Evaluation of Thai Silkworm (Bombyx mori L.) Hydrolysate Powder for Blood Pressure Reduction in Hypertensive Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Animal Study for Acute Toxicity Assessment
2.4. Determination of IC50 ACE-Inhibition of Silkworm Hydrolysate Powder
2.5. Anti-Hypertension Treatment in the Hypertensive Rat
- (a)
- Hypertensive group (HT): the negative control group that received deionized water.
- (b)
- Positive control group (HT-D): received Captopril (25 mg kg−1/day).
- (c)
- Low dose group (HT-L): received MSHP at a dose of 50 mg kg−1/day.
- (d)
- Medium dose group (HT-M): received MSHP at a dose of 100 mg kg−1/day.
- (e)
- High dose group (HT-H): received MSHP at a dose of 200 mg kg−1/day.
2.6. Statistical Analysis
3. Results
3.1. Acute Toxicity Assessment
3.2. Anti-Hypertension Treatment in the Hypertensive Rat
4. Discussion
4.1. Acute Toxicity Assessment
4.2. Anti-Hypertension in the Hypertensive Rat
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Carey, R.M.; Moran, A.E.; Whelton, P.K. Treatment of hypertension: A review. JAMA J. Am. Med. Assoc. 2022, 328, 1849. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.; Deussen, A. Effects of natural peptides from food proteins on angiotensin-converting enzyme activity and hypertension. Crit. Rev. Food Sci. Nutr. 2019, 59, 1264–1283. [Google Scholar] [CrossRef] [PubMed]
- Sonklin, C.; Alashi, M.A.; Laohakunjit, N.; Kerdchoechuen, O.; Aluko, R.E. Identification of antihypertensive peptides from mung bean protein hydrolysate and their effects in spontaneously hypertensive rats. J. Funct. Foods 2020, 64, 103635. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration, FDA. Angiotensin-Converting Enzyme Inhibitor (ACE Inhibitor) Drugs. 2021. Available online: https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/angiotensin-converting-enzyme-inhibitor-ace-inhibitor-drugs (accessed on 2 June 2022).
- Bezalel, S.; Mahlab-Guri, K.; Asher, I.; Werner, B.; Sthoeger, Z.M. Angiotensin-converting enzyme inhibitor-induced angioedema. Am. J. Med. 2015, 128, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.S.; Swedberg, K.; McMurray, J.J.V.; Granger, C.B.; Yusuf, S.; Young, J.B.; Dunlap, M.E.; Solomon, S.D.; Hainer, J.W.; Olofsson, B.; et al. Incidence and predictors of hyperkalemia in patients with heart failure. J. Am. Coll. Cardiol. 2007, 50, 1959–1966. [Google Scholar] [CrossRef] [PubMed]
- Jackson, B.; Maher, D.; Matthews, P.G.; McGrath, B.P.; Johnston, C.I. Lack of cross-sensitivity between captopril and enalapril. Aust. N. Z. J. Med. 1988, 18, 21–27. [Google Scholar] [CrossRef]
- Morimoto, T.; Gandhi, T.K.; Fiskio, J.M.; Seger, A.C.; So, J.W.; Cook, E.F.; Fukui, T.; Bates, D.W. An evaluation of risk factors for adverse drug events associated with angiotensin-converting enzyme inhibitors. J. Eval. Clin. Pract. 2004, 10, 499–509. [Google Scholar] [CrossRef]
- Tao, M.; Wang, C.; Liao, D.; Liu, H.; Zhao, Z.; Zhao, Z. Purification, modification, and inhibition mechanism of angiotensin I-converting enzyme inhibitory peptide from silkworm pupa (Bombyx mori) protein hydrolysate. Process Biochem. 2017, 54, 172–179. [Google Scholar] [CrossRef]
- Wang, W.; Wang, N.; Zhou, Y.; Zhang, Y.; Xu, L.; Xu, J.; Feng, F.; He, G. Isolation of a novel peptide from silkworm pupae protein components and interaction characteristics to angiotensin I-converting enzyme. Eur. Food Res. Technol. 2011, 232, 29–38. [Google Scholar] [CrossRef]
- Wu, Q.Y.; Jia, J.Q.; Tan, G.X.; Xu, J.L.; Gui, Z.Z. Physicochemical properties of silkworm larvae protein isolate and gastrointestinal hydrolysate bioactivities. Afr. J. Biotechnol. 2011, 10, 6145–6153. [Google Scholar]
- Zielińska, E.; Karaś, M.; Baraniak, B.; Jakubczyk, A. Evaluation of ACE, α-glucosidase, and lipase inhibitory activities of peptides obtained by in vitro digestion of selected species of edible insects. Eur. Food Res. Technol. 2020, 246, 1361–1369. [Google Scholar] [CrossRef]
- Mendoza-Salazar, A.; Santiago-López, L.; Torres-Llanez, M.J.; Hernández-Mendoza, A.; Vallejo-Cordoba, B.; Liceaga, A.M.; González-Córdova, A.F. In Vitro Antioxidant and Antihypertensive Activity of Edible Insects Flours (Mealworm and Grasshopper) Fermented with Lactococcus lactis Strains. Fermentation 2021, 7, 153. [Google Scholar] [CrossRef]
- Wu, Q.; Jia, J.; Yan, H.; Du, J.; Gui, Z. A novel angiotensin-I converting enzyme (ACE) inhibitory peptide from gastrointestinal protease hydrolysate of silkworm pupa (Bombyx mori) protein: Biochemical characterization and molecular docking study. Peptides 2015, 68, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.; Wong, N.A.K.; Chae, M.; Auh, J.-H. Comparative characterization of protein hydrolysates from three edible insects: Mealworm larvae, adult crickets, and silkworm pupae. Foods 2019, 8, 563. [Google Scholar] [CrossRef]
- Wang, W.; Wang, N.; Zhang, Y. Antihypertensive properties on spontaneously hypertensive rats of peptide hydrolysates from silkworm pupae protein. Food Nutr. Sci. 2014, 05, 1202–1211. [Google Scholar] [CrossRef]
- Iwamoto, N.; Sasaki, A.; Maizawa, T.; Hamada-Sato, N. Abalone Viscera Fermented with Aspergillus oryzae 001 Prevents Pressure Elevation by Inhibiting Angiotensin Converting Enzyme. Nutrients 2023, 15, 947. [Google Scholar] [CrossRef] [PubMed]
- Pechanova, O.; Vrankova, S.; Cebova, M. Chronic L-name-treatment produces hypertension by different mechanisms in peripheral tissues and brain: Role of central eNOS. Pathophysiology 2020, 27, 46–54. [Google Scholar] [CrossRef]
- Benjakul, S.; Karnjanapratum, S.; Visessanguan, W. Hydrolysed collagen from Lates calcarifer skin: Its acute toxicity and impact on cell proliferation and collagen production of fibroblasts. Int. J. Food Sci. Technol. 2018, 53, 1871–1879. [Google Scholar] [CrossRef]
- Barkia, I.; Ketata Bouaziz, H.; Sellami Boudawara, T.; Aleya, L.; Gargouri, A.F.; Saari, N. Acute oral toxicity study on Wistar rats fed microalgal protein hydrolysates from Bellerochea malleus. Environ. Sci. Pollut. Res. Int. 2020, 27, 19087–19094. [Google Scholar] [CrossRef]
- Anadón, A.; Martínez, M.A.; Ares, I.; Ramos, E.; Martínez-Larrañaga, M.R.; Contreras, M.M.; Ramos, M.; Recio, I. Acute and repeated dose (4 weeks) oral toxicity studies of two antihypertensive peptides, RYLGY and AYFYPEL, that correspond to fragments (90–94) and (143–149) from α s1 -casein. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2010, 48, 1836–1845. [Google Scholar] [CrossRef]
- Sadat, A.; Biswas, T.; Cardoso, M.H.; Mondal, R.; Ghosh, A.; Dam, P.; Nesa, J.; Chakraborty, J.; Bhattacharjya, D.; Franco, O.L.; et al. Silkworm pupae as a future food with nutritional and medicinal benefits. Curr. Opin. Food Sci. 2022, 44, 100818. [Google Scholar] [CrossRef]
- Hussein, F.A.; Chay, S.Y.; Ghanisma, S.B.M.; Zarei, M.; Auwal, S.M.; Hamid, A.A.; Ibadullah, W.Z.W.; Saari, N. Toxicity study and blood pressure–lowering efficacy of whey protein concentrate hydrolysate in rat models, plus peptide characterization. J. Dairy Sci. 2020, 103, 2053–2064. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Feng, C.; Hong, H.; Zhang, Y.; Luo, Z.; Wang, Q.; Luo, Y.; Tan, Y. Novel ACE inhibitory peptides derived from whey protein hydrolysates: Identification and molecular docking analysis. Food Biosci. 2022, 48, 101737. [Google Scholar] [CrossRef]
- Ng, K.-L.; Tan, Y.-N.; Osman, M.A.; Rajab, N.F.; Ee, K.-Y. Characterization, antioxidant, ACE inhibition and toxicity evaluations of palm kernel cake-derived Alcalase® hydrolysate. Food Sci. Technol. 2022, 42, e80421. [Google Scholar] [CrossRef]
- Nguelefack-Mbuyo, P.E.; Nguelefack, T.B.; Dongmo, A.B.; Afkir, S.; Azebaze, A.G.B.; Dimo, T.; Legssyer, A.; Kamanyi, A.; Ziyyat, A. Anti-hypertensive effects of the methanol/methylene chloride stem bark extract of Mammea africana in l-NAME-induced hypertensive rats. J. Ethnopharmacol. 2008, 117, 446–450. [Google Scholar] [CrossRef] [PubMed]
- International Union of Biochemistry and Molecular Biology. EC 3.4.15.1. 2024. Available online: https://www.enzyme-database.org/query.php?ec=3.4.15.1 (accessed on 10 March 2024).
- Lee, J.H.; Kim, T.-K.; Yong, H.I.; Cha, J.Y.; Song, K.-M.; Lee, H.G.; Je, J.-G.; Kang, M.-C.; Choi, Y.-S. Peptides inhibiting angiotensin-I-converting enzyme: Isolation from flavourzyme hydrolysate of Protaetia brevitarsis larva protein and identification. Food Chem. 2023, 399, 133897. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, L.; Cheng, X.; Zhou, J.; Tang, X.; Mao, X.-Y. Hypertension-attenuating effect of whey protein hydrolysate on spontaneously hypertensive rats. Food Chem. 2012, 134, 122–126. [Google Scholar] [CrossRef]
- Li, H.; Prairie, N.; Udenigwe, C.C.; Adebiyi, A.P.; Tappia, P.S.; Aukema, H.M.; Jones, P.J.H.; Aluko, R.E. Blood pressure lowering effect of a pea protein hydrolysate in hypertensive rats and humans. J. Agric. Food Chem. 2011, 59, 9854–9860. [Google Scholar] [CrossRef]
- Jia, J.; Wu, Q.; Yan, H.; Gui, Z. Purification and molecular docking study of a novel angiotensin-I converting enzyme (ACE) inhibitory peptide from alcalase hydrolysate of ultrasonic-pretreated silkworm pupa (Bombyx mori) protein. Process Biochem. 2015, 50, 876–883. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Huang, X.; Zheng, J.; Zhang, F.; Kan, J. Identification and characterization of a novel angiotensin I-converting enzyme inhibitory peptide (ACEIP) from silkworm pupa. Food Sci. Biotechnol. 2014, 23, 1017–1023. [Google Scholar] [CrossRef]
Organs | Control Group ns | Experimental Group ns |
---|---|---|
Liver | 10.24 ± 1.22 | 11.42 ± 0.72 |
Kidney (both sides) | 2.12 ± 0.12 | 2.45 ± 0.11 |
Heart | 0.91 ± 0.06 | 0.92 ± 0.02 |
Spleen | 0.54 ± 0.05 | 0.66 ± 0.07 |
Rat Group | Weight of Organs | ||||
---|---|---|---|---|---|
Spleen | Heart | Liver | Kidney (Left) | Kidney (Right) | |
NC | 0.72 ± 0.04 | 0.80 ± 0.05 | 11.14 ± 1.26 | 1.20 ± 0.32 | 1.21 ± 0.20 |
HT | 0.65 ± 0.03 | 0.95 * ± 0.06 | 10.89 ± 0.86 | 1.14 ± 0.02 | 1.16 ± 0.09 |
HT-D | 0.65 ± 0.04 | 0.90 * ± 0.03 | 11.32 ± 0.88 | 1.16 ± 0.08 | 1.13 ± 0.10 |
HT-L | 0.61 ± 0.14 | 0.89 ± 0.12 | 10.23 ± 2.03 | 0.98 ± 0.08 | 1.05 ± 0.11 |
HT-M | 0.63 ± 0.11 | 0.89 ± 0.11 | 11.19 ± 1.81 | 1.13 ± 0.04 | 1.13 ± 0.05 |
HT-H | 0.64 ± 0.05 | 0.85 ± 0.07 | 11.82 ± 1.35 | 1.06 ± 0.11 | 1.08 ± 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anuduang, A.; Mustapha, W.A.W.; Lim, S.J.; Jomduang, S.; Phongthai, S.; Ounjaijean, S.; Boonyapranai, K. Evaluation of Thai Silkworm (Bombyx mori L.) Hydrolysate Powder for Blood Pressure Reduction in Hypertensive Rats. Foods 2024, 13, 943. https://doi.org/10.3390/foods13060943
Anuduang A, Mustapha WAW, Lim SJ, Jomduang S, Phongthai S, Ounjaijean S, Boonyapranai K. Evaluation of Thai Silkworm (Bombyx mori L.) Hydrolysate Powder for Blood Pressure Reduction in Hypertensive Rats. Foods. 2024; 13(6):943. https://doi.org/10.3390/foods13060943
Chicago/Turabian StyleAnuduang, Artorn, Wan Aida Wan Mustapha, Seng Joe Lim, Somchai Jomduang, Suphat Phongthai, Sakaewan Ounjaijean, and Kongsak Boonyapranai. 2024. "Evaluation of Thai Silkworm (Bombyx mori L.) Hydrolysate Powder for Blood Pressure Reduction in Hypertensive Rats" Foods 13, no. 6: 943. https://doi.org/10.3390/foods13060943
APA StyleAnuduang, A., Mustapha, W. A. W., Lim, S. J., Jomduang, S., Phongthai, S., Ounjaijean, S., & Boonyapranai, K. (2024). Evaluation of Thai Silkworm (Bombyx mori L.) Hydrolysate Powder for Blood Pressure Reduction in Hypertensive Rats. Foods, 13(6), 943. https://doi.org/10.3390/foods13060943