High Hydrostatic Pressure: Influences on Allergenicity, Bioactivities, and Structural and Functional Properties of Proteins from Diverse Food Sources
Abstract
:1. Introduction
2. Principle of HHP and Its Role in Food Processing
3. Effects of HHP on Allergenicity, Bioactivities, as well as Structural, Functional, and Other Properties of Proteins
3.1. Plant-Based Protein Sources
3.1.1. Cereals
3.1.2. Legumes and Nuts
3.1.3. Seeds
3.1.4. Vegetables
3.2. Animal-Based Protein Sources
3.2.1. Dairy Products and Eggs
Protein Sources | Samples | Extraction Methods | Pressure (MPa) | Time (min) | Effects on Samples | References | ||
---|---|---|---|---|---|---|---|---|
Structural Property | Bioactivities and Allergenicity | Functional and Other Properties | ||||||
Dairy products and eggs | Whey protein isolates | - | 550 | 1 | - | (+) antioxidant activity | (+) protein digestibility | [79] |
- | 100–400 | 5–30 | (+) SH | - | (+) DH | [82] | ||
- | 600 | 10–15 | (−) β-Lg (+) FI | - | (+) turbidity (+) protein yield (+) purification degree | [69] | ||
- | 100–600 | 15–30 | (+) α-helix, β-sheet (+) SH | - | (+) DH (+) foaming capacity (+) foaming stability (−) interfacial tension | [75] | ||
- | 600 | 10 | (+) α-helix (−) β-sheet (+) FI | - | (+) G′ (+) surface hydrophobicity (−) interfacial tension (+) micro-viscosity | [74,76] | ||
- | 500 | 5–15 | (+) α-helix (+) FI | (−) allergenicity | (+) surface hydrophobicity (+) protein digestibility | [71] | ||
- | 100–600 | 30 | (−) α-helix, β-sheet (+) random coil (+) FI (+) SH | (+) antioxidant activity | (+) DH (+) protein digestibility | [80] | ||
- | 100–600 | 10–20 | (+) α-helix, β-turn (−) β-sheet (+) FI (+) SH | (−) allergenicity (+) antioxidant activity | (−) EAI (+) surface hydrophobicity | [72] | ||
Casein extracts | Acid (pH 4.6) | 200–600 | 5–15 | - | (+) ACE-inhibitory activity (+) antioxidant | (+) protein digestibility | [81] | |
α-La and β-Lg milk powders | - | 200–600 | 1.7–5 | (−) β-Lg | - | (+) protein recovery (+) purification degree of α-La | [68] | |
Whole milk | - | 600 | 5 | (−) β-Lg | - | - | [70] | |
Skim milk | - | 250–900 | 5 | (−) particle size | (−) secretory IgA | (−) protein solubility | [73] | |
Eggs | - | 600–900 | 5–15 | - | - | (+) hardness | [77] | |
Egg white | - | 350–550 | 5–15 | - | (+) antioxidant activity | (+) DH | [78] | |
Meat and poultry products | Bovine serum albumin | - | 100–600 | 15 | (+) SH | - | (+) foaming capacity (+) EAI and ESI | [83,84] |
Rabbit myosin extracts | KCl (0.6 M) | 100–200 | 2 | (−) α-helix (+) β-sheet, β-turn (−) droplet size | - | (+) interfacial tension (+) EAI and ESI (+) G′ | [85] | |
Beef jerky | - | 100–300 | 20 | (+) TBARS | - | (−) tenderness (−) moisture content (+) L* and (−) a* | [86] | |
Beef gel | - | 100–200 | 10 | - | - | (−) L*, a*, and b* (+) G′ (+) hardness and adhesiveness | [87] | |
Beef patties | - | 300 | 5 | - | - | (+) cooking loss (−) expressible moisture (+) L* and (−) a*, b* (−) G′ (+) hardness, springiness, and chewiness (+) water release | [88] | |
Beef rounds | - | 300–600 | 5 | (+) C=O | - | (+) L*, b* and (−) a* | [89] | |
Chicken meat | - | 50–200 | 1–3 | - | - | (+) L* (−) expressible moisture (+) hardness, cohesiveness, and chewiness | [90] | |
Chorizos | - | 600 | 8 | (+) C=O (+) TBARS | - | - | [91] | |
Frankfurters | - | 300–600 | 4 | - | - | (+) firmness (+) drip loss | [92] | |
Lamb cuts | - | 200–600 | 1 | (+) TBARS | - | (+) free AA | [93] | |
Wieners | - | 600 | 3 | (+) TBARS | - | (−) expressible moisture (−) hardness, springiness, and chewiness | [94] | |
Seafood | Bighead carp protein extracts | KCl (0.6 M) | 300 | 20 | (−) α-helix, random coil (+) β-sheet (−) FI (−) SH | (+) antioxidant activity | (+) DH (+) surface hydrophobicity (+) zeta potential | [95] |
Cod protein extracts | Tris-maleate (0.02 M, pH 7) | 200 | 20 | - | (+) ACE inhibitory activity (+) anti-inflammatory activity (+) antioxidant activity | (+) AA content | [96] | |
Eel (surimi) Protein extracts | PBS (0.1 M, pH 7.5) | 100–600 | 5 | (+) β-turn, random coil (+) SH | (+) ACE inhibitory activity | (+) surface hydrophobicity (+) hardness, adhesiveness, and chewiness (+) WHC | [97] | |
Oyster protein extracts | PBS (0.05 M, pH 7) | 300–600 | 5 | (−) α-helix (+) β-turn, β-sheet, random coil (−) FI (+) SH | (−) IgG binding capacity | (+) surface hydrophobicity | [98] | |
Scallop protein extracts | PBS (0.05 M, pH 7) | 100–500 | 10 | (−) α-helix (+) β-sheet (+) SH (+) droplet size | - | (+) surface hydrophobicity (+) zeta potential (+) ESI and EAI (+) creaming index (+) protein adsorption (−) protein solubility | [99] | |
Squid protein extracts | Protein lysis buffer | 200–600 | 20 | (−) α-helix (+) β-sheet, random coil | (−) allergenicity | (+) surface hydrophobicity (+) protein digestibility | [100] | |
Alaska pollock (surimi) | - | 300 | 10 | (−) ∆H | - | (+) WBC (+) breaking force | [101] | |
Large yellow croaker | - | 300–600 | 10 | (−) α-helix (+) β-sheet, random coil (−) FI (−) SH | (−) allergenicity | (+) surface hydrophobicity | [102] | |
Red abalone | - | 200–500 | - | (+) β-sheet | - | (+) protein digestibility | [103] | |
Razor clam | - | 200–400 | 1–10 | (+) TBARS | (−) Ca2+-ATPase activity | (+) WHC (−) drip loss (+) pH (−) protein content | [104] | |
Silver pomfret | - | 100–200 | - | (−) SH (+) C=O | (−) Ca2+-ATPase activity | (+) surface hydrophobicity (+) thawing loss (−) WHC (+) hardness, springiness, chewiness, and gumminess (+) L* and b* (+) pH | [105] | |
Threadfin bream | - | 200–600 | 10–50 | (−) SH | (−) Ca2+-ATPase activity | (−) protein solubility (+) surface hydrophobicity (+) turbidity | [106] | |
Tilapia (surimi) | - | 100–400 | 15 | - | - | (+) L* (+) WHC (+) gel strength (+) hardness, springiness, and chewiness | [107] | |
Oysters | - | 100–500 | 5 | - | - | (+) hardness, springiness, chewiness, and cohesiveness | [108] | |
Shrimps | - | 550 | 5 | (−) TBARS | - | (+) moisture content (+) G’ (+) L* (−) a* and b* (−) firmness | [109] |
3.2.2. Meat and Poultry Products
3.2.3. Seafood
3.3. Alternative Protein Sources
3.3.1. Algae
3.3.2. Insects
Protein Sources | Samples | Extraction Methods | Pressure (MPa) | Time (min) | Effects on Samples | References | ||
---|---|---|---|---|---|---|---|---|
Structural Property | Bioactivities and Allergenicity | Functional and Other Properties | ||||||
Algae | A. platensis protein extracts | PBS (0.1 M, pH 6.8) | 100–600 | 0–20 | - | - | (+) protein solubility (+) C-phycocyanin | [112,113] |
PBS (0.01 M, pH 7) | 600 | 5 | - | (−) antioxidant activity | (+) phycobiliproteins | [119] | ||
A. platensis C. vulgaris | - | 300–600 | 15 | - | - | (+) G′ | [114] | |
P. palmata S. chordalis protein extracts | Cellulase (Tris-HCl, pH 5) | 400 | 20 | - | (+) antioxidant activity (+) TPC | (+) protein concentration | [115] | |
P. cruentum protein extracts | Tris-HCl (0.5 M, pH 7) | 50–500 | 5 | (−) FI | - | (−) B-phycoerythrin | [120,121] | |
Insects | Cricket protein extracts | Alkali (pH 10) | 500 | 15 | - | - | (+) viscosity | [122] |
Mealworm protein extracts | Protease (0.25%) | 380 | 1 | - | (−) allergenicity | (+) DH | [116] | |
Ascorbic acid (2%) | 70–600 | 5 | (+) particle size (−) FI | - | (+) optical density (+) surface hydrophobicity | [123] | ||
Cricket and mealworm protein extracts | Alkali (pH 8.5) + Alcalase (3%) | 380 | 1 | - | - | (−) DH (−) protein solubility (+) OBC | [117] | |
- | 500 | 15 | (+) amide II | - | (+) OBC (+) TPC | [118] |
4. Conclusions and Future Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alrosan, M.; Tan, T.-C.; Easa, A.M.; Gammoh, S.; Alu’datt, M.H. Molecular forces governing protein-protein interaction: Structure-function relationship of complexes protein in the food industry. Crit. Rev. Food Sci. Nutr. 2022, 62, 4036–4052. [Google Scholar] [CrossRef]
- Kristo, E.; Corredig, M. Functional properties of food proteins. In Applied Food Protein Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 47–73. [Google Scholar] [CrossRef]
- Zaky, A.A.; Simal-Gandara, J.; Eun, J.-B.; Shim, J.-H.; Abd El-Aty, A. Bioactivities, applications, safety, and health benefits of bioactive peptides from food and by-products: A review. Front. Nutr. 2022, 8, 815640. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant food anti-nutritional factors and their reduction strategies: An overview. Food Prod. Process. Nutr. 2020, 2, 1–14. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.-H.; He, R.; Xu, R.; Zhang, L.; Gao, X. Improving soy sauce aroma using high hydrostatic pressure and the preliminary mechanism. Foods 2022, 11, 2190. [Google Scholar] [CrossRef]
- Gao, X.; Zhao, X.; Hu, F.; Fu, J.; Zhang, Z.; Liu, Z.; Wang, B.; He, R.; Ma, H.; Ho, C.T. The latest advances on soy sauce research in the past decade: Emphasis on the advances in China. Food Res. Int. 2023, 173, 113407. [Google Scholar] [CrossRef]
- Jadhav, H.B.; Annapure, U.S.; Deshmukh, R.R. Non-thermal technologies for food processing. Front. Nutr. 2021, 8, 657090. [Google Scholar] [CrossRef]
- Sehrawat, R.; Kaur, B.P.; Nema, P.K.; Tewari, S.; Kumar, L. Microbial inactivation by high pressure processing: Principle, mechanism and factors responsible. Food Sci. Biotechnol. 2021, 30, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Govaris, A.; Pexara, A. Inactivation of foodborne viruses by high-pressure processing (HPP). Foods 2021, 10, 215. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Li, R.; Dong, P.; Rao, L.; Wang, Y.; Liao, X. Influence of pressurization rate and mode on cell damage of Escherichia coli and Staphyloccocus aureus by high hydrostatic pressure. Front. Microbiol. 2023, 14, 1108194. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.V.M. Pasteurization of Food and Beverages by High Pressure Processing (HPP) at Room Temperature: Inactivation of Staphylococcus aureus, Escherichia coli, Listeria monocytogenes, Salmonella, and Other Microbial Pathogens. Appl. Sci. 2023, 13, 1193. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, M.; Mujumdar, A.S.; Liu, Y. Application advantages of new non-thermal technology in juice browning control: A comprehensive review. Food Rev. Int. 2023, 39, 4102–4123. [Google Scholar] [CrossRef]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. The shape and structure of proteins. In Molecular Biology of the Cell, 4th ed.; Garland Science: New York, NY, USA, 2002. [Google Scholar]
- Kong, F.; Kang, S.; Zhang, J.; Jiang, L.; Liu, Y.; Yang, M.; Cao, X.; Zheng, Y.; Shao, J.; Yue, X. The non-covalent interactions between whey protein and various food functional ingredients. Food Chem. 2022, 394, 133455. [Google Scholar] [CrossRef] [PubMed]
- Yu, P. Protein secondary structures (α-helix and β-sheet) at a cellular level and protein fractions in relation to rumen degradation behaviours of protein: A new approach. Br. J. Nutr. 2005, 94, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Ayala, J.E.; Soler, A.; Mendez-Montealvo, G.; Velazquez, G. Supramolecular structure and technofunctional properties of starch modified by high hydrostatic pressure (HHP): A review. Carbohydr. Polym. 2022, 291, 119609. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Jia, Y.; Lu, X.; Li, H. Release and conformational changes in allergenic proteins from wheat gluten induced by high hydrostatic pressure. Food Chem. 2022, 368, 130805. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, Á.L.; Rico, D.; Ronda, F.; Martín-Diana, A.B.; Caballero, P.A. Development of a gluten-free whole grain flour by combining soaking and high hydrostatic pressure treatments for enhancing functional, nutritional and bioactive properties. J. Cereal Sci. 2022, 105, 103458. [Google Scholar] [CrossRef]
- Jia, X.; Li, L.; Teng, J.; Li, M.; Long, H.; Xia, N. Glycation of rice protein and d-xylose pretreated through hydrothermal cooking-assisted high hydrostatic pressure: Focus on the structural and functional properties. LWT 2022, 160, 113194. [Google Scholar] [CrossRef]
- Chen, S.-H.; Li, P.-H.; Chan, Y.-J.; Cheng, Y.-T.; Lin, H.-Y.; Lee, S.-C.; Lu, W.C.; Ma, Y.X.; Li, M.Y.; Song, T.Y. Potential Anti-Sarcopenia Effect and Physicochemical and Functional Properties of Rice Protein Hydrolysate Prepared through High-Pressure Processing. Agriculture 2023, 13, 209. [Google Scholar] [CrossRef]
- Lee, C.; Lee, W.; Han, Y.; Oh, S. Effect of proteolysis with alkaline protease following high hydrostatic pressure treatment on IgE binding of buckwheat protein. J. Food Sci. 2017, 82, 834–839. [Google Scholar] [CrossRef]
- Ahmed, J.; Thomas, L.; Arfat, Y.A. Effects of high hydrostatic pressure on functional, thermal, rheological and structural properties of β-D-glucan concentrate dough. LWT 2016, 70, 63–70. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Zhang, Z.; Chen, Z.; Jing, X.; Wang, X. Effect of high hydrostatic pressure treatment on the structure and physicochemical properties of millet gliadin. LWT 2022, 154, 112755. [Google Scholar] [CrossRef]
- Liu, N.; Lin, P.; Zhang, K.; Yao, X.; Li, D.; Yang, L.; Zhao, M. Combined effects of limited enzymatic hydrolysis and high hydrostatic pressure on the structural and emulsifying properties of rice proteins. Innov. Food Sci. Emerg. Technol. 2022, 77, 102975. [Google Scholar] [CrossRef]
- Wang, S.; Wang, T.; Sun, Y.; Cui, Y.; Yu, G.; Jiang, L. Effects of high hydrostatic pressure pretreatment on the functional and structural properties of rice bran protein hydrolysates. Foods 2021, 11, 29. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, R.; Palmer, J.; Hemar, Y.; Yang, Z. Impact of high hydrostatic pressure on the gelation behavior and microstructure of quinoa protein isolate dispersions. ACS Food Sci. Technol. 2021, 1, 2144–2151. [Google Scholar] [CrossRef]
- Luo, L.; Yang, Z.; Wang, H.; Ashokkumar, M.; Hemar, Y. Impacts of sonication and high hydrostatic pressure on the structural and physicochemical properties of quinoa protein isolate dispersions at acidic, neutral and alkaline pHs. Ultrason. Sonochemistry 2022, 91, 106232. [Google Scholar] [CrossRef]
- Lee, N.-Y.; Koo, J.-G. Effects of high hydrostatic pressure on quality changes of blends with low-protein wheat and oat flour and derivative foods. Food Chem. 2019, 271, 685–690. [Google Scholar] [CrossRef]
- Wang, B.; Liu, F.; Luo, S.; Li, P.; Mu, D.; Zhao, Y.; Zhong, X.; Jiang, S.; Zheng, Z. Effects of high hydrostatic pressure on the properties of heat-induced wheat gluten gels. Food Bioprocess Technol. 2019, 12, 220–227. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Sheng, W.; Wang, S.; Fu, T.-J. Effects of heat and high-pressure treatments on the solubility and immunoreactivity of almond proteins. Food Chem. 2016, 199, 856–861. [Google Scholar] [CrossRef] [PubMed]
- Peyrano, F.; Speroni, F.; Avanza, M.V. Physicochemical and functional properties of cowpea protein isolates treated with temperature or high hydrostatic pressure. Innov. Food Sci. Emerg. Technol. 2016, 33, 38–46. [Google Scholar] [CrossRef]
- Peyrano, F.; de Lamballerie, M.; Avanza, M.V.; Speroni, F. Calorimetric study of cowpea protein isolates. Effect of calcium and high hydrostatic pressure. Food Biophys. 2017, 12, 374–382. [Google Scholar] [CrossRef]
- Peyrano, F.; de Lamballerie, M.; Avanza, M.V.; Speroni, F. Rheological characterization of the thermal gelation of cowpea protein isolates: Effect of pretreatments with high hydrostatic pressure or calcium addition. LWT 2019, 115, 108472. [Google Scholar] [CrossRef]
- Peyrano, F.; de Lamballerie, M.; Avanza, M.V.; Speroni, F. Gelation of cowpea proteins induced by high hydrostatic pressure. Food Hydrocoll. 2021, 111, 106191. [Google Scholar] [CrossRef]
- Peyrano, F.; De Lamballerie, M.; Avanza, M.V.; Speroni, F. High hydrostatic pressure-or heat-induced gelation of cowpea proteins at low protein content: Effect of calcium concentration. Food Hydrocoll. 2022, 124, 107220. [Google Scholar] [CrossRef]
- Ahmed, J.; Al-Ruwaih, N.; Mulla, M.; Rahman, M.H. Effect of high pressure treatment on functional, rheological and structural properties of kidney bean protein isolate. LWT 2018, 91, 191–197. [Google Scholar] [CrossRef]
- Chao, D.; Jung, S.; Aluko, R.E. Physicochemical and functional properties of high pressure-treated isolated pea protein. Innov. Food Sci. Emerg. Technol. 2018, 45, 179–185. [Google Scholar] [CrossRef]
- Hall, A.E.; Moraru, C.I. Structure and function of pea, lentil and faba bean proteins treated by high pressure processing and heat treatment. LWT 2021, 152, 112349. [Google Scholar] [CrossRef]
- He, X.-H.; Liu, H.-Z.; Liu, L.; Zhao, G.-L.; Wang, Q.; Chen, Q.-L. Effects of high pressure on the physicochemical and functional properties of peanut protein isolates. Food Hydrocoll. 2014, 36, 123–129. [Google Scholar] [CrossRef]
- Pan, D.; Tang, B.; Liu, H.; Li, Z.; Ma, R.; Peng, Y.; Wu, X.; Che, L.; He, N.; Ling, X.; et al. Effect of high hydrostatic pressure (HHP) processing on immunoreactivity and spatial structure of peanut major allergen Ara h 1. Food Bioprocess Technol. 2020, 13, 132–144. [Google Scholar] [CrossRef]
- Qin, Z.; Guo, X.; Lin, Y.; Chen, J.; Liao, X.; Hu, X.; Wu, J. Effects of high hydrostatic pressure on physicochemical and functional properties of walnut (Juglans regia L.) protein isolate. J. Sci. Food Agric. 2013, 93, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Sun, Y.; Huangfu, B.; He, X.; Huang, K. Ultra-high-pressure passivation of soybean agglutinin and safety evaluations. Food Chem. X 2023, 18, 100726. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.Y.; Jang, G.Y.; Oh, N.S.; Baek, S.Y.; Lee, S.H.; Kim, K.M.; Kim, T.M.; Lee, J.; Jeong, H.S. Characteristics and in vitro anti-inflammatory activities of protein extracts from pre-germinated black soybean [Glycine max (L.)] treated with high hydrostatic pressure. Innov. Food Sci. Emerg. Technol. 2017, 43, 84–91. [Google Scholar] [CrossRef]
- Guan, H.; Diao, X.; Jiang, F.; Han, J.; Kong, B. The enzymatic hydrolysis of soy protein isolate by Corolase PP under high hydrostatic pressure and its effect on bioactivity and characteristics of hydrolysates. Food Chem. 2018, 245, 89–96. [Google Scholar] [CrossRef]
- Xi, J.; He, M. High hydrostatic pressure (HHP) effects on antigenicity and structural properties of soybean β-conglycinin. J. Food Sci. Technol. 2018, 55, 630–637. [Google Scholar] [CrossRef]
- Li, H.; Jia, Y.; Peng, W.; Zhu, K.; Zhou, H.; Guo, X. High hydrostatic pressure reducing allergenicity of soy protein isolate for infant formula evaluated by ELISA and proteomics via Chinese soy-allergic children’s sera. Food Chem. 2018, 269, 311–317. [Google Scholar] [CrossRef]
- Tan, M.; Xu, J.; Gao, H.; Yu, Z.; Liang, J.; Mu, D.; Li, X.; Zhong, X.; Luo, S.; Zhao, Y.; et al. Effects of combined high hydrostatic pressure and pH-shifting pretreatment on the structure and emulsifying properties of soy protein isolates. J. Food Eng. 2021, 306, 110622. [Google Scholar] [CrossRef]
- Yan, G.; Cui, Y.; Lia, D.; Ding, Y.; Han, J.; Wang, S.; Yang, Q.; Zheng, H. The characteristics of soybean protein isolate obtained by synergistic modification of high hydrostatic pressure and phospholipids as a promising replacement of milk in ice cream. LWT 2022, 160, 113223. [Google Scholar] [CrossRef]
- Dehnad, D.; Emadzadeh, B.; Ghorani, B.; Rajabzadeh, G. High hydrostatic pressure (HHP) as a green technology opens up a new possibility for the fabrication of electrospun nanofibers: Part I-improvement of soy protein isolate properties by HHP. Food Hydrocoll. 2023, 140, 108659. [Google Scholar] [CrossRef]
- Chen, J.; Mu, T.; Zhang, M.; Goffin, D. Effect of high hydrostatic pressure on the structure, physicochemical and functional properties of protein isolates from cumin (Cuminum cyminum) seeds. Int. J. Food Sci. Technol. 2019, 54, 752–761. [Google Scholar] [CrossRef]
- Perreault, V.; Hénaux, L.; Bazinet, L.; Doyen, A. Pretreatment of flaxseed protein isolate by high hydrostatic pressure: Impacts on protein structure, enzymatic hydrolysis and final hydrolysate antioxidant capacities. Food Chem. 2017, 221, 1805–1812. [Google Scholar] [CrossRef] [PubMed]
- Franck, M.; Perreault, V.; Suwal, S.; Marciniak, A.; Bazinet, L.; Doyen, A. High hydrostatic pressure-assisted enzymatic hydrolysis improved protein digestion of flaxseed protein isolate and generation of peptides with antioxidant activity. Food Res. Int. 2019, 115, 467–473. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, C.; Ye, J.; Chen, H.; Tao, R.; Cao, F. Effects of high hydrostatic pressure treatment on structural, allergenicity, and functional properties of proteins from ginkgo seeds. Innov. Food Sci. Emerg. Technol. 2016, 34, 187–195. [Google Scholar] [CrossRef]
- Wang, Z.; Ju, X.; He, R.; Yuan, J.; Aluko, R.E. Effect of high pressure treatment on rapeseed protein microparticle properties and gastrointestinal release behavior of the encapsulated peptides. Food Res. Int. 2015, 77, 549–555. [Google Scholar] [CrossRef]
- Khan, N.M.; Mu, T.H.; Zhang, M.; Chen, J.W. Effects of high hydrostatic pressure on the physicochemical and emulsifying properties of sweet potato protein. Int. J. Food Sci. Technol. 2013, 48, 1260–1268. [Google Scholar] [CrossRef]
- Khan, N.M.; Mu, T.-H.; Zhang, M.; Arogundade, L.A. The effects of pH and high hydrostatic pressure on the physicochemical properties of a sweet potato protein emulsion. Food Hydrocoll. 2014, 35, 209–216. [Google Scholar] [CrossRef]
- Khan, N.M.; Mu, T.-H.; Ali, F.; Arogundade, L.A.; Khan, Z.U.; Zhang, M.; Ahmad, S.; Sun, H.-N. Effects of high hydrostatic pressure on emulsifying properties of sweet potato protein in model protein–hydrocolloids system. Food Chem. 2015, 169, 448–454. [Google Scholar] [CrossRef]
- Khan, N.M.; Mu, T.-H.; Sun, H.-N.; Zhang, M.; Chen, J.-W. Effects of high hydrostatic pressure on secondary structure and emulsifying behavior of sweet potato protein. High Press. Res. 2015, 35, 189–202. [Google Scholar] [CrossRef]
- Sun, M.; Mu, T.; Sun, H.; Zhang, M. Digestibility and structural properties of thermal and high hydrostatic pressure treated sweet potato (Ipomoea batatas L.) protein. Plant Foods Hum. Nutr. 2014, 69, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Elahi, R.; Mu, T.-H. High hydrostatic pressure (HHP)-induced structural modification of patatin and its antioxidant activities. Molecules 2017, 22, 438. [Google Scholar] [CrossRef]
- Zhao, Z.-K.; Mu, T.-H.; Zhang, M.; Richel, A. Chemical forces, structure, and gelation properties of sweet potato protein as affected by pH and high hydrostatic pressure. Food Bioprocess Technol. 2018, 11, 1719–1732. [Google Scholar] [CrossRef]
- Zhao, Z.-K.; Mu, T.-H.; Zhang, M.; Richel, A. Effect of salts combined with high hydrostatic pressure on structure and gelation properties of sweet potato protein. LWT 2018, 93, 36–44. [Google Scholar] [CrossRef]
- Zhao, Z.-K.; Mu, T.-H.; Zhang, M.; Richel, A. Effects of high hydrostatic pressure and microbial transglutaminase treatment on structure and gelation properties of sweet potato protein. LWT 2019, 115, 108436. [Google Scholar] [CrossRef]
- Zhao, Z.-K.; Mu, T.-H.; Zhang, M.; Richel, A. Effects of sulfur-containing amino acids and high hydrostatic pressure on structure and gelation properties of sweet potato protein. Food Bioprocess Technol. 2019, 12, 1863–1873. [Google Scholar] [CrossRef]
- Nazir, M.A.; Mu, T.H.; Zhang, M. Preparation and identification of angiotensin I-converting enzyme inhibitory peptides from sweet potato protein by enzymatic hydrolysis under high hydrostatic pressure. Int. J. Food Sci. Technol. 2020, 55, 482–489. [Google Scholar] [CrossRef]
- Katzav, H.; Chirug, L.; Okun, Z.; Davidovich-Pinhas, M.; Shpigelman, A. Comparison of thermal and high-pressure gelation of potato protein isolates. Foods 2020, 9, 1041. [Google Scholar] [CrossRef]
- Falade, E.O.; Mu, T.-H.; Zhang, M. Improvement of ultrasound microwave-assisted enzymatic production and high hydrostatic pressure on emulsifying, rheological and interfacial characteristics of sweet potato protein hydrolysates. Food Hydrocoll. 2021, 117, 106684. [Google Scholar] [CrossRef]
- Marciniak, A.; Suwal, S.; Britten, M.; Pouliot, Y.; Doyen, A. The use of high hydrostatic pressure to modulate milk protein interactions for the production of an alpha-lactalbumin enriched-fraction. Green Chem. 2018, 20, 515–524. [Google Scholar] [CrossRef]
- Marciniak, A.; Suwal, S.; Touhami, S.; Chamberland, J.; Pouliot, Y.; Doyen, A. Production of highly purified fractions of α-lactalbumin and β-lactoglobulin from cheese whey using high hydrostatic pressure. J. Dairy Sci. 2020, 103, 7939–7950. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Carøe, C.; Qin, Z.; Munk, D.M.; Crafack, M.; Petersen, M.A.; Ahrné, L. Comparative study on quality of whole milk processed by high hydrostatic pressure or thermal pasteurization treatment. LWT 2020, 127, 109370. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, Z.; Wang, Y.; Gao, J.; Yuan, Q.; Mao, X. Effects of high hydrostatic pressure treatment on the antigenicity, structural and digestive properties of whey protein. LWT 2023, 178, 114628. [Google Scholar] [CrossRef]
- Yu, X.-X.; Wang, X.-H.; Zhang, S.-A.; Zhang, Y.-H.; Zhang, H.-L.; Yin, Y.-Q. Study on potential antigenicity and functional properties of whey protein treated by high hydrostatic pressure based on structural analysis. Food Res. Int. 2023, 173, 113218. [Google Scholar] [CrossRef] [PubMed]
- Bravo, F.I.; Felipe, X.; López-Fandiño, R.; Molina, E. Skim milk protein distribution as a result of very high hydrostatic pressure. Food Res. Int. 2015, 72, 74–79. [Google Scholar] [CrossRef]
- Kieserling, H.; Giefer, P.; Uttinger, M.J.; Lautenbach, V.; Nguyen, T.; Sevenich, R.; Lübbert, C.; Rauh, C.; Peukert, W.; Fritsching, U.; et al. Structure and adsorption behavior of high hydrostatic pressure-treated β-lactoglobulin. J. Colloid Interface Sci. 2021, 596, 173–183. [Google Scholar] [CrossRef]
- Carullo, D.; Barbosa-Cánovas, G.; Ferrari, G. Changes of structural and techno-functional properties of high hydrostatic pressure (HHP) treated whey protein isolate over refrigerated storage. LWT 2021, 137, 110436. [Google Scholar] [CrossRef]
- Kieserling, H.; Alsmeier, I.M.; Steffen-Heins, A.; Keppler, J.K.; Sevenich, R.; Rauh, C.; Wagemans, A.M.; Drusch, S. Interfacial film formation and film stability of high hydrostatic pressure-treated β-lactoglobulin. Food Hydrocoll. 2021, 119, 106746. [Google Scholar] [CrossRef]
- Singh, A.; Ramaswamy, H. Effect of high pressure processing on color and textural properties of eggs. J. Food Res. 2013, 2, 11–24. [Google Scholar] [CrossRef]
- Singh, A.; Ramaswamy, H.S. Effect of high-pressure treatment on trypsin hydrolysis and antioxidant activity of egg white proteins. Int. J. Food Sci. Technol. 2014, 49, 269–279. [Google Scholar] [CrossRef]
- Iskandar, M.M.; Lands, L.C.; Sabally, K.; Azadi, B.; Meehan, B.; Mawji, N.; Skinner, C.D.; Kubow, S. High hydrostatic pressure pretreatment of whey protein isolates improves their digestibility and antioxidant capacity. Foods 2015, 4, 184–207. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Xu, J.; Guo, R.; Teng, G.; Chen, Y.; Xu, X. In vitro gastrointestinal model for the elderly: Effect of high hydrostatic pressure on protein structures and antioxidant activities of whey protein isolate. Food Biosci. 2023, 52, 102452. [Google Scholar] [CrossRef]
- Hu, G.; Zheng, Y.; Liu, Z.; Xiao, Y.; Deng, Y.; Zhao, Y. Effects of high hydrostatic pressure, ultraviolet light-C, and far-infrared treatments on the digestibility, antioxidant and antihypertensive activity of α-casein. Food Chem. 2017, 221, 1860–1866. [Google Scholar] [CrossRef]
- Ambrosi, V.; Polenta, G.; Gonzalez, C.; Ferrari, G.; Maresca, P. High hydrostatic pressure assisted enzymatic hydrolysis of whey proteins. Innov. Food Sci. Emerg. Technol. 2016, 38, 294–301. [Google Scholar] [CrossRef]
- De Maria, S.; Ferrari, G.; Maresca, P. Effects of high hydrostatic pressure on the conformational structure and the functional properties of bovine serum albumin. Innov. Food Sci. Emerg. Technol. 2016, 33, 67–75. [Google Scholar] [CrossRef]
- De Maria, S.; Ferrari, G.; Maresca, P. Effect of high hydrostatic pressure on the enzymatic hydrolysis of bovine serum albumin. J. Sci. Food Agric. 2017, 97, 3151–3158. [Google Scholar] [CrossRef]
- Bai, Y.; Zeng, X.; Zhang, C.; Zhang, T.; Wang, C.; Han, M.; Zhou, G.; Xu, X. Effects of high hydrostatic pressure treatment on the emulsifying behavior of myosin and its underlying mechanism. LWT 2021, 146, 111397. [Google Scholar] [CrossRef]
- Han, G.; Chen, Q.; Xia, X.; Liu, Q.; Kong, B.; Wang, H. High hydrostatic pressure combined with moisture regulators improves the tenderness and quality of beef jerky. Meat Sci. 2021, 181, 108617. [Google Scholar] [CrossRef] [PubMed]
- Maksimenko, A.; Kikuchi, R.; Tsutsuura, S.; Nishiumi, T. Effect of high hydrostatic pressure and reducing sodium chloride and phosphate on physicochemical properties of beef gels. High Press. Res. 2019, 39, 385–397. [Google Scholar] [CrossRef]
- Bernasconi, A.; Szerman, N.; Vaudagna, S.R.; Speroni, F. High hydrostatic pressure and soybean protein addition to beef patties: Effects on the formation of mixed aggregates and technological parameters. Innov. Food Sci. Emerg. Technol. 2020, 66, 102503. [Google Scholar] [CrossRef]
- Jung, S.; Nam, K.C.; Ahn, D.U.; Kim, H.J.; Jo, C. Effect of phosvitin on lipid and protein oxidation in ground beef treated with high hydrostatic pressure. Meat Sci. 2013, 95, 8–13. [Google Scholar] [CrossRef]
- Ros-Polski, V.; Koutchma, T.; Xue, J.; Defelice, C.; Balamurugan, S. Effects of high hydrostatic pressure processing parameters and NaCl concentration on the physical properties, texture and quality of white chicken meat. Innov. Food Sci. Emerg. Technol. 2015, 30, 31–42. [Google Scholar] [CrossRef]
- Cava, R.; García-Parra, J.; Ladero, L. Effect of high hydrostatic pressure processing and storage temperature on food safety, microbial counts, colour and oxidative changes of a traditional dry-cured sausage. LWT 2020, 128, 109462. [Google Scholar] [CrossRef]
- Tintchev, F.; Bindrich, U.; Toepfl, S.; Strijowski, U.; Heinz, V.; Knorr, D. High hydrostatic pressure/temperature modeling of frankfurter batters. Meat Sci. 2013, 94, 376–387. [Google Scholar] [CrossRef]
- Kantono, K.; Hamid, N.; Oey, I.; Wu, Y.C.; Ma, Q.; Farouk, M.; Chadha, D. Effect of high hydrostatic pressure processing on the chemical characteristics of different lamb cuts. Foods 2020, 9, 1444. [Google Scholar] [CrossRef] [PubMed]
- Pietrasik, Z.; Gaudette, N.; Johnston, S. The impact of high hydrostatic pressure on the functionality and consumer acceptability of reduced sodium naturally cured wieners. Meat Sci. 2017, 129, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, L.; Xie, B.; Ma, A.; Hu, K.; Zheng, C.; Xiong, G.; Shi, L.; Ding, A.; Li, X.; et al. Effects of high-pressure treatments (ultra-high hydrostatic pressure and high-pressure homogenization) on bighead carp (Aristichthys nobilis) myofibrillar protein native state and its hydrolysate. Food Bioprocess Technol. 2022, 15, 2252–2266. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Bi, Y.; Cheng, K.-W.; Chen, F. Nutritional and functional activities of protein from steamed, baked, and high hydrostatic pressure treated cod (Gadus morhua). Food Control 2019, 96, 9–15. [Google Scholar] [CrossRef]
- Ma, R.; Liu, H.; Li, Y.; Atem, B.J.A.; Ling, X.; He, N.; Che, L.; Wu, X.; Wang, Y.; Lu, Y. Effects of high hydrostatic pressure treatment: Characterization of eel (Anguilla japonica) surimi, structure, and angiotensin-converting enzyme inhibitory activity of myofibrillar protein. Food Bioprocess Technol. 2021, 14, 1631–1639. [Google Scholar] [CrossRef]
- Liu, X.; Ma, Y.; Liu, L.; Zeng, M. Effects of high hydrostatic pressure on conformation and IgG binding capacity of tropomyosin in Pacific oyster (Crassostrea gigas). Food Chem. 2023, 404, 134595. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Liu, X.; Sang, Y.; Tian, G.; Wang, Z.; Hou, Y. Characterization and emulsifying properties of mantle proteins from scallops (Patinopecten yessoensis) treated by high hydrostatic pressure treatment. LWT 2022, 167, 113865. [Google Scholar] [CrossRef]
- Jin, Y.; Deng, Y.; Qian, B.; Zhang, Y.; Liu, Z.; Zhao, Y. Allergenic response to squid (Todarodes pacificus) tropomyosin Tod p1 structure modifications induced by high hydrostatic pressure. Food Chem. Toxicol. 2015, 76, 86–93. [Google Scholar] [CrossRef]
- Cando, D.; Moreno, H.M.; Borderías, A.J.; Skåra, T. Combined effect of high hydrostatic pressure and lysine or cystine addition in low-grade surimi gelation with low salt content. Food Bioprocess Technol. 2016, 9, 1391–1398. [Google Scholar] [CrossRef]
- Zhang, H.; Liao, H.; Lu, Y.; Hu, Y.; Yang, H.; Cao, S.; Qi, X. Effects of high hydrostatic pressure on the structural characteristics of parvalbumin of cultured large yellow croaker (Larimichthys crocea). J. Food Process. Preserv. 2020, 44, e14911. [Google Scholar] [CrossRef]
- Cepero-Betancourt, Y.; Opazo-Navarrete, M.; Janssen, A.E.; Tabilo-Munizaga, G.; Pérez-Won, M. Effects of high hydrostatic pressure (HHP) on protein structure and digestibility of red abalone (Haliotis rufescens) muscle. Innov. Food Sci. Emerg. Technol. 2020, 60, 102282. [Google Scholar] [CrossRef]
- Xuan, X.T.; Cui, Y.; Lin, X.D.; Yu, J.F.; Liao, X.J.; Ling, J.G.; Shang, H. Impact of high hydrostatic pressure on the shelling efficacy, physicochemical properties, and microstructure of fresh razor clam (Sinonovacula constricta). J. Food Sci. 2018, 83, 284–293. [Google Scholar] [CrossRef]
- Cui, Y.; Xuan, X.; Ling, J.; Liao, X.; Zhang, H.; Shang, H.; Lin, X. Effects of high hydrostatic pressure-assisted thawing on the physicohemical characteristics of silver pomfret (Pampus argenteus). Food Sci. Nutr. 2019, 7, 1573–1583. [Google Scholar] [CrossRef]
- Zhou, A.; Lin, L.; Liang, Y.; Benjakul, S.; Shi, X.; Liu, X. Physicochemical properties of natural actomyosin from threadfin bream (Nemipterus spp.) induced by high hydrostatic pressure. Food Chem. 2014, 156, 402–407. [Google Scholar] [CrossRef]
- Lu, W.; Qin, Y.; Ruan, Z. Effects of high hydrostatic pressure on color, texture, microstructure, and proteins of the tilapia (Orechromis niloticus) surimi gels. J. Texture Stud. 2021, 52, 177–186. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, R.; Zhang, T.; Xu, Y.; Jiang, S.; Zhao, Y. High Hydrostatic Pressure Treatment of Oysters (Crassostrea gigas)—Impact on Physicochemical Properties, Texture Parameters, and Volatile Flavor Compounds. Molecules 2021, 26, 5731. [Google Scholar] [CrossRef]
- Yi, J.; Zhang, L.; Ding, G.; Hu, X.; Liao, X.; Zhang, Y. High hydrostatic pressure and thermal treatments for ready-to-eat wine-marinated shrimp: An evaluation of microbiological and physicochemical qualities. Innov. Food Sci. Emerg. Technol. 2013, 20, 16–23. [Google Scholar] [CrossRef]
- Geada, P.; Moreira, C.; Silva, M.; Nunes, R.; Madureira, L.; Rocha, C.M.; Pereira, R.N.; Vicente, A.A.; Teixeira, J.A. Algal proteins: Production strategies and nutritional and functional properties. Bioresour. Technol. 2021, 332, 125125. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Qiu, S.; Wang, Z.; Zhao, C.; Tang, B.; Gao, Z.; Fan, J. Phycobiliproteins from algae: Current updates in sustainable production and applications in food and health. Food Res. Int. 2023, 167, 112737. [Google Scholar] [CrossRef]
- Giannoglou, M.; Andreou, V.; Thanou, I.; Markou, G.; Katsaros, G. High pressure assisted extraction of proteins from wet biomass of Arthrospira platensis (Spirulina)–A kinetic approach. Innov. Food Sci. Emerg. Technol. 2022, 81, 103138. [Google Scholar] [CrossRef]
- Giannoglou, M.; Andreou, V.; Thanou, I.; Markou, G.; Katsaros, G. Kinetic study of the combined effect of high pressure and pH-value on Arthrospira platensis (Spirulina) proteins extraction. Innov. Food Sci. Emerg. Technol. 2023, 85, 103331. [Google Scholar] [CrossRef]
- Ahmed, J.; Kumar, V. Effect of high-pressure treatment on oscillatory rheology, particle size distribution and microstructure of microalgae Chlorella vulgaris and Arthrospira platensis. Algal Res. 2022, 62, 102617. [Google Scholar] [CrossRef]
- Suwal, S.; Perreault, V.; Marciniak, A.; Tamigneaux, É.; Deslandes, É.; Bazinet, L.; Jacques, H.; Beaulieu, L.; Doyen, A. Effects of high hydrostatic pressure and polysaccharidases on the extraction of antioxidant compounds from red macroalgae, Palmaria palmata and Solieria chordalis. J. Food Eng. 2019, 252, 53–59. [Google Scholar] [CrossRef]
- Boukil, A.; Perreault, V.; Chamberland, J.; Mezdour, S.; Pouliot, Y.; Doyen, A. High hydrostatic pressure-assisted enzymatic hydrolysis affect mealworm allergenic proteins. Molecules 2020, 25, 2685. [Google Scholar] [CrossRef] [PubMed]
- Dion-Poulin, A.; Laroche, M.; Doyen, A.; Turgeon, S.L. Functionality of cricket and mealworm hydrolysates generated after pretreatment of meals with high hydrostatic pressures. Molecules 2020, 25, 5366. [Google Scholar] [CrossRef] [PubMed]
- Bolat, B.; Ugur, A.E.; Oztop, M.H.; Alpas, H. Effects of high hydrostatic pressure assisted degreasing on the technological properties of insect powders obtained from Acheta domesticus & Tenebrio molitor. J. Food Eng. 2021, 292, 110359. [Google Scholar] [CrossRef]
- Faieta, M.; Neri, L.; Di Michele, A.; Di Mattia, C.D.; Pittia, P. High hydrostatic pressure treatment of Arthrospira (Spirulina) platensis extracts and the baroprotective effect of sugars on phycobiliproteins. Innov. Food Sci. Emerg. Technol. 2021, 70, 102693. [Google Scholar] [CrossRef]
- Tran, T.; Denimal, E.; Lafarge, C.; Journaux, L.; Lee, J.A.; Winckler, P.; Perrier-Cornet, J.-M.; Pradelles, R.; Loupiac, C.; Cayot, N. Effect of high hydrostatic pressure on extraction of B-phycoerythrin from Porphyridium cruentum: Use of confocal microscopy and image processing. Algal Res. 2019, 38, 101394. [Google Scholar] [CrossRef]
- Tran, T.; Lafarge, C.; Pradelles, R.; Perrier-Cornet, J.-M.; Cayot, N.; Loupiac, C. Effect of high hydrostatic pressure on the structure of the soluble protein fraction in Porphyridium cruentum extracts. Innov. Food Sci. Emerg. Technol. 2019, 58, 102226. [Google Scholar] [CrossRef]
- Urbina, P.; Marin, C.; Sanz, T.; Rodrigo, D.; Martinez, A. Effect of HHP, enzymes and gelatin on physicochemical factors of gels made by using protein isolated from common cricket (Acheta domesticus). Foods 2021, 10, 858. [Google Scholar] [CrossRef] [PubMed]
- Boukil, A.; Marciniak, A.; Mezdour, S.; Pouliot, Y.; Doyen, A. Effect of high hydrostatic pressure intensity on structural modifications in mealworm (Tenebrio molitor) proteins. Foods 2022, 11, 956. [Google Scholar] [CrossRef] [PubMed]
Protein Sources | Samples | Extraction Methods | Pressure (MPa) | Time (min) | Effects on Samples | References | ||
---|---|---|---|---|---|---|---|---|
Structural Property | Bioactivities and Allergenicity | Functional and Other Properties | ||||||
Cereals | Buckwheat grains | - | 600 | 30 | (+) particle size | (−) antioxidant activity (+) TPC | (−) EAI and ESI (−) foaming capacity and stability (−) G′ (+) WAC and WHC | [18] |
Buckwheat proteins extracts | NaCl (0.086 M) | 100–600 | 1–30 | - | (−) IgE binding activity | - | [21] | |
Barley β-glucan concentrates | - | 300–600 | 10 | (−) particle size | - | (+) G′ (+) WHC and WSI | [22] | |
Millet gliadin extracts | NaCl (0.3%) | 100–500 | 10 | (−) FI (−) α-helix, random coil (+) β-turn, β-sheets (−) SH | - | (−) protein solubility (−) surface hydrophobicity (−) zeta potential | [23] | |
Rice protein extracts | Alkali (pH 10) | 100–500 | 20 | (+) FI (−) droplet size | - | (−) creaming index (+) EAI and ESI (+) protein solubility (+) surface hydrophobicity (+) zeta potential | [24] | |
PBS (pH 11) | 100–300 | 20 | (−) α-helix and β-sheet (+) random coil (+) SH (+) FI | (+) antioxidant activity | (+) EAI and ESI (+) surface hydrophobicity | [19] | ||
NaOH (0.2 M) | 400 | 15 | (+) SH | (+) antioxidant activity | (+) protein content (+) WHC (+) WSI | [20] | ||
Rice bran protein extracts | Alkali (pH 9) | 100–300 | 30 | (−) particle size (+) FI (+) SH | - | (+) EAI and ESI (+) foaming capacity (+) protein solubility (−) zeta potential | [25] | |
Quinoa protein extracts | NaCl (0.5 M, | 100–600 | 15 | - | - | (+) viscosity (+) G′ | [26] | |
pH 8) | 250–600 | 15 | (−) α-helix, β-sheet (+) β-turn, random coil (−) SH (−) particle size | - | (+) protein solubility (−) surface hydrophobicity | [27] | ||
Wheat and oat flour | - | 150–300 | 30 | - | - | (−) hardness, gumminess, and chewiness (+) L* (+) WHC | [28] | |
Wheat gluten proteins | - | 100–400 | 10 | (+) SH (+) β-Sheet, random coil (−) α-helix, β-turn | - | (+) G′ (+) gel strength (+) WHC | [29] | |
200–500 | 20 | (+) α-helix, β-sheet (−) random coil (−) SH | (−) allergenicity | (+) surface hydrophobicity | [17] | |||
Legumes and nuts | Almond proteins extracts | PBS (pH 7.4) | 400–580 | 3 | - | (+) immunoreactivity | (−) protein solubility | [30] |
Cowpea protein extracts | Alkali (pH 10) | 200–600 | 5 | (−) DD (−) ∆H (−) FI | - | (+) G′ (+) hardness (−) L* (−) protein solubility (−) viscosity (+) WHC | [31,32,33,34,35] | |
Kidney bean protein extracts | Alkali (pH 8) | 200–600 | 15 | (−) ∆H | - | (+) EAI and ESI (+) foaming capacity and stability (+) L* (+) G′ (+) WHC | [36] | |
Pea protein extracts | Alkali (pH 10) | 200–600 | 5 | (−) droplet size (−) FI | - | (+) ESI (−) foaming capacity | [37] | |
Pulse protein isolates | - | 600 | 4 | (−) DD (−) ∆H | - | (+) ESI (+) foam expansion and stability (+) G’ (−) protein solubility (+) surface hydrophobicity (+) WHC | [38] | |
Peanut protein extracts | Alkali (pH 9) | 50–200 | 5 | (−) ∆H (+) SH | - | (+) hardness (+) OBC (+) surface hydrophobicity (+) WHC | [39] | |
Tris-HCl (50 mM, pH 8.0) | 200–600 | 2.5–20 | - | (−) allergenicity | - | [40] | ||
Walnut protein extracts | Alkali (pH 8.5) | 300–600 | 20 | (+) FI (+) SH | - | (+) EAI and (−) ESI (+) foaming capacity and stability (−) protein solubility (+) protein digestibility (+) surface hydrophobicity | [41] | |
Soybeans | - | 350–550 | 15 | (+) α-helix (−) β-sheet (−) FI | (−) agglutinin activity (−) cytotoxicity | - | [42] | |
Soybean protein extracts | Alkali (pH 8) | 50–150 | 12–24 h | - | (+) anti-inflammatory activity | (+) protein yield (+) protein content (+) AA content | [43] | |
Alkali (pH 8) | 80–300 | 1–5 h | - | (+) antioxidant activity (+) ACE inhibitory activity | (+) DH (−) surface hydrophobicity | [44] | ||
Soybean protein isolates | - | 200–500 | 5–20 | (−) α-helix, β-sheet (+) random coil (−) FI (+) SH | (−) allergenicity | - | [45] | |
- | 200–500 | 15 | - | (−) allergenicity | - | [46] | ||
- | 200–400 | 10 | (+) α-helix, random coil (−) β-sheet (−) particle and size (+) SH | - | (+) EAI and ESI (+) protein solubility (+) surface hydrophobicity (−) zeta potential | [47] | ||
- | 250 | 30 | (+) α-helix (−) β-sheet, β-turn (−) SH (+) particle size | - | (+) EAI and (−) ESI (+) foaming capacity and stability (−) hardness (+) protein solubility (+) surface hydrophobicity (+) zeta potential | [48] | ||
- | 200–600 | 15 | (+) α-helix (−) β-sheet (−) SH | - | (+) protein solubility (+) surface hydrophobicity (−) viscosity | [49] | ||
Seeds | Cumin protein extracts | Alkali (pH 9) | 200–600 | 15 | (−) FI | - | (−) EAI and ESI (+) surface hydrophobicity (+) protein solubility (+) G’ | [50] |
Flaxseed protein extracts | Alkali (pH 10) | 600 | 5–20 | (−) FI (+) particle size | - | (+) antioxidant activity | [51] | |
Cellulase (1.6 U/mg) | 100–300 | 5–10 | (+) FI | - | (+) antioxidant activity | [52] | ||
Ginkgo seed protein isolates | - | 100–700 | 20 | (−) α-helix, β-sheet (+) random coils (+) FI (+) SH | (−) allergenicity | (+) EAI | [53] | |
Rapeseed protein extracts | Alkali (pH 11) | 400 | 5–20 | - | - | (+) surface hydrophobicity | [54] | |
Vegetables | Sweet potato protein extracts | NaHSO3 (0.1% w/v) | 200–600 | 15 | (−) α-helix, β-turn (+) β-sheet (−) droplet size (−) ∆H | - | (+) surface hydrophobicity (+) EAI and ESI (+) G’ (−) protein solubility (−) creaming stability | [55,56,57,58] |
NaHSO3 (10mg/mL) | 100–600 | 20 | (+) β-sheet (−) β-turn (−) ∆H | - | - | [59] | ||
NaHSO3 (50 mM) | 250–550 | 15 | (−) α-helix (+) β-sheet, random coils (+) SH (−) ∆H | (+) antioxidant activity | (+) surface hydrophobicity | [60] | ||
NaHSO3 (0.1% w/v) | 250–550 | 30 | (+) α-helix (−) β-sheet (−) ∆H (+) SH | - | (+) surface hydrophobicity (+) zeta potential (+) G′ and WHC (+) hardness, springiness, chewiness, and gumminess | [61,62,63,64] | ||
Protease (6% w/w) | 100–300 | 60 | - | (+) ACE inhibitory activity | (+) DH (+) protein recovery | [65] | ||
- | 300–500 | 30 | - | - | (+) hardness (−) WHC | [66] | ||
- | 300–500 | 20 | - | (+) antioxidant activity | (+) EAI and ESI (+) surface hydrophobicity (+) viscosity | [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braspaiboon, S.; Laokuldilok, T. High Hydrostatic Pressure: Influences on Allergenicity, Bioactivities, and Structural and Functional Properties of Proteins from Diverse Food Sources. Foods 2024, 13, 922. https://doi.org/10.3390/foods13060922
Braspaiboon S, Laokuldilok T. High Hydrostatic Pressure: Influences on Allergenicity, Bioactivities, and Structural and Functional Properties of Proteins from Diverse Food Sources. Foods. 2024; 13(6):922. https://doi.org/10.3390/foods13060922
Chicago/Turabian StyleBraspaiboon, Sukan, and Thunnop Laokuldilok. 2024. "High Hydrostatic Pressure: Influences on Allergenicity, Bioactivities, and Structural and Functional Properties of Proteins from Diverse Food Sources" Foods 13, no. 6: 922. https://doi.org/10.3390/foods13060922
APA StyleBraspaiboon, S., & Laokuldilok, T. (2024). High Hydrostatic Pressure: Influences on Allergenicity, Bioactivities, and Structural and Functional Properties of Proteins from Diverse Food Sources. Foods, 13(6), 922. https://doi.org/10.3390/foods13060922