Influence of Hesperidin on the Physico-Chemical, Microbiological and Sensory Characteristics of Frozen Yogurt †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Frozen Yogurt Production
2.3. Frozen Yogurt Physicochemical Characteristics
2.3.1. Overrun
2.3.2. Viscosity
2.3.3. Hardness
2.3.4. pH
2.3.5. Color
2.3.6. Melting Rate
2.4. Frozen Yogurt Microbial Characteristics
2.4.1. Enumeration of S. thermophilus
2.4.2. Enumeration of L. bulgaricus
2.4.3. Bile Tolerance of S. thermophilus and L. bulgaricus
2.4.4. Acid Tolerance of S. thermophilus and L. bulgaricus
2.5. Sensory Analysis of Frozen Yogurt
2.6. Statistical Analysis
3. Results and Discussion
3.1. Viscosity of Yogurt Mix
3.2. Overrun of Frozen Yogurt
3.3. Microbial Analysis of Frozen Yogurt
3.4. The pH of Frozen Yogurt
3.5. Hardness of Frozen Yogurt
3.6. Melting Rate of Frozen Yogurt
3.7. Color of Frozen Yogurt
3.8. Bile Tolerance
3.9. Acid Tolerance
3.10. Sensory Analysis and Purchase Intent of Frozen Yogurt
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bylund, G. Dairy Processing Handbook; Tetra Pak Processing Systems AB: Lausanne, Switzerlan, 2003. [Google Scholar]
- Tamime, A.; Robinson, R. Traditional and Recent Developments in Yoghurt Production and Related Products. In Tamime and Robinson’s Yoghurt: Science and Technology; Woodhead Publishing Ltd.: Cambridge, UK, 2007; pp. 348–467. [Google Scholar]
- U.S. Food and Drug Administration; Title 21 CFR, § 131.200—Yogurt. Electronic Code of Federal Regulations. Available online: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-131/subpart-B/section-131.200 (accessed on 1 February 2024).
- Puhan, Z. Heat Treatment of Cultured Dairy Products. J. Food Prot. 1979, 42, 890–894. [Google Scholar] [CrossRef]
- Degnan, F.H. The US Food and Drug Administration and Probiotics: Regulatory Categorization. Clin. Infect. Dis. 2008, 46 (Suppl. S2), S133–S136. [Google Scholar] [CrossRef]
- Markowiak, P.; Śliżewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef]
- Wang, Z.H.; Gao, Q.Y.; Fang, J.Y. Meta-analysis of the efficacy and safety of Lactobacillus-containing and Bifidobacterium-containing probiotic compound preparation in Helicobacter pylori eradication therapy. J. Clin. Gastroenterol. 2013, 47, 25–32. [Google Scholar] [CrossRef]
- Bravo, L. Polyphenols: Chemistry, Dietary Sources, Metabolism, and Nutritional Significance. Nutr. Rev. 1998, 56, 317–333. [Google Scholar] [CrossRef]
- Amawi, H.; Ashby, C.R.; Samuel, T.; Peraman, R.; Tiwari, A.K. Polyphenolic Nutrients in Cancer Chemoprevention and Metastasis: Role of the Epithelial-to-Mesenchymal (EMT) Pathway. Nutrients 2017, 9, 911. [Google Scholar] [CrossRef]
- Quiñones, M.; Miguel, M.; Aleixandre, A. The polyphenols, naturally occurring compounds with beneficial effects on cardiovascular disease. Nutr. Hosp. 2012, 27, 76–89. [Google Scholar] [PubMed]
- Ray, P.D.; Huang, B.W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 2012, 24, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Venereo Gutiérrez, J.R. Daño oxidativo, radicales libres y antioxidantes. Rev. Cuba. Med. Mil. 2002, 31, 126–133. [Google Scholar]
- Suzuki, H.; Asakawa, A.; Kawamura, N.; Yagi, T.; Inui, A. Hesperidin potentiates ghrelin signaling. Recent Pat. Food Nutr. Agric. 2014, 6, 60–63. [Google Scholar] [CrossRef]
- Meneguzzo, F.; Ciriminna, R.; Zabini, F.; Pagliaro, M. Review of evidence available on hesperidin-rich products as potential tools against COVID-19 and hydrodynamic cavitation-based extraction as a method of increasing their production. Processes 2020, 8, 549. [Google Scholar] [CrossRef]
- Mas-Capdevila, A.; Teichenne, J.; Domenech-Coca, C.; Caimari, A.; Del Bas, J.M.; Escoté, X.; Crescenti, A. Effect of hesperidin on cardiovascular disease risk factors: The role of intestinal microbiota on hesperidin bioavailability. Nutrients 2020, 12, 1488. [Google Scholar] [CrossRef]
- Hassan, B.A.; Hamed, F.M.; Alyaseen, F.F. Phytochemical screened, characterization and antibacterial activity of hesperetin and hesperidin extracted and isolated from dried oranges peels. Int. J. Res. Pharm. Sci. 2018, 9, 1362–1367. [Google Scholar]
- Zhang, L.; Ling, W.; Yan, Z.; Liang, Y.; Guo, C.; Ouyang, Z.; Wang, X.; Kumaravel, K.; Ye, Q.; Zhong, B. Effects of storage conditions and heat treatment on the hesperidin concentration in Newhall navel orange (Citrus sinensis Osbeck cv. Newhall) juice. J. Food Compos. Anal. 2020, 85, 103338. [Google Scholar] [CrossRef]
- Majumdar, S.; Srirangam, R. Solubility, stability, physicochemical characteristics and in vitro ocular tissue permeability of hesperidin: A natural bioflavonoid. Pharm. Res. 2009, 26, 1217–1225. [Google Scholar] [CrossRef]
- Alfaro, L.; Hayes, D.; Boeneke, C.; Xu, Z.; Bankston, D.; Bechtel, P.J.; Sathivel, S. Physical properties of a frozen yogurt fortified with a nano-emulsion containing purple rice bran oil. LWT-Food Sci. Technol. 2015, 62, 1184–1191. [Google Scholar] [CrossRef]
- Muse, M.; Hartel, R.W. Ice cream structural elements that affect melting rate and hardness. J. Dairy Sci. 2004, 87, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Aryana, K.J. Folic acid fortified fat-free plain set yoghurt. Int. J. Dairy Technol. 2003, 56, 219–222. [Google Scholar] [CrossRef]
- Januário, J.; Oliveira, A.; Dias, S.; Klososki, S.; Pimentel, T. Kefir ice cream flavored with fruits and sweetened with honey: Physical and chemical characteristics and acceptance. Int. Food Res. J. 2018, 25, 179–187. [Google Scholar]
- Dave, R.; Shah, N. Evaluation of media for selective enumeration of Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus, and Bifidobacteria. J. Dairy Sci. 1996, 79, 1529–1536. [Google Scholar] [CrossRef] [PubMed]
- Pereira, D.I.; Gibson, G.R. Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Appl. Environ. Microbiol. 2002, 68, 4689–4693. [Google Scholar] [CrossRef]
- Zhang, Z.-X. Rock Fracture and Blasting: Theory and Applications; Butterworth-Heinemann: Jordan Hill, UK, 2016. [Google Scholar]
- Guinee, T.; Fenelon, M.; Kelly, P.; Kennedy, B.; Wilkiinson, M. The effect of total protein, casein: Whey protein ratio and fat content on the rheological and syneretic properties of yogurts. Ir. J. Agric. Food Res. 2000, 39, 171. [Google Scholar]
- Marshall, R.T.; Goff, H.D.; Hartel, R.W. Ice Cream; Springer Science & Business Media: New York, NY, USA, 2003. [Google Scholar]
- Anwer, M.K.; Al-Shdefat, R.; Jamil, S.; Alam, P.; Abdel-Kader, M.S.; Shakeel, F. Solubility of bioactive compound hesperidin in six pure solvents at (298.15 to 333.15) K. J. Chem. Eng. Data 2014, 59, 2065–2069. [Google Scholar] [CrossRef]
- Huppertz, T. Foaming properties of milk: A review of the influence of composition and processing. Int. J. Dairy Technol. 2010, 63, 477–488. [Google Scholar] [CrossRef]
- Mauer, L. PROTEIN|Heat Treatment for Food Proteins. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Academic Press: Cambridge, MA, USA, 2003; pp. 4868–4872. [Google Scholar]
- Davidson, R.; Duncan, S.; Hackney, C.; Eigel, W.; Boling, J. Probiotic culture survival and implications in fermented frozen yogurt characteristics. J. Dairy Sci. 2000, 83, 666–673. [Google Scholar] [CrossRef]
- Olson, D.W.; Boeneke, C.; Aryana, K.J. Properties of Yogurt Ice Cream Mixes and Resulting Frozen Products Prepared by Various Ratios of Ice Cream Mix to Yogurt. Food Nutr. Sci. 2021, 12, 1204–1216. [Google Scholar] [CrossRef]
- Atallah, A.A.; Ismail, E.A.; Yehia, H.M.; Elkhadragy, M.F.; Aloufi, A.S.; Gemiel, D.G. Physicochemical, microbiological and microstructural characteristics of sucrose-free probiotic-frozen yogurt during storage. Foods 2022, 11, 1099. [Google Scholar] [CrossRef] [PubMed]
- Gill, C.O. Agriculture and Agri-Food Canada Lacombe, Alberta, Canada. In Control of Foodborne Microorganisms; CRC Press: Boca Raton, FL, USA, 2001; Volume 55. [Google Scholar]
- Terpou, A.; Papadaki, A.; Lappa, I.K.; Kachrimanidou, V.; Bosnea, L.A.; Kopsahelis, N. Probiotics in food systems: Significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients 2019, 11, 1591. [Google Scholar] [CrossRef]
- Erkmen, O.; Bozoglu, T. Food preservation by low temperatures. In Food Microbiology: Principles into Practice; John Wiley and Sons, Ltd.: Chichester, UK, 2016. [Google Scholar]
- Inoue, K.; Shiota, K.; Ito, T. Preparation and properties of ice cream type frozen yogurt. Int. J. Dairy Technol. 1998, 51, 44–50. [Google Scholar] [CrossRef]
- Lawn, R.; Prichard, F.E. Measurement of PH; Royal Society of Chemistry: Cambridge, UK, 2003. [Google Scholar]
- Burke, N.; Zacharski, K.A.; Southern, M.; Hogan, P.; Ryan, M.P.; Adley, C.C. The dairy industry: Process, monitoring, standards, and quality. In Descriptive Food Science; IntechOpen: Rijeka, Croatia, 2018; Volume 162. [Google Scholar]
- Kurultay, Ş.; Öksüz, Ö.; GÖKÇEBAĞ, Ö. The influence of different total solid, stabilizer and overrun levels in industrial ice cream production using coconut oil. J. Food Process. Preserv. 2010, 34, 346–354. [Google Scholar] [CrossRef]
- Ghelich, S.; Ariaii, P.; Ahmadi, M. Evaluation of functional properties of wheat germ protein hydrolysates and its effect on physicochemical properties of frozen yogurt. Int. J. Pept. Res. Ther. 2022, 28, 69. [Google Scholar] [CrossRef]
- Syed, Q.A.; Anwar, S.; Shukat, R.; Zahoor, T. Effects of different ingredients on texture of ice cream. J. Nutr. Health Food Eng. 2018, 8, 422–435. [Google Scholar]
- Li, M.; Ritzoulis, C.; Du, Q.; Liu, Y.; Ding, Y.; Liu, W.; Liu, J. Recent progress on protein-polyphenol complexes: Effect on stability and nutrients delivery of oil-in-water emulsion system. Front. Nutr. 2021, 8, 765589. [Google Scholar] [CrossRef]
- Gabbi, D.K.; Bajwa, U.; Goraya, R.K. Physicochemical, melting and sensory properties of ice cream incorporating processed ginger (Zingiber officinale). Int. J. Dairy Technol. 2018, 71, 190–197. [Google Scholar] [CrossRef]
- Bilbao-Sainz, C.; Sinrod, A.J.; Chiou, B.S.; McHugh, T. Functionality of strawberry powder on frozen dairy desserts. J. Texture Stud. 2019, 50, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Jung, I.; Jo, A.R.; Kwon, Y.J.; Kwon, S.; An, I.-S. Facial L* a* b* values and preferred base makeup products among native Korean women: A clinical study. Biomed. Dermatol. 2017, 1, 2. [Google Scholar] [CrossRef]
- Binkowska, I. Hesperidin: Synthesis and characterization of bioflavonoid complex. SN Appl. Sci. 2020, 2, 445. [Google Scholar] [CrossRef]
- Sharma, P.; Pandey, P.; Gupta, R.; Roshan, S.; Garg, A.; Shulka, A.; Pasi, A. Isolation and characterization of hesperidin from orange peel. J. Pharm. Res. 2013, 3, 3892–3897. [Google Scholar]
- Popov-Raljić, J.V.; Lakić, N.S.; Laličić-Petronijević, J.G.; Barać, M.B.; Sikimić, V.M. Color Changes of UHT Milk during Storage. Sensors 2008, 8, 5961–5974. [Google Scholar] [CrossRef]
- Kaur, D.; Wani, A.A.; Singh, D.P.; Sogi, D.S. Shelf Life Enhancement of Butter, Ice-Cream, and Mayonnaise by Addition of Lycopene. Int. J. Food Prop. 2011, 14, 1217–1231. [Google Scholar] [CrossRef]
- Ruiz, L.; Margolles, A.; Sánchez, B. Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front. Microbiol. 2013, 4, 396. [Google Scholar] [CrossRef]
- Papadimitriou, K.; Alegría, Á.; Bron, P.A.; De Angelis, M.; Gobbetti, M.; Kleerebezem, M.; Lemos, J.A.; Linares, D.M.; Ross, P.; Stanton, C. Stress physiology of lactic acid bacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 837–890. [Google Scholar] [CrossRef]
- Theegala, M.; Arévalo, R.A.C.; Viana, V.; Olson, D.; Aryana, K. Effect of Flaxseed on Bile Tolerances of Lactobacillus acidophilus, Lactobacillus bulgaricus, and Streptococcus thermophilus. Food Nutr. Sci. 2021, 12, 670–680. [Google Scholar]
- Iyer, R.; Tomar, S.; Kapila, S.; Mani, J.; Singh, R. Probiotic properties of folate producing Streptococcus thermophilus strains. Food Res. Int. 2010, 43, 103–110. [Google Scholar] [CrossRef]
- Vargas, L.A.; Olson, D.W.; Aryana, K.J. Whey protein isolate improves acid and bile tolerances of Streptococcus thermophilus ST-M5 and Lactobacillus delbrueckii ssp. bulgaricus LB-12. J. Dairy Sci. 2015, 98, 2215–2221. [Google Scholar] [CrossRef]
- Boke, H.; Aslim, B.; Alp, G. The role of resistance to bile salts and acid tolerance of exopolysaccharides (EPSS) produced by yogurt starter bacteria. Arch. Biol. Sci. 2010, 62, 323–328. [Google Scholar] [CrossRef]
- Muramalla, T.; Aryana, K. Some low homogenization pressures improve certain probiotic characteristics of yogurt culture bacteria and Lactobacillus acidophilus LA-K. J. Dairy Sci. 2011, 94, 3725–3738. [Google Scholar] [CrossRef] [PubMed]
- Dodd, C. Characteristics of Foodborne Hazard and Diseases: Microbial Stress Response; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Elhanafi, D.; Leenanon, B.; Bang, W.; Drake, M. Impact of Cold and Cold-Acid Stress on Poststress Tolerance and Virulence Factor Expression of Escherichia coli O157:H7. J. Food Prot. 2004, 67, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Mena, B.; Aryana, K. Effect of Lactose on Acid Tolerance of Yogurt Culture Bacteria. Food Nutr. Sci. 2020, 11, 457–462. [Google Scholar] [CrossRef]
- Nadal, E.S.; Sayas-Barberá, E.; Fernández-López, J.; Pérez-Alvarez, J.A. Food Formulation to Increase Probiotic Bacteria Action or Population. In Bioactive Foods in Promoting Health; Elsevier: Amsterdam, The Netherlands, 2010; pp. 335–351. [Google Scholar]
- Soares, S.; Kohl, S.; Thalmann, S.; Mateus, N.; Meyerhof, W.; De Freitas, V. Different phenolic compounds activate distinct human bitter taste receptors. J. Agric. Food Chem. 2013, 61, 1525–1533. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Lu, Y.J.; Guo, C.; Zuo, S.; Zhou, J.L.; Wong, W.L.; Huang, B. The study of citrus-derived flavonoids as effective bitter taste inhibitors. J. Sci. Food Agric. 2021, 101, 5163–5171. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Scarborough, P.; Rayner, M. A systematic review, and meta-analyses, of the impact of health-related claims on dietary choices. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 93. [Google Scholar] [CrossRef] [PubMed]
- Cedillos, R. Influence of Hesperidin on the Physico-Chemical, Microbiological, and Sensory Characteristics of Frozen Yogurt. Master’s Thesis, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA, USA, 2022. Available online: https://repository.lsu.edu/cgi/viewcontent.cgi?article=6739&context=gradschool_theses (accessed on 1 February 2024).
Compounds | Treatments | |||
---|---|---|---|---|
FY500 | FY250 | FY125 | FY0 | |
Milk (kg) | 7.56 | 7.56 | 7.56 | 7.56 |
Sucrose (kg) | 1.36 | 1.36 | 1.36 | 1.36 |
Nonfat dry milk (g) | 399.52 | 399.52 | 399.52 | 399.52 |
Maltodextrin (g) | 363.20 | 363.20 | 363.20 | 363.20 |
Corn starch (g) | 20.00 | 20.00 | 20.00 | 20.00 |
Lactobacillus bulgaricus (g) | 3.00 | 3.00 | 3.00 | 3.00 |
Streptococcus thermophilus (g) | 3.00 | 3.00 | 3.00 | 3.00 |
Hesperidin (g) | 59.66 | 29.74 | 14.85 | - |
Attributes | FY500 | FY250 | FY125 | FY0 | |
---|---|---|---|---|---|
Appearance | 6.37 ± 1.59 A | 6.74 ± 1.53 A | 6.50 ± 1.72 A | 6.72 ± 1.34 A | |
Color | 6.43 ± 1.51 A | 6.69 ± 1.53 A | 6.67 ± 1.47 A | 6.74 ± 1.32 A | |
Aroma | 5.79 ± 1.45 A | 5.87 ± 1.70 A | 5.57 ± 1.57 A | 5.66 ± 1.73 A | |
Texture | 6.58 ± 1.66 AB | 6.25 ± 1.80 B | 6.84 ± 1.55 AB | 7.10 ± 1.58 A | |
Iciness/Sandiness | 6.20 ± 1.87 AB | 6.11 ± 1.78 B | 6.41 ± 1.59 AB | 6.77 ± 1.69 A | |
Flavor | 5.40 ± 2.23 B | 5.32 ± 2.23 B | 5.83 ± 2.23 AB | 6.43 ± 2.14 A | |
Sourness | 4.99 ± 2.18 B | 5.10 ± 2.10 B | 5.48 ± 2.19 AB | 6.00 ± 2.06 A | |
Overall liking | 5.66 ± 2.09 B | 5.42 ± 2.12 B | 5.96 ± 2.03 AB | 6.63 ± 1.88 A |
Treatment | Purchase Intent before Declaring a Health Claim (%) | Purchase Intent after Declaring a Health Claim (%) | Pr > F | ||
---|---|---|---|---|---|
Yes | No | Yes | No | ||
FY500 | 38.83 | 61.17 | 58.25 | 41.75 | <0.0001 |
FY250 | 38.83 | 61.17 | 53.40 | 46.60 | 0.0007 |
FY125 | 50.49 | 49.51 | 65.05 | 34.95 | 0.0007 |
FY0 | 66.99 | 33.01 | 65.05 | 34.95 | 0.7905 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cedillos, R.; Aleman, R.S.; Page, R.; Olson, D.W.; Boeneke, C.; Prinyawiwatkul, W.; Aryana, K. Influence of Hesperidin on the Physico-Chemical, Microbiological and Sensory Characteristics of Frozen Yogurt. Foods 2024, 13, 808. https://doi.org/10.3390/foods13050808
Cedillos R, Aleman RS, Page R, Olson DW, Boeneke C, Prinyawiwatkul W, Aryana K. Influence of Hesperidin on the Physico-Chemical, Microbiological and Sensory Characteristics of Frozen Yogurt. Foods. 2024; 13(5):808. https://doi.org/10.3390/foods13050808
Chicago/Turabian StyleCedillos, Roberto, Ricardo S. Aleman, Ryan Page, Douglas W. Olson, Charles Boeneke, Witoon Prinyawiwatkul, and Kayanush Aryana. 2024. "Influence of Hesperidin on the Physico-Chemical, Microbiological and Sensory Characteristics of Frozen Yogurt" Foods 13, no. 5: 808. https://doi.org/10.3390/foods13050808
APA StyleCedillos, R., Aleman, R. S., Page, R., Olson, D. W., Boeneke, C., Prinyawiwatkul, W., & Aryana, K. (2024). Influence of Hesperidin on the Physico-Chemical, Microbiological and Sensory Characteristics of Frozen Yogurt. Foods, 13(5), 808. https://doi.org/10.3390/foods13050808