2021, 148, 111674. [Google Scholar] [CrossRef]
- Arslan, R.; Aksay, S. Investigation of Sensorial and Physicochemical Properties of Yoghurt Colored with Phycocyanin of Spirulina platensis. J. Food Process. Preserv. 2022, 46, e15941. [Google Scholar] [CrossRef]
- Jalili, S.; Aryan, S.; Mousavinezhad, S.A.; Moeini, H.; Dehnad, D. Optimizing Spirulina platensis, Chlorella vulgaris Microalgae and Curcumin Application in Functional Cheese Production and Investigating Its Physicochemical Properties and Sensory Evaluation by RSM. J. Food Meas. Charact. 2024, 18, 1144–1157. [Google Scholar] [CrossRef]
- Fradique, M.; Batista, A.P.; Nunes, M.C.; Gouveia, L.; Bandarra, N.M.; Raymundo, A. Isochrysis galbana and Diacronema vlkianum Biomass Incorporation in Pasta Products as PUFA’s Source. LWT 2013, 50, 312–319. [Google Scholar] [CrossRef]
- Zen, C.K.; Tiepo, C.B.V.; da Silva, R.V.; Reinehr, C.O.; Gutkoski, L.C.; Oro, T.; Colla, L.M. Development of Functional Pasta with Microencapsulated Spirulina: Technological and Sensorial Effects. J. Sci. Food Agric. 2020, 100, 2018–2026. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, B.C.C.; Machado, M.; Machado, S.; Costa, A.S.G.; Bessada, S.; Alves, R.C.; Oliveira, M.B.P.P. Algae Incorporation and Nutritional Improvement: The Case of a Whole-Wheat Pasta. Foods 2023, 12, 3039. [Google Scholar] [CrossRef]
- Los, P.R.; Simões, D.R.S.; Leone, R.d.S.; Bolanho, B.C.; Cardoso, T.; Danesi, E.D.G. Viability of Peach Palm By-Product, Spirulina Platensis, and Spinach for the Enrichment of Dehydrated Soup. Pesqui. Agropecu. Bras. 2018, 53, 1259–1267. [Google Scholar] [CrossRef]
- Lafarga, T.; Acién-Fernández, F.G.; Castellari, M.; Villaró, S.; Bobo, G.; Aguiló-Aguayo, I. Effect of Microalgae Incorporation on the Physicochemical, Nutritional, and Sensorial Properties of an Innovative Broccoli Soup. LWT 2019, 111, 167–174. [Google Scholar] [CrossRef]
- Bakhsh, A.; Park, J.; Baritugo, K.A.; Kim, B.; Sil Moon, S.; Rahman, A.; Park, S. A Holistic Approach toward Development of Plant-Based Meat Alternatives through Incorporation of Novel Microalgae-Based Ingredients. Front. Nutr. 2023, 10, 1110613. [Google Scholar] [CrossRef]
- Prandi, B.; Boukid, F.; Van De Walle, S.; Cutroneo, S.; Comaposada, J.; Van Royen, G.; Sforza, S.; Tedeschi, T.; Castellari, M. Protein Quality and Protein Digestibility of Vegetable Creams Reformulated with Microalgae Inclusion. Foods 2023, 12, 2395. [Google Scholar] [CrossRef]
- Braga, A.R.C.; Nunes, M.C.; Raymundo, A. The Experimental Development of Emulsions Enriched and Stabilized by Recovering Matter from Spirulina biomass: Valorization of Residue into a Sustainable Protein Source. Molecules 2023, 28, 6179. [Google Scholar] [CrossRef]
- Ejike, C.E.C.C.; Collins, S.A.; Balasuriya, N.; Swanson, A.K.; Mason, B.; Udenigwe, C.C. Prospects of Microalgae Proteins in Producing Peptide-Based Functional Foods for Promoting Cardiovascular Health. Trends Food Sci. Technol. 2017, 59, 30–36. [Google Scholar] [CrossRef]
- Lafarga, T.; Rodríguez-Bermúdez, R.; Morillas-España, A.; Villaró, S.; García-Vaquero, M.; Morán, L.; Sánchez-Zurano, A.; González-López, C.V.; Acién-Fernández, F.G. Consumer Knowledge and Attitudes towards Microalgae as Food: The Case of Spain. Algal Res. 2021, 54, 102174. [Google Scholar] [CrossRef]
- Lafarga, T.; Pieroni, C.; D’imporzano, G.; Maggioni, L.; Adani, F.; Acién, G. Consumer Attitudes towards Microalgae Production and Microalgae-Based Agricultural Products: The Cases of Almería (Spain) and Livorno (Italy). ChemEngineering 2021, 5, 27. [Google Scholar] [CrossRef]
- Martelli, F.; Cirlini, M.; Lazzi, C.; Neviani, E.; Bernini, V. Solid-State Fermentation of Arthrospira platensis to Implement New Food Products: Evaluation of Stabilization Treatments and Bacterial Growth on the Volatile Fraction. Foods 2020, 10, 67. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Romero, B.; Perales, J.A.; Pereira, H.; Barbosa, M.; Ruiz, J. Techno-Economic Assessment of Microalgae Production, Harvesting and Drying for Food, Feed, Cosmetics, and Agriculture. Sci. Total Environ. 2022, 837, 155742. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosibo, O.K.; Ferrentino, G.; Udenigwe, C.C. Microalgae Proteins as Sustainable Ingredients in Novel Foods: Recent Developments and Challenges. Foods 2024, 13, 733. https://doi.org/10.3390/foods13050733
Mosibo OK, Ferrentino G, Udenigwe CC. Microalgae Proteins as Sustainable Ingredients in Novel Foods: Recent Developments and Challenges. Foods. 2024; 13(5):733. https://doi.org/10.3390/foods13050733
Chicago/Turabian StyleMosibo, Ornella Kongi, Giovanna Ferrentino, and Chibuike C. Udenigwe. 2024. "Microalgae Proteins as Sustainable Ingredients in Novel Foods: Recent Developments and Challenges" Foods 13, no. 5: 733. https://doi.org/10.3390/foods13050733
APA StyleMosibo, O. K., Ferrentino, G., & Udenigwe, C. C. (2024). Microalgae Proteins as Sustainable Ingredients in Novel Foods: Recent Developments and Challenges. Foods, 13(5), 733. https://doi.org/10.3390/foods13050733