Potential Interest of Oxalis pes-caprae L., a Wild Edible Plant, for the Food and Pharmaceutical Industries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Proximate Characterization
2.3. Analysis of Sugars, Organic Acids
2.4. Analysis of Minerals and Ascorbic Acid (Vitamin C)
2.5. Analysis Amino Acids
2.6. Analysis Fatty Acids
2.7. Volatile Profile
2.8. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition
3.2. Sugars, Organic Acids and Ascorbic Acid (Vitamin C)
3.3. Minerals
3.4. Amino Acids
3.5. Fatty Acids
Code | FA (%) ϒ | R. Time | ANOVA † | Flower | Leaf | Stem |
---|---|---|---|---|---|---|
FA1 | C12:0 (Lauric) | 19.330 | *** | 0.31 ± 0.06 a ‡ | 0.09 ± 0.05 b | 0.08 ± 0.019 b |
FA2 | C13:0 (Tridecanoic) | 21.419 | - | n.d. | n.d. | 0.02 ± 0.002 |
FA3 | C14:0 (Myristic) | 23.420 | *** | 0.51 ± 0.06 a | 0.31 ± 0.02 b | 0.20 ± 0.08 c |
FA4 | C15:0 (Pentadecanoic) | 25.348 | *** | 0.06 ± 0.001 a | 0.02 ± 0.001 b | 0.06 ± 0.004 a |
FA5 | C16:0 (Palmitic) | 27.251 | *** | 18.51 ± 0.47 a | 11.73 ± 0.74 c | 16.42 ± 0.43 b |
FA6 | C17:0 (Isomargaric) | 28.156 | *** | 0.02 ± 0.001 b | n.d. | 1.41 ± 0.32 a |
FA7 | C17:0 (Margaric) | 28.943 | *** | 0.13 ± 0.006 a | 0.10 ± 0.005 b | 0.11 ± 0.01 b |
FA8 | C18:0 (Stearic) | 30.649 | *** | 2.05 ± 0.11 a | 1.22 ± 0.07 c | 1.46 ± 0.01 b |
FA9 | C19:0 (Nonadecanoic) | 32.318 | - | n.d | n.d. | 0.18 ± 0.009 |
FA10 | C20:0 (Arachidic) | 33.923 | *** | 0.09 ± 0.005 c | 0.24 ± 0.03 a | 0.16 ± 0.04 b |
FA11 | C21:0 (Heneicosanoic) | 35.336 | *** | 0.15 ± 0.01 a | 0.15 ± 0.05 a | 0.04 ± 0.003 b |
FA12 | C22:0 (Behenic) | 36.831 | *** | 1.33 ± 0.30 a | 1.01 ± 0.20 b | 0.01 ± 0.0001 c |
FA13 | C23:0 (Tricosylic) | 38.165 | *** | 0.97 ± 0.20 b | 2.87 ± 0.76 a | 0.51 ± 0.44 c |
FA14 | C24:0 (Lignoceric) | 39.585 | *** | 0.59 ± 0.04 b | 0.07 ± 0.01 c | 0.92 ± 0.07 a |
Σ SFA | *** | 24.72 a | 17.81 c | 21.58 b | ||
FA15 | C15:1 (Pentadecenoic) | 26.835 | *** | 0.06 ± 0.003 b | 0.16 ± 0.01 a | 0.07 ± 0.006 b |
FA16 | C16:1 (Palmitoleic) | 27.856 | - | 0.01 | n.d. | n.d. |
FA17 | C16:1c9 (Hypogeic) | 28.275 | *** | 0.12 ± 0.002 b | n.d. | 0.89 ± 0.09 a |
FA18 | C18:1t9 (Elaidic) | 31.316 | *** | 0.36 ± 0.009 c | 8.90 ± 0.45 a | 4.05 ± 0.05 b |
FA19 | C18:1c9 (Oleic) | 31.517 | *** | 0.76 ± 0.009 c | 1.43 ± 0.09 b | 6.59 ± 0.74 c |
FA20 | C18:1n7 (cis-Vaccenic) | 31.660 | *** | 0.30 ± 0.008 c | 0.42 ± 0.01 b | 0.67 ± 0.009 a |
FA21 | C22:1n9 (Erucic) | 37.730 | *** | 1.22 ± 0.26 a | 0.02 ± 0.001 b | n.d. |
FA22 | C24:1n9 (Nervonic) | 40.122 | *** | 0.04 ± 0.007 c | 0.08 ± 0.01 b | 0.18 ± 0.07 a |
Σ MUFA | *** | 2.87 c | 11.01 b | 12.45 a | ||
FA23 | C18:2n6c (Linoleic) | 32.941 | *** | 47.65 ± 0.37 a | 10.15 ± 0.56 c | 29.57 ± 1.44 b |
FA24 | C20:2 (Eicosadienoic) | 35.998 | *** | 2.77 ± 0.04 a | 0.32 ± 0.04 c | 0.87 ± 0.04 b |
FA25 | C22:2 (Docosadienoic) | 38.712 | *** | 1.47 ± 0.59 b | 2.95 ± 0.37 a | n.d. |
Σ n-6 PUFA | *** | 51.89 a | 13.42 c | 30.44 b | ||
FA26 | C18:3n6 (γ-Linolenic) | 33.849 | *** | 0.58 ± 0.03 b | 1.20 ± 0.07 a | 0.42 ± 0.07 c |
FA27 | C18:3n3 (α-Linolenic) | 34.552 | *** | 18.17 ± 0.03 c | 53.57 ± 2.45 a | 34.04 ± 2.05 b |
FA28 | C20:3n3 (Eicosatrienoic) | 36.894 | *** | 0.10 ± 0.06 b | 1.08 ± 0.13 a | 0.03 ± 0.02 b |
FA29 | C20:3n6 (dihomo-γ-Linoleic) | 37.497 | *** | 0.11 ± 0.007 b | 0.09 ± 0.008 b | 0.38 ± 0.02 a |
Σ n-3 PUFA | *** | 18.96 c | 55.94 a | 34.87 b | ||
Σ PUFA | NS | 70.85 | 69.36 | 65.31 |
3.6. Volatile Profile
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision; Food and Agriculture Organization: Roma, Italy, 2012. [Google Scholar]
- Popkin, B.M.; Adair, L.S.; Ng, S.W. Global nutrition transition and the pandemic of obesity in developing countries. Nutr. Rev. 2012, 70, 3–21. [Google Scholar] [CrossRef]
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef]
- Pilling, D.; Bélanger, J.; Hoffmann, I. Declining biodiversity for food and agriculture needs urgent global action. Nat. Food 2020, 1, 144–147. [Google Scholar] [CrossRef]
- Schunko, C.; Li, X.; Klappoth, B.; Lesi, F.; Porcher, V.; Porcuna-Ferrer, A.; Reyes-García, V. Local communities’ perceptions of wild edible plant and mushroom change: A systematic review. Glob. Food Secur. 2022, 32, 100601. [Google Scholar] [CrossRef]
- Milla, R. Crop Origins and Phylo Food: A database and a phylogenetic tree to stimulate comparative analyses on the origins of food crops. Glob. Ecol. Biogeogr. 2020, 29, 606–614. [Google Scholar] [CrossRef]
- Maroyi, A. The Gathering and Consumption of Wild Edible Plants in Nhema Communal Area, Midlands Province, Zimbabwe. Ecol. Food Nutr. 2011, 50, 506–525. [Google Scholar] [CrossRef] [PubMed]
- Heywood, V. Use and Potential of Wild Plants in Farm Households. FAO Farm Systems Management Series 15. 1999. Available online: https://www.fao.org/3/W8801E/w8801e00.htm#toc_00 (accessed on 4 December 2023).
- Iqbal, T.; Habib, T.; Hussain, K.; Khan, A.M. Wild edible plant basket of terrestrial paradise and variations among the diverse ethnic and elevation groups: A detailed insight from the Western Himalaya of Azad Jammu and Kashmir, Pakistan. South Afr. J. Bot. 2022, 147, 294–313. [Google Scholar] [CrossRef]
- Sánchez-Mata, M.; Tardío, J. Mediterranean Wild Edible Plants. Ethnobotany and Food Composition Tables; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Costa, J.; Ferrero, V.; Castro, M.; Loureiro, J.; Navarro, L.; Castro, S. Variation in the incompatibility reactions in tristylous Oxalis pes-caprae: Large-scale screening in South African native and Mediterranean basin invasive populations. Perspect. Plant Ecol. Evol. Syst. 2017, 24, 25–36. [Google Scholar] [CrossRef]
- Signorini, M.A.; Calamassi, R.; Bruschi, P.; Tani, C. Stigma and style anatomy and ultrastructure in Italian Oxalis pes-caprae L. and their possible connection with self-incompatibility. Flora-Morphol. Distrib. Funct. Ecol. Plants 2014, 209, 471–483. [Google Scholar] [CrossRef]
- Gaspar, M.C.; Fonseca, D.A.; Antunes, M.J.; Frigerio, C.; Gomes, N.G.M.; Vieira, M.; Santos, A.E.; Cruz, M.T.; Cotrim, M.D.; Campos, M.G. Polyphenolic characterisation and bioactivity of an Oxalis pes-caprae L. leaf extract. Nat. Prod. Res. 2018, 32, 732–738. [Google Scholar] [CrossRef]
- Harumi Iyda, J.; Fernandes, Â.; Calhelha, R.C.; Alves, M.J.; Ferreira, F.D.; Barros, L.; Amaral, J.S.; Ferreira, I.C.F.R. Nutritional composition and bioactivity of Umbilicus rupestris (Salisb.) Dandy: An underexploited edible wild plant. Food Chem. 2019, 295, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Kabach, I.; Bouchmaa, N.; Zouaoui, Z.; Ennoury, A.; El Asri, S.; Laabar, A.; Oumeslakht, L.; Cacciola, F.; El Majdoub, Y.O.; Mondello, L.; et al. Phytochemical profile and antioxidant capacity, α-amylase and α-glucosidase inhibitory activities of Oxalis pes-caprae extracts in alloxan-induced diabetic mice. Biomed. Pharmacother. 2023, 160, 114393. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Han, J.I.; Lee, G.S.; Park, M.J.; Choi, I.G.; Na, K.J.; Jeung, E.B. Antifungal Effect of Eugenol and Nerolidol against Microsporum gypseum in a Guinea Pig Model. Biol. Pharm. Bull. 2007, 30, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Naila, S.; Ibrar, M.; Hadi, F.; Khan, M.N. Pharmacognostic Evaluation of Oxalis pes-caprae L. (Family Oxalidaceae). Sarhad J. Agric. 2020, 30, 70–80. [Google Scholar] [CrossRef]
- Nemzer, B.; Al-Taher, F.; Abshiru, N. Phytochemical composition and nutritional value of different plant parts in two cultivated and wild purslane (Portulaca oleracea L.) genotypes. Food Chem. 2020, 320, 126621. [Google Scholar] [CrossRef] [PubMed]
- Vera, N.G.; Espino Manzano, S.O.; Hernandez, H.M.H. Chapter 6-Use of Oxalis tuberosa in Gluten-free Baked Goods Manufacture. In Alternative and Replacement Foods; Holban, A.M., Grumezescu, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 167–175. [Google Scholar] [CrossRef]
- AOAC. Official Methods for Analysis, 16th ed.; Association Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Hernández, F.; Noguera-Artiaga, L.; Burló, F.; Wojdyło, A.; Carbonell-Barrachina, Á.A.; Legua, P. Physico-chemical, nutritional, and volatile composition and sensory profile of Spanish jujube (Ziziphus jujuba Mill.) fruits. J. Sci. Food Agric. 2016, 96, 2682–2691. [Google Scholar] [CrossRef]
- Cerdá-Bernad, D.; Valero-Cases, E.; Pérez-Llamas, F.; Pastor, J.J.; Frutos, M.J. Underutilized Crocus sativus L. Flowers: A Hidden Source of Sustainable High Value-Added Ingredients. Plant Foods Hum. Nutr. 2023, 78, 458–466. [Google Scholar] [CrossRef]
- Kıvrak, İ.; Kıvrak, Ş.; Harmandar, M. Free amino acid profiling in the giant puffball mushroom (Calvatia gigantea) using UPLC–MS/MS. Food Chem. 2014, 158, 88–92. [Google Scholar] [CrossRef]
- Park, P.W.; Goins, R.E. In Situ Preparation of Fatty Acid Methyl Esters for Analysis of Fatty Acid Composition in Foods. J. Food Sci. 1994, 59, 1262–1266. [Google Scholar] [CrossRef]
- Noguera-Artiaga, L.; Sánchez-Bravo, P.; Pérez-López, D.; Szumny, A.; Calin-Sánchez, Á.; Burgos-Hernández, A.; Carbonell-Barrachina, Á.A. Volatile, Sensory and Functional Properties of HydroSOS Pistachios. Foods 2020, 9, 158. [Google Scholar] [CrossRef]
- García-Herrera, P.; Morales, P.; Fernández-Ruiz, V.; Sánchez-Mata, M.C.; Cámara, M.; Carvalho, A.M.; Ferreira, I.C.F.R.; Pardo-de-Santayana, M.; Molina, M.; Tardio, J. Nutrients, phytochemicals and antioxidant activity in wild populations of Allium ampeloprasum L., a valuable underutilized vegetable. Food Res. Int. 2014, 62, 272–279. [Google Scholar] [CrossRef]
- Pereira, C.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Nutritional composition and bioactive properties of commonly consumed wild greens: Potential sources for new trends in modern diets. Food Res. Int. 2011, 44, 2634–2640. [Google Scholar] [CrossRef]
- Tardío, J.; Molina, M.; Aceituno-Mata, L.; Pardo-de-Santayana, M.; Morales, R.; Fernández-Ruiz, V.; Morales, P.; García, P.; Cámara, M.; Sánchez-Mata, M.C. Montia fontana L. (Portulacaceae), an interesting wild vegetable traditionally consumed in the Iberian Peninsula. Genet. Resour. Crop Evol. 2011, 58, 1105–1118. [Google Scholar] [CrossRef]
- Datta, S.; Sinha, B.K.; Bhattacharjee, S.; Seal, T. Nutritional composition, mineral content, antioxidant activity and quantitative estimation of water soluble vitamins and phenolics by RP-HPLC in some lesser used wild edible plants. Heliyon 2019, 5, e01431. [Google Scholar] [CrossRef]
- Jimenez, M.E.; Rossi, A.; Sammán, N. Health properties of oca (Oxalis tuberosa) and yacon (Smallanthus sonchifolius). Food Funct. 2015, 6, 3266–3274. [Google Scholar] [CrossRef]
- Jain, A.; Barua, P.T.; Bashir, M. Nutritive Aspects of Oxalis corniculata L. Used by Tribals of Central India During Scarcity of Food. J. Am. Sci. 2010, 6, 435–437. [Google Scholar] [CrossRef]
- Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Leaves, flowers, immature fruits and leafy flowered stems of Malva sylvestris: A comparative study of the nutraceutical potential and composition. Food Chem. Toxicol. 2010, 48, 1466–1472. [Google Scholar] [CrossRef]
- Fernandes, Â.S.F.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Lipophilic and hydrophilic antioxidants, lipid peroxidation inhibition and radical scavenging activity of two Lamiaceae food plants. Eur. J. Lipid Sci. Technol. 2010, 112, 1115–1121. [Google Scholar] [CrossRef]
- Pinela, J.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Influence of the drying method in the antioxidant potential and chemical composition of four shrubby flowering plants from the tribe Genisteae (Fabaceae). Food Chem. Toxicol. 2011, 49, 2983–2989. [Google Scholar] [CrossRef] [PubMed]
- Gasmi, A.; Benabderrahim, M.A.; Guasmi, F.; Elfalleh, W.; Triki, T.; Zammouri, T.; Ferchichi, A. Phenolic profiling, sugar composition and antioxidant capacity of arta (Calligonum comosum L.), a wild Tunisian desert plant. Ind. Crops Prod. 2019, 130, 436–442. [Google Scholar] [CrossRef]
- Mandim, F.; Petropoulos, S.A.; Santos-Buelga, C.; Ferreira, I.C.F.R.; Barros, L. Chemical composition of cardoon (Cynara cardunculus L. var. altilis) petioles as affected by plant growth stage. Food Res. Int. 2022, 156, 111330. [Google Scholar] [CrossRef]
- Monteiro, J.; Scotti-Campos, P.; Pais, I.; Figueiredo, A.C.; Viegas, D.; Reboredo, F. Elemental composition, total fatty acids, soluble sugar content and essential oils of flowers and leaves of Moringa oleifera cultivated in Southern Portugal. Heliyon 2022, 8, e12647. [Google Scholar] [CrossRef]
- Barros, L.; Pereira, E.; Calhelha, R.C.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L. J. Funct. Foods 2013, 5, 1732–1740. [Google Scholar] [CrossRef]
- Martins, D.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Nutritional and in vitro antioxidant properties of edible wild greens in Iberian Peninsula traditional diet. Food Chem. 2011, 125, 488–494. [Google Scholar] [CrossRef]
- Noonan, S.C.; Savage, G.P. Oxalate content of foods and its effect on humans. Asia Pac. J. Clin. Nutr. 1999, 8, 64–74. [Google Scholar] [PubMed]
- Alam, M.K.; Rana, Z.H.; Islam, S.N.; Akhtaruzzaman, M. Comparative assessment of nutritional composition, polyphenol profile, antidiabetic and antioxidative properties of selected edible wild plant species of Bangladesh. Food Chem. 2020, 320, 126646. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.V.; Salvador, M.R.; Silva, B.S.; Pinheiro-Sant’Ana, H.M.; Della Lucia, C.M.; Teixeira, R.D.B.L.; Cardoso, L.d.M. Nutritional aspects of non-conventional edible plants from Brazil: Caruru (Amaranthus spinosus L) and trapoeraba (Commelina benghalensis). Food Res. Int. 2023, 166, 112583. [Google Scholar] [CrossRef]
- Yimer, A.; Forsido, S.F.; Addis, G.; Ayelign, A. Phytochemical profile and antioxidant capacity of some wild edible plants consumed in Southwest Ethiopia. Heliyon 2023, 9, e15331. [Google Scholar] [CrossRef] [PubMed]
- Šircelj, H.; Mikulič-Petkovšek, M.; Batič, F. Antioxidants in spring leaves of Oxalis acetosella L. Food Chem. 2010, 123, 351–357. [Google Scholar] [CrossRef]
- Jalali, M.; Fakhri, R. Evaluation of macro and trace elements content of wild edible Iranian plants and their contribution to dietary reference intakes. J. Food Compos. Anal. 2021, 102, 104049. [Google Scholar] [CrossRef]
- Kubmarawa, D.; Andenyang, I.F.H.; Magomya, A.M. Amino acid profile of two non-conventional leafy vegetables, Sesamum indicum and Balanites aegyptiaca. Afr. J. Biotechnol. 2008, 7, 3502–3504. [Google Scholar]
- Stadtlander, T.; Becker, K. Proximate Composition, Amino and Fatty Acid Profiles and Element Compositions of Four Different Moringa Species. J. Agric. Sci. 2017, 9, 46–57. [Google Scholar] [CrossRef]
- Maoz, I.; Lewinsohn, E.; Gonda, I. Amino acids metabolism as a source for aroma volatiles biosynthesis. Curr. Opin. Plant Biol. 2022, 67, 102221. [Google Scholar] [CrossRef]
- Barker, A.V.; Pilbeam, J.D. Handbook of Plant Nutrition, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2015; p. 773. [Google Scholar] [CrossRef]
- da Silva, L.A.; Fischer, S.Z.; Zambiazi, R.C. Proximal composition, bioactive compounds content and color preference of Viola x Wittrockiana flowers. Int. J. Gastron. Food Sci. 2020, 22, 100236. [Google Scholar] [CrossRef]
- Singla, S.; Jana, A.; Thakur, R.; Kumari, C.; Goyal, S.; Pradhan, J. Green synthesis of silver nanoparticles using Oxalis griffithii extract and assessing their antimicrobial activity. OpenNano 2022, 7, 100047. [Google Scholar] [CrossRef]
- Alarcón, R.; Ortiz, L.T.; García, P. Nutrient and fatty acid composition of wild edible bladder campion populations [Silene vulgaris (Moench.) Garcke]. Int. J. Food Sci. Technol. 2006, 41, 1239–1242. [Google Scholar] [CrossRef]
- Morales, P.; Ferreira, I.; Carvalho, A.; Sánchez-Mata, M.; Cámara, M.; Tardío, J. Fatty acids profiles of some Spanish wild vegetables. Food Sci. Technol. Int. 2012, 18, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Salah, N.B.; Casabianca, H.; Jannet, H.B.; Chenavas, S.; Sanglar, C.; Fildier, A.; Bouzouita, N. Phytochemical and Biological Investigation of Two Diplotaxis Species Growing in Tunisia: D. virgata & D. erucoides. Molecules 2015, 20, 18128–18143. [Google Scholar] [CrossRef] [PubMed]
- Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. From famine plants to tasty and fragrant spices: Three Lamiaceae of general dietary relevance in traditional cuisine of Trás-os-Montes (Portugal). LWT-Food Sci. Technol. 2011, 44, 543–548. [Google Scholar] [CrossRef]
- Bedoukian Research. Available online: https://bedoukian.com/ (accessed on 12 April 2023).
- FAO/WHO JECFA. Available online: https://www.fao.org/food/food-safety-quality/scientific-advice/jecfa/en/ (accessed on 12 April 2023).
- Merck. Sigma Aldrich Solutions. Available online: https://www.sigmaaldrich.com/ES/es/life-science/sigma-aldrich (accessed on 12 April 2023).
- National Institute of Standard and Technology (NIST). Available online: https://www.nist.gov/ (accessed on 12 April 2023).
- Terry, A.; Arn, H. Flavornet. Available online: https://www.flavornet.org/ (accessed on 12 April 2023).
- The Good Scents Company. Available online: https://www.thegoodscentscompany.com/index.html (accessed on 12 April 2023).
- Chan, W.K.; Tan, L.T.H.; Chan, K.G.; Lee, L.H.; Goh, B.H. Nerolidol: A Sesquiterpene Alcohol with Multi-Faceted Pharmacological and Biological Activities. Molecules 2016, 21, 529. [Google Scholar] [CrossRef]
- Fukalova Fukalova, T.; Moreno-Peris, E.; García-Martínez, M.D.; Raigón Jiménez, M.D. Assessment of the Volatile Profiles and Identification of Differentiating Aromas of Wild Undervalued Plants. Front. Nutr. 2022, 9, 912680. [Google Scholar] [CrossRef] [PubMed]
- Guijarro-Real, C.; Rodríguez-Burruezo, A.; Prohens, J.; Raigón, M.D.; Fita, A. HS-SPME analysis of the volatiles profile of water celery (Apium nodiflorum), a wild vegetable with increasing culinary interest. Food Res. Int. 2019, 121, 765–775. [Google Scholar] [CrossRef] [PubMed]
- Younis, I.Y.; Farag, M.A.; Elgamal, A.M.; Mohsen, E. Untargeted metabolites profiling of volatile and non-volatile components of Egyptian lotus (Nelumbo nucifera Gaertn.) using UHPLC/PDA/ESI-MS and solid-phase microextraction (SPME) GC/MS in relation to its antiaging and anti-inflammatory effects. Ind. Crops Prod. 2023, 197, 116561. [Google Scholar] [CrossRef]
Parameters (%) | Flowers | Leaves | Stems | p-Value | ANOVA † |
---|---|---|---|---|---|
Moisture (freeze-dried) | 9.05 ± 0.78 b ‡ | 9.17 ± 1.22 b | 11.10 ± 0.54 a | 0.0000 | *** |
Moisture | 85.86 ± 0.26 b | 86.07 ± 0.36 b | 90.95 ± 0.57 a | 0.0000 | *** |
Ash | 8.27 ± 0.20 b | 12.93 ± 0.72 a | 3.15 ± 1.01 c | 0.0000 | *** |
Total dietary fiber | 30.68 ± 1.32 b | 28.72 ± 1.50 b | 36.36 ± 3.69 a | 0.0000 | *** |
Protein | 13.45 ± 0.28 b | 19.35 ± 0.54 a | 8.86 ± 1.78 c | 0.0000 | *** |
Fat | 6.66 ± 2.16 b | 12.68 ± 0.10 a | 3.53 ± 0.40 c | 0.0000 | *** |
Carbohydrates | 62.57 ± 0.55 b | 45.87 ± 0.80 c | 73.34 ± 1.15 a | 0.0000 | *** |
Energy (kJ) | 1522 ± 16.90 | 1569 ± 23.04 | 1506 ± 18.57 | 0.1044 | NS |
Compound (g kg−1 dw) | Flowers | Leaves | Stems | p-Value | ANOVA † |
---|---|---|---|---|---|
Fructose | 107 ± 33.77 | 103 ± 4.65 | 77.9 ± 8.90 | 0.2421 | NS |
Glucose | 75.3 ± 18.59 a ‡ | 33.2 ± 3.43 b | 88.9 ± 1.09 a | 0.0019 | ** |
Maltose | n.d. | 40.35 ± 6.22 a | 14.04 ± 1.87 b | 0.0022 | ** |
Sucrose | 193 ± 14.76 | 192 ± 4.20 | 173 ± 3.03 | 0.0792 | NS |
Oxalic acid | 98.0 ± 21.51 | 98.2 ± 6.55 | 110 ± 7.56 | 0.4855 | NS |
Ascorbic Acid (mg 100 g−1 dw) | 0.42 ± 0.006 c | 3.17 ± 0.007 b | 3.50 ± 0.004 a | 0.0000 | *** |
Mineral [mg (100 g)−1 dw] | Flowers | Leaves | Stems | p-Value | ANOVA † | |
---|---|---|---|---|---|---|
Macro | Ca | 104 ± 16.97 c ‡ | 620 ± 20.21 b | 453 ± 10.60 a | 0.0000 | *** |
K | 1247 ± 3.53 b | 859 ± 20.56 c | 1399 ± 21.21 a | 0.0000 | *** | |
Na | 35.1 ± 12.47 b | 69.1 ± 1.20 a | 71.5 ± 3.88 a | 0.0000 | *** | |
Mg | 95.4 ± 2.47 b | 129 ± 2.80 a | 73.2 ± 0.00 c | 0.0000 | *** | |
Micro | Fe | 7.7 ± 0.28 a | 3.2 ± 0.16 b | 1.4 ± 0.03 c | 0.0000 | *** |
Mn | 0.87 ± 0.00 b | 1.18 ± 0.01 a | 0.32 ± 0.00 c | 0.0000 | *** | |
Zn | 0.30 | n.d. | n.d. | - | - |
Amino Acids [mg (100 g)−1 dw] | Flowers | Leaves | Stems | p-Value | ANOVA † | |
---|---|---|---|---|---|---|
Essential | Arginine | 13.0 ± 0.37 a ‡ | 4.91 ± 0.02 b | 2.04 ± 0.08 c | 0.0000 | *** |
Histidine | 19.9 ± 7.32 a | 8.98 ± 0.03 b | 5.57 ± 0.04 c | 0.0000 | *** | |
Isoleucine | 209 ± 1.67 a | 169 ± 3.45 b | 170 ± 6.63 b | 0.0000 | *** | |
Leucine | 306 ± 4.24 a | 244 ± 9.65 b | 245 ± 12.30 b | 0.0000 | *** | |
Lysine | 5.46 ± 0.70 b | 6.63 ± 0.14 a | 2.16 ± 0.08 c | 0.0000 | *** | |
Methionine | 6.01 ± 0.24 a | 4.82 ± 0.08 b | 1.83 ± 0.17 c | 0.0000 | *** | |
Phenylalanine | 48.7 ± 3.20 a | 50.6 ± 1.17 a | 29.9 ± 2.60 b | 0.0000 | *** | |
Threonine | 114 ± 3.49 a | 13.9 ± 0.22 c | 20.3 ± 0.25 b | 0.0000 | *** | |
Tryptophan | 80.1 ± 6.07 a | 47.2 ± 1.00 b | 24.8 ± 3.91 c | 0.0000 | *** | |
Valine | 187 ± 9.47 a | 189 ± 7.02 a | 134 ± 1.72 b | 0.0000 | *** | |
Non-essential | Alanine | 302 ± 12.44 b | 307 ± 7.40 b | 343 ± 11.17 a | 0.0000 | *** |
Asparagine | n.d. | 8.42 ± 0.22 a | 5.94 ± 0.29 b | 0.0000 | *** | |
Aspartate | 73.0 ± 3.27 b | 91.1 ± 3.72 a | 56.4 ± 6.03 c | 0.0000 | *** | |
Cysteine | 0.55 ± 0.03 b | 0.69 ± 0.02 a | n.d. | 0.0000 | *** | |
Glutamic acid | 237 ± 11.93 b | 325 ± 20.9 a | 220 ± 4.57 c | 0.0000 | *** | |
Glycine | 55.7 ± 6.84 a | 11.9 ± 1.41 c | 30.4 ± 4.72 b | 0.0000 | *** | |
Proline | 102 ± 15.32 a | 30.5 ± 0.30 c | 50.7 ± 4.01 b | 0.0000 | *** | |
Serine | 112 ± 22.49 a | 46.3 ± 2.30 b | 46.3 ± 1.42 b | 0.0000 | *** | |
Tyrosine | 13.8 ± 0.82 c | 40.1 ± 2.84 a | 17.0 ± 0.80 b | 0.0000 | *** | |
TOTAL | 1885 a | 1600 b | 1405 c | 0.0000 | *** |
Code | Compound (μg g−1) | CF | RT (min) | KI (EXP) | KI (LIT) | Flowers | Leaves | Stems | ANOVA † | Odor Descriptors ¥ |
---|---|---|---|---|---|---|---|---|---|---|
V1 | 3-Methyl butanal | Aldehyde | 3.349 | 690 | 686 | 3.02 ± 0.2 ‡ a | 2.95 ± 0.1 a | 0.08 ± 0.001 b | *** | Aldehydic, fatty |
V2 | 3-Hexen-1-ol | Alcohol | 10.173 | 857 | 857 | - | - | 0.57 ± 0.06 | - | Green, vegetable, herbal |
V3 | 4-Penten-1-yl acetate | Ester | 11.963 | 901 | 901 | 1.52 ± 0.42 a | 1.39 ± 0.17 b | 1.14 ± 0.24 b | *** | Green, vegetable |
V4 | Pentyl acetate | Ester | 12.434 | 914 | 917 | 4.33 ± 0.47 b | 6.27 ± 0.35 a | 6.50 ± 0.50 a | *** | Fruity, banana |
V5 | Isoamyl propionate | Ester | 14.537 | 970 | 969 | 0.98 ± 0.20 c | 2.15 ± 0.33 a | 1.52 ± 0.17 b | *** | Sweet, fruity, banana |
V6 | Diisoamyl ether | Ether | 15.728 | 1002 | 1002 | 2.03 ± 0.61 a | 0.66 ± 0.06 b | 0.36 ± 0.04 c | *** | Fruity |
V7 | 3-Hexenyl acetate | Ester | 15.794 | 1004 | 1005 | 2.34 ± 0.30 c | 16.0 ± 2.19 a | 7.24 ± 1.16 b | *** | Fresh, green, sweet, fruity |
V8 | Hexyl acetate | Ester | 16.062 | 1011 | 1011 | 2.14 ± 0.16 c | 2.64 ± 0.22 b | 3.14 ± 0.29 a | *** | Fruity, green, banana, sweet |
V9 | Pentyl butanoate | Ester | 17.579 | 1056 | 1059 | 0.90 ± 0.08 | - | - | - | Sweet, fruity, banana, cherry |
V10 | Linalool | Alcohol | 19.021 | 1098 | 1098 | 3.19 ± 0.56 | - | - | - | Floral, citrus, rose |
V11 | Nonanal | Aldehyde | 19.178 | 1103 | 1102 | 0.95 ± 0.10 | - | - | - | Waxy, aldehydic, citrus, fresh |
V12 | Isoamyl butanoate | Ester | 19.231 | 1104 | 1104 | 0.95 ± 0.05 | - | - | - | Sweet, fruity, green |
V13 | Phenylethyl alcohol | Alcohol | 19.414 | 1110 | 1110 | 0.92 ± 0.13 | - | - | - | Floral, rose |
V14 | α-Terpineol | Terpene | 22.046 | 1194 | 1194 | 1.13 ± 0.21 | - | - | - | Pine, lilac, woody, floral |
V15 | 1,3-bis(1,1-dimethylethyl)benzene | Alkane | 23.645 | 1248 | 1249 | 1.80 ± 0.25 a | 0.26 ± 0.01 c | 0.32 ± 0.007 b | *** | - |
V16 | Nonanoic acid | Acid | 24.005 | 1261 | 1267 | 1.59 ± 0.45 | - | - | - | Waxy, dirty, cheese, dairy |
V17 | 4,6-Dimethyl dodecane | Alkane | 24.437 | 1275 | 1285 | 1.55 ± 0.02 b | 1.64 ± 0.04 a | 0.41 ± 0.01 c | *** | Fruity, green |
V18 | 1,1′-Bicyclohexyl | Alkane | 25.708 | 1320 | 1307 | 2.70 ± 0.64 | - | - | - | - |
V19 | Ethyl nonanoate | Ester | 27.686 | 1290 | 1294 | 8.15 ± 1.67 | - | - | - | Fruity, rose, waxy |
V20 | β-Caryophyllene | Terpene | 28.528 | 1424 | 1424 | 19.86 ± 3.01 | - | - | - | Sweet, woody, spicy, clove |
V21 | Isoamyl benzoate | Ester | 28.915 | 1438 | 1437 | 1.58 ± 0.32 | - | - | - | Sweet, balsamic, green, waxy |
V22 | β-Farnesene | Terpene | 29.342 | 1454 | 1458 | 3.51 ± 0.89 | - | - | - | Woody, citrus, herbal, sweet |
V23 | Humulene | Terpene | 29.551 | 1462 | 1462 | 1.58 ± 0.44 | - | - | - | Woody |
V24 | 1-Dodecanol | Alcohol | 29.887 | 1474 | 1474 | 1.49 ± 0.39 b | 3.99 ± 0.85 a | 0.77 ± 0.11 c | *** | Earthy, soapy, waxy, fatty |
V25 | Pentadecane | Alkane | 30.290 | 1490 | 1490 | - | 2.14 ± 0.57 | - | - | Waxy |
V26 | 2,4-bis(1,1-dimethylethyl)phenol | Alkane | 30.642 | 1504 | 1502 | 1.34 ± 0.14 b | 1.48 ± 0.06 a | 0.46 ± 0.09 c | *** | - |
V27 | Nerolidol | Terpene | 31.826 | 1563 | 1562 | 21.58 ± 4.05 | - | - | - | Floral, green, citrus |
V28 | Ethyl dodecanoate | Ester | 32.412 | 1592 | 1591 | 3.92 ± 0.91 a | 0.63 ± 0.14 b | - | *** | Sweet, waxy, floral, soapy |
V29 | Hexadecane | Alkane | 32.575 | 1600 | 1600 | 2.00 ± 0.31 a | 0.84 ± 0.05 b | 0.39 ± 0.02 c | *** | Alkane |
V30 | Cyclotetradecane | Alkane | 34.045 | 1691 | 1679 | - | 2.73 ± 0.77 | - | - | Waxy |
V31 | 1-Tetradecanol | Alcohol | 34.149 | 1698 | 1686 | - | 3.06 ± 0.28 a | 2.14 ± 0.08 b | *** | Fruity, waxy |
V32 | Ethyl hexadecanoate | Ester | 37.768 | 1974 | 1975 | 1.59 ± 0.15 a | 0.61 ± 0.10 b | 0.58 ± 0.04 b | *** | Waxy, creamy, milky, oily |
TOTAL | 98.64 a | 49.44 b | 25.62 c | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clemente-Villalba, J.; Burló, F.; Hernández, F.; Carbonell-Barrachina, Á.A. Potential Interest of Oxalis pes-caprae L., a Wild Edible Plant, for the Food and Pharmaceutical Industries. Foods 2024, 13, 858. https://doi.org/10.3390/foods13060858
Clemente-Villalba J, Burló F, Hernández F, Carbonell-Barrachina ÁA. Potential Interest of Oxalis pes-caprae L., a Wild Edible Plant, for the Food and Pharmaceutical Industries. Foods. 2024; 13(6):858. https://doi.org/10.3390/foods13060858
Chicago/Turabian StyleClemente-Villalba, Jesús, Francisco Burló, Francisca Hernández, and Ángel A. Carbonell-Barrachina. 2024. "Potential Interest of Oxalis pes-caprae L., a Wild Edible Plant, for the Food and Pharmaceutical Industries" Foods 13, no. 6: 858. https://doi.org/10.3390/foods13060858
APA StyleClemente-Villalba, J., Burló, F., Hernández, F., & Carbonell-Barrachina, Á. A. (2024). Potential Interest of Oxalis pes-caprae L., a Wild Edible Plant, for the Food and Pharmaceutical Industries. Foods, 13(6), 858. https://doi.org/10.3390/foods13060858