Dispersive Solid-Phase Extraction and Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry—A Rapid and Accurate Method for Detecting 10 Macrolide Residues in Aquatic Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Instruments and Equipment
2.3. Methods
2.3.1. Standard Solution Preparation
2.3.2. Sample Preparation and Pre-Treatment
2.3.3. Analysis Parameters of Instruments
2.3.4. Evaluation of Matrix Effect
2.3.5. Statistical Analysis
3. Results and Analysis
3.1. Optimization of Chromatographic Conditions
3.2. Selection of Mass Spectrometry Conditions
3.3. Optimization of Pre-Treatment Conditions
3.3.1. Optimization of Extraction Conditions
3.3.2. Selection of Purifying Agents
3.4. Evaluation of the Matrix Effect
3.5. Linearity Range, Limit of Detection, and Limit of Quantification
3.6. Recovery and Precision
3.7. Actual Sample Determination
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bacanlı, M.; Başaran, N. Importance of antibiotic residues in animal food. Food Chem. Toxicol. 2019, 125, 462–466. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, Y.; Zhou, Y.; Liu, Z.-F.; Meng, Q.; Feng, X.-S. A review of pretreatment and analysis of macrolides in food (Update Since 2010). J. Chromatogr. A 2020, 1634, 461662. [Google Scholar] [CrossRef]
- Kheirandish, S.; Goudarzi, S.; Amirahmadi, M.; Ghareghani, S.; Ghafari, H.; Daraei, B.; Ghazi-Khansari, M. Method validation for simultaneous determination of macrolides, quinolones, and sulfonamides antibiotics in Iranian yogurt samples by SPE clean-up and UHPLC-MS/MS. Microchem. J. 2023, 193, 109103. [Google Scholar] [CrossRef]
- Monahan, C.; Morris, D.; Nag, R.; Cummins, E. Risk ranking of macrolide antibiotics—Release levels, resistance formation potential and ecological risk. Sci. Total Environ. 2023, 859, 160022. [Google Scholar] [CrossRef]
- Veloso, W.B.; Almeida, A.T.D.F.O.; Ribeiro, L.K.; De Assis, M.; Longo, E.; Garcia, M.A.S.; Tanaka, A.A.; Santos Da Silva, I.; Dantas, L.M.F. Rapid and sensitivity determination of macrolides antibiotics using disposable electrochemical sensor based on Super P carbon black and chitosan composite. Microchem. J. 2022, 172, 106939. [Google Scholar] [CrossRef]
- Hu, S.; Zhao, M.; Wang, Z.; Yang, J.; Chen, D.; Yan, P. Development of a pH-dependent homogeneous liquid-liquid extraction by cold-induced phase separation in acetonitrile/water mixtures for determination of quinolone residues in animal-derived foods. J. Chromatogr. A 2021, 1649, 462235. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, Q.; Chen, X.; Song, Y.; Wu, Q.; Yang, Y.; He, L. Sensitive analysis of trace macrolide antibiotics in complex food samples by ambient mass spectrometry with molecularly imprinted polymer-coated wooden tips. Talanta 2019, 204, 238–247. [Google Scholar] [CrossRef] [PubMed]
- GB 31650-2019; Maximum Residue Limits for Veterinary Drugs in Foods—National Standard of the People’s Republic of China. Ministry of Agriculture and Rural Affairs of the People’s Republic of China, National Health Commission of the People’s Republic of China, State Administration for Market Regulation: Beijing, China, 2019.
- EU Commission. Commission Regulation (EU) NO. 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Off. J. Eur. Union 2010, 15, 1–72. [Google Scholar]
- US Food and Drug Administration. CFR-Code of Federal Regulations Title 21 Part 556: Tolerances for Residues of New Animal Drugs in Food; US Food and Drug Administration: Rockville, MD, USA, 2014.
- Japan Food Chemical Research Foundation. Maximum Residue Limits (MRLs) List of Agricultural Chemicals in Foods; The Japan Food Chemical Research Foundation: Tokyo, China, 2015. [Google Scholar]
- Liao, Q.G.; Da Wen, Z.; Lin Guang, L.; Ci Dan, Z.X. Ultrasonic-assisted dispersive liquid–liquid microextraction based on a simple and green deep eutectic solvent for preconcentration of macrolides from swine urine samples. Sep. Sci. Plus 2019, 3, 22–27. [Google Scholar] [CrossRef]
- Malhat, F.; Abdallah, O. Residue distribution and risk assessment of two macrocyclic lactone insecticides in green onion using micro-liquid-liquid extraction (MLLE) technique coupled with liquid chromatography tandem mass spectrometry. Environ. Monit. Assess. 2019, 191, 584.1–584.10. [Google Scholar] [CrossRef]
- Wang, Y.X.; Li, J.H.; Ji, L.; Chen, L. Simultaneous determination of sulfonamides antibiotics in environmental water and seafood samples using ultrasonic-assisted dispersive liquid-liquid microextraction coupled with high performance liquid chromatography. Molecules 2022, 27, 2160. [Google Scholar] [CrossRef]
- Dai, Y.; Wu, N.; Liu, L.-E.; Yu, F.; Wu, Y.; Jian, N. Simple and efficient solid phase extraction based on molecularly imprinted resorcinol–formaldehyde resin nanofibers for determination of trace sulfonamides in animal-origin foods. Food Chem. 2023, 404, 134671. [Google Scholar] [CrossRef]
- Ha, J.; Song, G.; Ai, L.-F.; Li, J.-C. Determination of six polyether antibiotic residues in foods of animal origin by solid phase extraction combined with liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 2016, 1017–1018, 187–194. [Google Scholar] [CrossRef]
- Shi, P.; Wang, Y.; Wu, W.; Xia, B.; Zhou, Y. A novel functionalized covalent organic framework/carbon nanotube composite as an effective online solid-phase extraction sorbent for simultaneous detection of 33 steroid hormones in pork. Food Chem. 2022, 379, 132111. [Google Scholar] [CrossRef]
- Deng, F.; Yu, H.; Pan, X.; Hu, G.; Wang, Q.; Peng, R.; Tan, L.; Yang, Z. Ultra-high performance liquid chromatography tandem mass spectrometry for the determination of five glycopeptide antibiotics in food and biological samples using solid-phase extraction. J. Chromatogr. A 2018, 1538, 54–59. [Google Scholar] [CrossRef]
- Pamık, D.T.; Seyhan Bozkurt, S.; Mumcu, T. Ultrasonic assisted dispersive micro-solid phase extraction of some sulfonamide antibiotics from milk and egg samples using polymeric ionic liquid-based chitosan before HPLC analysis. Microchem. J. 2023, 191, 108876. [Google Scholar] [CrossRef]
- Szultka-Mlynska, M.; Pomastowski, P.; Buszewski, B. Application of solid phase microextraction followed by liquid chromatography-mass spectrometry in the determination of antibiotic drugs and their metabolites in human whole blood and tissue samples. J. Chromatogr. B 2018, 1086, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Pérez, R.A.; Albero, B.; Férriz, M.; Tadeo, J.L. Analysis of macrolide antibiotics in water by magnetic solid-phase extraction and liquid chromatography–tandem mass spectrometry. J. Pharm. Biomed. Anal. 2017, 146, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Turiel, E.; Yang, J.; Martín-Esteban, A.; He, L. Determination of polypeptide antibiotics in animal tissues using liquid chromatography tandem mass spectrometry based on in-line molecularly imprinted solid-phase extraction. J. Chromatogr. A 2022, 1673, 463192. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Huang, Q.; Zhang, Y.; Zhang, M.; Xie, J.; He, L. Rapid multiresidue analysis of authorized/banned cyclopolypeptide antibiotics in feed by liquid chromatography–tandem mass spectrometry based on dispersive solid-phase extraction. J. Pharm. Biomed. Anal. 2019, 170, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Syaleyana, M.S.D.; Yahaya, N.; Miskam, M.; Yusof, R.; Husaini Mohamed, A.; Kamaruzaman, S.; Nadhirah Mohamad Zain, N.; Semail, N.-F. Advances in dispersive solid-phase extraction techniques for analytical quantification of fluoroquinolone antibiotics. Microchem. J. 2023, 193, 109154. [Google Scholar] [CrossRef]
- Desmarchelier, A.; Savoy, M.-C.; Delatour, T.; Mottier, P. Extended coverage of veterinary drug residues in food by LC-HRMS to ensure food compliance and prevent the spread of antimicrobial resistance. Microchem. J. 2022, 183, 108057. [Google Scholar] [CrossRef]
- Chen, Y.; Schwack, W. High-performance thin-layer chromatography screening of multi class antibiotics in animal food by bioluminescent bioautography and electrospray ionization mass spectrometry. J. Chromatogr. A 2014, 1356, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Sani, A.A.; Rafiq, K.; Hossain, M.T.; Suherman, F.A.; Haque, A.; Hasan, M.I.; Sachi, S.; Mustari, A.; Islam, M.Z.; Alam, M.M. Screening and quantification of antibiotic residues in poultry products and feed in selected areas of Bangladesh. Vet. World 2023, 16, 1747–1754. [Google Scholar] [CrossRef]
- Nguyen, V.B.C.; Ayankojo, A.G.; Reut, J.; Rappich, J.; Furchner, A.; Hinrichs, K.; Syritski, V. Molecularly imprinted co-polymer for class-selective electrochemical detection of macrolide antibiotics in aqueous media. Sens. Actuators B Chem. 2023, 374, 132768. [Google Scholar] [CrossRef]
- Guo, X.Q.; Liu, Y.; Dong, W.J.; Hu, Q.; Li, Y.; Shuang, S.M.; Dong, C.; Cai, L.S.; Gong, X.J. Azithromycin detection in cells and tablets by N, S co-doped carbon quantum dots. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 252, 119506. [Google Scholar] [CrossRef] [PubMed]
- Hamidian, K.; Amini, M.; Samadi, N. Consistency evaluation between matrix components ratio and microbiological potency of tylosin major components. DARU J. Pharm. Sci. 2018, 26, 155–164. [Google Scholar] [CrossRef]
- De Souza Santos Cheibub, A.M.; Silva Bahiense De Lyra, E.; Pereira Netto, A.D. Development and validation of a method for simultaneous determination of trace levels of five macrocyclic lactones in cheese by HPLC-fluorescence after solid–liquid extraction with low temperature partitioning. Food Chem. 2019, 272, 148–156. [Google Scholar] [CrossRef]
- Pimentel-Trapero, D.; Sonseca-Yepes, A.; Moreira-Romero, S.; Hernández-Carrasquilla, M. Determination of macrocyclic lactones in bovine liver using QuEChERS and HPLC with fluorescence detection. J. Chromatogr. B 2016, 1015–1016, 166–172. [Google Scholar] [CrossRef]
- Cañadas, R.; Garcinuño Martínez, R.M.; Paniagua González, G.; Fernández Hernando, P. Development of a molecularly imprinted polymeric membrane for determination of macrolide antibiotics from cow milk. Polymer 2022, 249, 124843. [Google Scholar] [CrossRef]
- Lakew, A.; Assefa, T.; Woldeyohannes, M.; Megersa, N.; Chandravanshi, B.S. Development and validation of liquid chromatography method for simultaneous determination of multiclass seven antibiotic residues in chicken tissues. BMC Chem. 2022, 16, 5. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Bhattacharyya, A.; Shinde, R.; Dhanshetty, M.; Elliott, C.T.; Banerjee, K. Development and validation of a multiresidue method for pesticides and selected veterinary drugs in animal feed using liquid- and gas chromatography with tandem mass spectrometry. J. Chromatogr. A 2020, 1627, 461416. [Google Scholar] [CrossRef]
- Na, T.W.; Seo, H.-J.; Jang, S.-N.; Kim, H.; Yun, H.; Kim, H.; Ahn, J.; Cho, H.; Hong, S.-H.; Kim, H.J.; et al. Multi-residue analytical method for detecting pesticides, veterinary drugs, and mycotoxins in feed using liquid- and gas chromatography coupled with mass spectrometry. J. Chromatogr. A 2022, 1676, 463257. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Li, S.; Xi, Y.; Shi, Y.; Shang, X.; Huang, D. Highly Sensitive Determination of Antibiotic Residues in Aquatic Products by High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Antibiotics 2022, 11, 1427. [Google Scholar] [CrossRef]
- Gómez-Regalado, M.D.C.; Martín-Pozo, L.; Hidalgo, F.; Cantarero-Malagón, S.; Zafra-Gómez, A. Multi-residue determination of 17 antibiotics in sea cucumbers (Holothuria tubulosa) by ultrahigh performance liquid chromatography-tandem mass spectrometry. Microchem. J. 2023, 188, 108478. [Google Scholar] [CrossRef]
- Hu, M.; Ben, Y.; Wong, M.H.; Zheng, C. Trace Analysis of Multiclass Antibiotics in Food Products by Liquid Chromatography-Tandem Mass Spectrometry: Method Development. J. Agric. Food Chem. 2021, 69, 1656–1666. [Google Scholar] [CrossRef]
- Lan, C.; Yin, D.; Yang, Z.; Zhao, W.; Chen, Y.; Zhang, W.; Zhang, S. Determination of Six Macrolide Antibiotics in Chicken Sample by Liquid Chromatography-Tandem Mass Spectrometry Based on Solid Phase Extraction. J. Anal. Methods Chem. 2019, 2019, 1–13. [Google Scholar] [CrossRef]
- Delatour, T.; Racault, L.; Bessaire, T.; Desmarchelier, A. Screening of veterinary drug residues in food by LC-MS/MS. Background and challenges. Food Addit. Contam. Part A 2018, 35, 632–645. [Google Scholar] [CrossRef]
- Wang, J. Analysis of macrolide antibiotics, using liquid chromatography-mass spectrometry, in food, biological and environmental matrices. Mass Spectrom. Rev. 2010, 28, 50–92. [Google Scholar] [CrossRef]
- Wang, H.; Tian, H.; Ai, L.-F.; Liang, S.-X. Screening and quantification of 146 veterinary drug residues in beef and chicken using QuEChERS combined with high performance liquid chromatography-quadrupole orbitrap mass spectrometry. Food Chem. 2023, 408, 135207. [Google Scholar] [CrossRef]
- Senta, I.; Krizman-Matasic, I.; Terzic, S.; Ahel, M. Comprehensive determination of macrolide antibiotics, their synthesis intermediates and transformation products in wastewater effluents and ambient waters by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2017, 1509, 60–68. [Google Scholar] [CrossRef]
- Decheng, S.; Peilong, W.; Yang, L.; Ruiguo, W.; Shulin, W.; Zhiming, X.; Su, Z. Simultaneous determination of antibiotics and amantadines in animal-derived feedstuffs by ultraperformance liquid chromatographic-tandem mass spectrometry. J. Chromatogr. B 2018, 1095, 183–190. [Google Scholar] [CrossRef]
- Yin, Z.; Chai, T.; Mu, P.; Xu, N.; Song, Y.; Wang, X.; Jia, Q.; Qiu, J. Multi-residue determination of 210 drugs in pork by ultra-high-performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2016, 1463, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Gao, X.; Tang, Z.; Luo, X.; Wu, M.; Xu, J.; Fu, X. Development of a simple multi-residue determination method of 80 veterinary drugs in Oplegnathus punctatus by liquid chromatography coupled to quadrupole Orbitrap mass spectrometry. J. Chromatogr. B 2017, 1065–1066, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Tian, H.; Yang, F.; Fan, S.; Zhang, J.; Ma, J.; Ai, L.; Zhang, Y. Rapid determination of 103 common veterinary drug residues in milk and dairy products by ultra performance liquid chromatography tandem mass spectrometry. Front. Nutr. 2022, 9, 879518. [Google Scholar] [CrossRef]
- Kang, J.; Park, S.-J.; Park, H.-C.; Hossain, M.A.; Kim, M.-A.; Son, S.-W.; Lim, C.-M.; Kim, T.-W.; Cho, B.-H. Multiresidue Screening of Veterinary Drugs in Meat, Milk, Egg, and Fish Using Liquid Chromatography Coupled with Ion Trap Time-of-Flight Mass Spectrometry. Appl. Biochem. Biotechnol. 2016, 182, 635–652. [Google Scholar] [CrossRef]
- Casey, C.R.; Andersen, W.C.; Williams, N.T.; Nickel, T.J.; Ayres, P.R. Multiclass, Multiresidue Method for the Quantification and Confirmation of 112 Veterinary Drugs in Game Meat (Bison, Deer, Elk, and Rabbit) by Rapid Polarity Switching Liquid Chromatography–Tandem Mass Spectrometry. J. Agric. Food Chem. 2021, 69, 1175–1186. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Park, J.-A.; Zhang, D.; Abd El-Aty, A.M.; Kim, S.-K.; Cho, S.-H.; Choi, J.-M.; Shim, J.-H.; Chang, B.-J.; Kim, J.-S.; et al. Determination of fenobucarb residues in animal and aquatic food products using liquid chromatography-tandem mass spectrometry coupled with a QuEChERS extraction method. J. Chromatogr. B 2017, 1058, 1–7. [Google Scholar] [CrossRef]
- Griboff, J.; Carrizo, J.C.; Bonansea, R.I.; Valdés, M.E.; Wunderlin, D.A.; Amé, M.V. Multiantibiotic residues in commercial fish from Argentina. The presence of mixtures of antibiotics in edible fish, a challenge to health risk assessment. Food Chem. 2020, 332, 127380. [Google Scholar] [CrossRef]
- Pashaei, R.; Dzingelevičienė, R.; Abbasi, S.; Szultka-Młyńska, M.; Buszewski, B. Determination of 15 human pharmaceutical residues in fish and shrimp tissues by high-performance liquid chromatography-tandem mass spectrometry. Environ. Monit. Assess. 2022, 194, 325. [Google Scholar] [CrossRef]
- Shaaban, H.; Mostafa, A. Simultaneous determination of antibiotics residues in edible fish muscle using eco-friendly SPE-UPLC-MS/MS: Occurrence, human dietary exposure and health risk assessment for consumer safety. Toxicol. Rep. 2023, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bortolotte, A.R.; Daniel, D.; Reyes, F.G.R. Occurrence of antimicrobial residues in tilapia (Oreochromis niloticus) fillets produced in Brazil and available at the retail market. Food Res. Int. 2021, 140, 109865. [Google Scholar] [CrossRef] [PubMed]
- Susakate, S.; Poapolathep, S.; Chokejaroenrat, C.; Tanhan, P.; Hajslova, J.; Giorgi, M.; Saimek, K.; Zhang, Z.; Poapolathep, A. Multiclass analysis of antimicrobial drugs in shrimp muscle by ultra high performance liquid chromatography-tandem mass spectrometry. J. Food Drug Anal. 2019, 27, 118–134. [Google Scholar] [CrossRef] [PubMed]
- GB 31660.1-2019; Determination of Macrolides Residues in Fishery Products by Liquidchromatography-Tandem Mass Spectrometric Method—National Standard of the People’s Republic of China. Ministry of Agriculture and Rural Affairs of the People’s Republic of China, National Health Commission of the People’s Republic of China, State Administration for Market Regulation: Beijing, China, 2019.
- Berrada, H.; Borrull, F.; Font, G.; Marcé, R.M. Determination of macrolide antibiotics in meat and fish using pressurized liquid extraction and liquid chromatography–mass spectrometry. J. Chromatogr. A 2008, 1208, 83–89. [Google Scholar] [CrossRef]
Time (min) | Flow (mL/min) | 0.1% Formic Acid/% | Acetonitrile/% |
---|---|---|---|
0 | 0.2 | 95.0 | 5.0 |
2 | 0.2 | 95.0 | 5.0 |
6 | 0.2 | 5.0 | 95.0 |
8 | 0.2 | 95.0 | 5.0 |
10 | 0.2 | 95.0 | 5.0 |
Compound | Precursor Ion (m/z) | Product Ion (m/z) | Cone Voltage (V) | Collision Energy (eV) | Internal Standard |
---|---|---|---|---|---|
Oleandomycin (OLD) | 688.4 | 158.2 * | 28 | 28 | ERM-13C, D3 |
544.5 | 20 | ||||
Erythromycin (ERM) | 734.0 | 158.1 * | 25 | 32 | ERM-13C, D3 |
576.3 | 15 | ||||
Clarithromycin (CLA) | 748.5 | 158.2 * | 12 | 24 | CLA-N-methyl-13C, D3 |
590.6 | 16 | ||||
Azithromycin (AZI) | 749.5 | 158.2 * | 26 | 38 | AZI-D3 |
591.6 | 28 | ||||
Kitasamycin (KIT) | 772.6 | 109.3 * | 28 | 40 | AZI-D3 |
174.2 | 35 | ||||
Josamycin (JOS) | 828.5 | 109.0 * | 29 | 40 | CLA-N-methyl-13C, D3 |
174.0 | 32 | ||||
Roxithromycin (ROX) | 837.6 | 116.2 | 14 | 44 | CLA-N-methyl-13C, D3 |
158.2 * | 30 | ||||
Spiramycin (SPI) | 843.7 | 142.2 | 20 | 35 | TIL-D3 |
174.3 * | 37 | ||||
Tilmicosin (TIL) | 869.6 | 174.2 * | 22 | 42 | TIL-D3 |
696.7 | 42 | ||||
Tylosin (TYL) | 916.6 | 174.2 * | 70 | 44 | TYL-D9 |
772.6 | 40 | ||||
Erythromycin-13C, D3 (ERM-13C, D3) | 738.65 | 162.2 | 48 | 28 | / |
Azithromycin-D3 (AZI-D3) | 752.71 | 158.18 | 68 | 38 | / |
Clarithromycin-N-methyl-13C, D3 (CLA-N-methyl-13C, D3) | 752.74 | 162.22 | 52 | 22 | / |
Timicosin-D3 (TIL-D3) | 872.74 | 177.24 | 70 | 44 | / |
Tylosin-D9 (TYL-D9) | 1051.83 | 174.24 | 36 | 40 | / |
Compound | Linear Equation | Determination Coefficient | LOD (μg/kg) | LOQ (μg/kg) |
---|---|---|---|---|
OLD | Y = 6.3599X + 13.1310 | R2 = 0.9939 | 0.25 | 0.50 |
ERM | Y = 0.6857X + 0.0630 | R2 = 0.9964 | 0.50 | 1.00 |
CLA | Y = 0.8238X + 0.7683 | R2 = 0.9951 | 0.50 | 1.00 |
AZI | Y = 0.6307X + 1.3856 | R2 = 0.9992 | 0.50 | 1.00 |
KIT | Y = 0.2365X + 0.2288 | R2 = 0.9979 | 0.50 | 1.00 |
JOS | Y = 0.4926X + 0.2954 | R2 = 0.9983 | 0.50 | 1.00 |
ROX | Y = 2.5191X + 5.8606 | R2 = 0.9957 | 0.25 | 0.50 |
SPI | Y = 0.3657X + 0.9069 | R2 = 0.9931 | 0.50 | 1.00 |
TIL | Y = 0.6663X + 1.3854 | R2 = 0.9978 | 0.50 | 1.00 |
TYL | Y = 0.5362X + 0.3864 | R2 = 0.9981 | 0.50 | 1.00 |
Analyte | Spiked Levels (μg/kg) | Carassius auratus | Litopenaeus vannamei | Portunus trituberculatus | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Recovery (%) | Intra-Day RSD (%) | Inter-Day RSD (%) | Recovery (%) | Intra-Day RSD (%) | Inter-Day RSD (%) | Recovery (%) | Intra-Day RSD (%) | Inter-Day RSD (%) | ||
OLD | 1 | 109.7 | 7.8 | 10.2 | 98.2 | 4.4 | 5.5 | 88.6 | 9.4 | 11.6 |
5 | 103.2 | 8.9 | 11.3 | 88.4 | 3.9 | 4.2 | 86.1 | 8.6 | 9.1 | |
50 | 112.4 | 9.2 | 9.7 | 97.8 | 4.5 | 5.1 | 88.5 | 7.9 | 8.7 | |
ERM | 1 | 93.9 | 6.5 | 4.3 | 104.9 | 5.8 | 7.6 | 98.0 | 10.5 | 9.8 |
5 | 83.2 | 7.6 | 9.2 | 95.8 | 8.7 | 10.6 | 97.7 | 4.6 | 4.9 | |
50 | 103.3 | 8.2 | 10.3 | 106.6 | 10.2 | 9.4 | 96.7 | 9.1 | 11.4 | |
CLA | 1 | 116.6 | 7.5 | 8.3 | 108.9 | 3.7 | 4.4 | 106.1 | 7.2 | 6.1 |
5 | 95.3 | 9.5 | 12.1 | 94.9 | 8.6 | 10.2 | 85.8 | 8.1 | 9.4 | |
50 | 110.1 | 9.8 | 11.4 | 102.0 | 5.7 | 7.2 | 101.7 | 5.4 | 4.8 | |
AZI | 1 | 106.7 | 8.6 | 9.3 | 99.7 | 4.6 | 5.7 | 89.0 | 5.2 | 4.7 |
5 | 103.6 | 10.2 | 13.8 | 97.4 | 5.8 | 4.4 | 90.8 | 8.5 | 8.0 | |
50 | 115.9 | 7.8 | 11.2 | 101.9 | 6.5 | 5.3 | 105.6 | 7.3 | 6.7 | |
KIT | 1 | 88.7 | 7.6 | 6.5 | 85.6 | 8.0 | 9.5 | 96.8 | 6.8 | 7.6 |
5 | 88.9 | 5.3 | 4.2 | 87.5 | 8.9 | 9.3 | 83.8 | 4.2 | 4.6 | |
50 | 84.4 | 7.8 | 9.0 | 88.5 | 5.7 | 5.4 | 83.7 | 5.2 | 4.8 | |
JOS | 1 | 105.3 | 4.2 | 6.0 | 104.0 | 8.6 | 12.6 | 112.6 | 4.5 | 5.3 |
5 | 91.0 | 5.1 | 5.9 | 96.5 | 5.6 | 8.6 | 94.2 | 5.7 | 6.9 | |
50 | 104.9 | 7.5 | 8.4 | 93.0 | 6.7 | 7.3 | 102.2 | 7.3 | 8.9 | |
ROX | 1 | 97.4 | 4.8 | 4.2 | 101.8 | 9.2 | 8.5 | 88.0 | 6.2 | 7.1 |
5 | 97.0 | 8.2 | 9.9 | 97.2 | 4.8 | 5.4 | 94.7 | 5.2 | 4.9 | |
50 | 114.1 | 7.8 | 9.2 | 104.6 | 5.2 | 4.7 | 92.1 | 7.2 | 6.7 | |
SPI | 1 | 93.5 | 8.2 | 10.0 | 94.0 | 4.8 | 6.1 | 103.3 | 5.9 | 6.7 |
5 | 86.3 | 5.5 | 4.2 | 92.7 | 7.2 | 8.3 | 83.5 | 5.1 | 4.6 | |
50 | 86.5 | 9.8 | 12.6 | 91.8 | 6.8 | 8.0 | 94.6 | 7.8 | 11.7 | |
TIL | 1 | 108.2 | 6.5 | 7.3 | 103.2 | 7.3 | 8.9 | 114.8 | 5.7 | 7.1 |
5 | 97.6 | 5.3 | 4.7 | 97.6 | 5.2 | 4.0 | 102.7 | 4.8 | 5.1 | |
50 | 112.7 | 9.4 | 11.5 | 102.8 | 5.1 | 6.7 | 110.1 | 5.2 | 4.7 | |
TYL | 1 | 83.1 | 6.8 | 9.1 | 89.1 | 9.5 | 11.4 | 90.4 | 5.9 | 7.6 |
5 | 86.5 | 4.5 | 3.9 | 92.5 | 7.8 | 10.5 | 88.0 | 6.2 | 8.5 | |
50 | 87.3 | 6.8 | 8.6 | 85.8 | 6.2 | 8.3 | 87.4 | 6.7 | 7.3 |
Matrix | Extraction | MALs | Purification | Quantification | Recovery (%) | LOD (μg/kg) | LOQ (μg/kg) | Literature |
---|---|---|---|---|---|---|---|---|
Fish | EDTA + acetonitrile | ERM | Direct dilution of sample extract | Matrix matching external standard curve | 89.2~119.5 | 1.0 | 3.0 | [55] |
Fish | Acetonitrile: water | AZI, CLA, ERM, ROX, and TYL | Strata-X SPE | Internal standard curve | 31~68 | 0.004~0.054 | 0.013~0.18 | [52] |
Shrimp and fish | EDTA + acetonitrile | AZI, CLA, and ERM | Defatting by n-hexane liquid-liquid extraction | Matrix matching external standard curve | 92.0~99.2 | 0.053–0.417 | 0.159~1.251 | [53] |
Fish | EDTA + ethylacetate | CLA and ROX | Oasis HLB SPE | Matrix matching & internal standard curve | 80.1~90.5 | 0.01~0.22 | 0.05~0.7 | [54] |
Shrimp | EDTA + acetonitrile | ERM, TIL, JOS, TYL, and SPI | Defatting by n-hexane liquid-liquid extraction | Matrix matching external standard curve | 74.3~111.1 | 2.0 | 5.0 | [56] |
Fish, shrimp, crab, and shellfish | Acetonitrile | OLD, ERM, CLA, AZI, JOS, KIT, SPI, TIL, and TYL | Defatting by n-hexane liquid-liquid extraction +N-Al2O3 SPE | Matrix matching external standard curve | 70~120 | 1.0 | 2.0–4.0 | [57] |
Fish | Methanol (pressurized liquid extraction) | ERM, JOS, ROX, SPI, TIL, OLD, TYL | Al2O3 DSPE | Matrix-matching external standard curve | 66~91 | 15 | 25~50 | [58] |
Fish, shrimp, crab, and shellfish | Acetonitrile-ammonia | OLD, ERM, CLA, AZI, JOS, KIT, SPI, TIL, TYL, and ROX | N-Al2O3 DSPE | Internal standard curve | 83.1~116.6% | 0.25–0.50 | 0.50–1.00 | Present method |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Mei, G.; Zhang, X.; Huang, D.; He, P.; Xu, D. Dispersive Solid-Phase Extraction and Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry—A Rapid and Accurate Method for Detecting 10 Macrolide Residues in Aquatic Products. Foods 2024, 13, 866. https://doi.org/10.3390/foods13060866
Chen J, Mei G, Zhang X, Huang D, He P, Xu D. Dispersive Solid-Phase Extraction and Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry—A Rapid and Accurate Method for Detecting 10 Macrolide Residues in Aquatic Products. Foods. 2024; 13(6):866. https://doi.org/10.3390/foods13060866
Chicago/Turabian StyleChen, Jinyu, Guangming Mei, Xiaojun Zhang, Daoxiang Huang, Pengfei He, and Dan Xu. 2024. "Dispersive Solid-Phase Extraction and Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry—A Rapid and Accurate Method for Detecting 10 Macrolide Residues in Aquatic Products" Foods 13, no. 6: 866. https://doi.org/10.3390/foods13060866
APA StyleChen, J., Mei, G., Zhang, X., Huang, D., He, P., & Xu, D. (2024). Dispersive Solid-Phase Extraction and Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry—A Rapid and Accurate Method for Detecting 10 Macrolide Residues in Aquatic Products. Foods, 13(6), 866. https://doi.org/10.3390/foods13060866