Effects of Drying Methods on the Physicochemical and Functional Properties of Cinnamomum camphora Seed Kernel Protein Isolate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Separation of the Cinnamomum camphora Seed Kernel Protein Isolate (CPI)
2.3. Drying Treatments
2.4. Determination of Physicochemical Properties of CPI
2.4.1. Color Measurement
2.4.2. Scanning Electron Microscopy (SEM)
2.4.3. Measurement of Free Sulfhydryl (-SH) Group Content
2.4.4. Determination of Particle Size
2.4.5. Determination of Surface Hydrophobicity (H0)
2.4.6. FTIR
2.4.7. Intrinsic Fluorescence Spectrum Measurement
2.4.8. SDS-PAGE and Native-PAGE
2.4.9. X-ray Diffraction (XRD) Measurement
2.4.10. Thermal Behavior
2.5. Functional Properties of CPI
2.5.1. Solubility
2.5.2. Emulsifying Properties
2.5.3. Foaming Capacity and Stability
2.6. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties of CPI
3.1.1. Protein Contents and Colors of CPI
3.1.2. SEM
3.1.3. -SH Content, Particle Size, and H0
3.1.4. FTIR
3.1.5. SDS-PAGE and Native-PAGE Analysis
3.1.6. Intrinsic Fluorescence Spectrum
3.1.7. XRD
3.1.8. Thermal Stability
DSC Analysis
TGA Analysis
3.2. Functional Properties of CPI
3.2.1. Solubility
3.2.2. Emulsifying Capacity and Stability
3.2.3. Foaming Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, X.; Liang, S.; Peng, T.; Zhang, G.; Zeng, Z.; Yu, P.; Gong, D.; Deng, S. Influence of phenolic compounds on physicochemical and functional properties of protein isolate from Cinnamomum camphora seed kernel. Food Hydrocoll. 2020, 102, 105612. [Google Scholar] [CrossRef]
- Yan, X.; Gong, X.; Zeng, Z.; Xia, J.; Ma, M.; Zhao, J.; Zhang, G.; Wang, P.; Wan, D.; Yu, P.; et al. Geographic pattern of variations in chemical composition and nutritional value of Cinnamomum camphora seed kernels from China. Foods 2023, 12, 2630. [Google Scholar] [CrossRef]
- Brishti, F.H.; Chay, S.Y.; Muhammad, K.; Ismail-Fitry, M.R.; Zarei, M.; Karthikeyan, S.; Saari, N. Effects of drying techniques on the physicochemical, functional, thermal, structural and rheological properties of mung bean (Vigna radiata) protein isolate powder. Food Res. Int. 2020, 138, 109783. [Google Scholar] [CrossRef]
- Shen, Y.; Tang, X.; Li, Y. Drying methods affect physicochemical and functional properties of quinoa protein isolate. Food Chem. 2021, 339, 127823. [Google Scholar] [CrossRef]
- Mahmood, N.; Muhoza, B.; Huang, Y.; Munir, Z.; Zhang, Y.; Zhang, S.; Li, Y. Effects of emerging food pretreatment and drying techniques on protein structures, functional and nutritional properties: An updated review. Crit. Rev. Food Sci. Nutr. 2023, 1–17. [Google Scholar] [CrossRef]
- Hu, X.-Z.; Cheng, Y.-Q.; Fan, J.-F.; Lu, Z.-H.; Yamaki, K.; Li, L.-T. Effects of drying method on physicochemical and functional properties of soy protein isolates: Functional properties of soy protein isolates. J. Food Process. Preserv. 2009, 34, 520–540. [Google Scholar] [CrossRef]
- Joshi, M.; Adhikari, B.; Aldred, P.; Panozzo, J.F.; Kasapis, S. Physicochemical and functional properties of lentil protein isolates prepared by different drying methods. Food Chem. 2011, 129, 1513–1522. [Google Scholar] [CrossRef]
- Zhao, Q.; Xiong, H.; Selomulya, C.; Chen, X.D.; Huang, S.; Ruan, X.; Zhou, Q.; Sun, W. Effects of spray drying and freeze drying on the properties of protein isolate from rice dreg protein. Food Bioprocess Technol. 2013, 6, 1759–1769. [Google Scholar] [CrossRef]
- Beveridge, T.; Toma, S.J.; Nakai, S. Determination of SH-ANS SS-groups in some food proteins using Ellman’s reagnt. J. Food Science 1974, 39, 49–51. [Google Scholar] [CrossRef]
- Yan, X.; Gong, X.; Zeng, Z.; Ma, M.; Zhao, J.; Xia, J.; Li, M.; Yang, Y.; Yu, P.; Gong, D.; et al. Dextran conjugation improves the structural and functional properties of heat-treated protein isolate from Cinnamomum camphora seed kernel. Foods 2022, 11, 3066. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhu, L.; Wu, Q.; Chen, Y.; Wu, G.; Zhang, H. Different interactions between tartary buckwheat protein and tartary buckwheat phenols during extraction: Alterations in the conformation and antioxidant activity of protein. Food Chem. 2023, 418, 135711. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Gao, Y.; Liu, S.; Zhang, G.; Zhao, J.; Cheng, D.; Zeng, Z.; Gong, X.; Yu, P.; Gong, D. Covalent modification by phenolic extract improves the structural properties and antioxidant activities of the protein isolate from Cinnamomum camphora seed kernel. Food Chem. 2021, 352, 129377. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-R.; Zhang, B.; Fan, J.-L.; Yang, Q.; Chen, H.-Q. Effects of sodium tripolyphosphate modification on the structural, functional, and rheological properties of rice glutelin. Food Chem. 2019, 281, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Hadnađev, M.; Dapčević-Hadnađev, T.; Lazaridou, A.; Moschakis, T.; Michaelidou, A.-M.; Popović, S.; Biliaderis, C.G. Hempseed meal protein isolates prepared by different isolation techniques. Part I. physicochemical properties. Food Hydrocoll. 2018, 79, 526–533. [Google Scholar] [CrossRef]
- Zhong, C.; Wang, R.; Zhou, Z.; Jia, S.-R.; Tan, Z.-L.; Han, P.-P. Functional properties of protein isolates from Caragana korshinskii Kom. Extracted by three different methods. J. Agric. Food Chem. 2012, 60, 10337–10342. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, K.; Ghosh, S. Preparation and characterization of papain-modified sesame ( Sesamum indicum L.) protein isolates. J. Agric. Food Chem. 2002, 50, 6854–6857. [Google Scholar] [CrossRef] [PubMed]
- Kha, T.C.; Nguyen, M.H.; Roach, P.D. Effects of spray drying conditions on the physicochemical and antioxidant properties of the gac (Momordica cochinchinensis) fruit aril powder. J. Food Eng. 2010, 98, 385–392. [Google Scholar] [CrossRef]
- Lin, N.; Liu, B.; Liu, Z.; Qi, T. Effects of different drying methods on the structures and functional properties of phosphorylated antarctic krill protein. J. Food Sci. 2020, 85, 3690–3699. [Google Scholar] [CrossRef]
- Nie, H.; Dong, H.; Chen, Y.; Hao, M.; Chen, J.; Tang, Z.; Liu, Q.; Li, J.; Xu, X.; Xue, Y. Effects of spray drying and freeze drying on the structure and emulsifying properties of yam soluble protein: A study by experiment and molecular dynamics simulation. Food Chem. 2023, 409, 135238. [Google Scholar] [CrossRef]
- Yan, X.; Gong, X.; Zeng, Z.; Wan, D.; Xia, J.; Ma, M.; Zhao, J.; Wang, P.; Zhang, S.; Yu, P.; et al. Changes in structure, functional properties and volatile compounds of Cinnamomum camphora seed kernel protein by Maillard reaction. Food Biosci. 2023, 53, 102628. [Google Scholar] [CrossRef]
- Bhatta, S.; Stevanovic, T.; Ratti, C. Freeze-drying of maple syrup: Efficient protocol formulation and evaluation of powder physicochemical properties. Drying Technol. 2020, 38, 1138–1150. [Google Scholar] [CrossRef]
- Özdemir, E.E.; Görgüç, A.; Gençdağ, E.; Yılmaz, F.M. Physicochemical, functional and emulsifying properties of plant protein powder from industrial sesame processing waste as affected by spray and freeze drying. LWT 2022, 154, 112646. [Google Scholar] [CrossRef]
- Li, N.; Wang, Y.; Gan, Y.; Wang, S.; Wang, Z.; Zhang, C.; Wang, Z. Physicochemical and functional properties of protein isolate recovered from Rana chensinensis ovum based on different drying techniques. Food Chem. 2022, 396, 133632. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tong, X.; Yuan, Y.; Peng, X.; Zhang, Q.; Zhang, S.; Xie, C.; Zhang, X.; Yan, S.; Xu, J.; et al. Effect of spray-drying and freeze-drying on the properties of soybean hydrolysates. J. Chem. 2020, 2020, 9201457. [Google Scholar] [CrossRef]
- Wang, X.; Lei, Y.; Rafique, H.; Zou, L.; Hu, X. Effect of stir-frying on physicochemical and functional properties of oat protein isolates. Foods 2023, 12, 2670. [Google Scholar] [CrossRef]
- Nikoo, M.; Benjakul, S.; Xu, X. Antioxidant and cryoprotective effects of amur sturgeon skin gelatin hydrolysate in unwashed fish mince. Food Chem. 2015, 181, 295–303. [Google Scholar] [CrossRef]
- Liu, H.-L.; Chen, W.-J.; Chou, S.-N. Mechanisms of aggregation of alpha- and beta-amylases in aqueous dispersions. Colloids Surf. B Biointerfaces 2003, 28, 215–225. [Google Scholar] [CrossRef]
- Burger, T.G.; Singh, I.; Mayfield, C.; Baumert, J.L.; Zhang, Y. The impact of spray drying conditions on the physicochemical and emulsification properties of pea protein isolate. LWT 2022, 153, 112495. [Google Scholar] [CrossRef]
- Cui, Y.; Li, X.; Lu, M.; Liu, X.; Duan, X. Role of polysaccharide conjugation in physicochemical and emulsifying properties of egg phosvitin and the calcium binding capacity of its phosphopeptides. Food Funct. 2019, 10, 1808–1815. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, W.; Yang, R. Steam flash explosion assisted dissolution of keratin from feathers. ACS Sustainable Chem. Eng. 2015, 3, 2036–2042. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, J.; Li, Y.; Wang, Z.; Liang, J.; Wang, R.; Chen, Y.; Ma, W.; Qi, B.; Zhang, M. Effects of ultrasound on the structure and physical properties of black bean protein isolates. Food Res. Int. 2014, 62, 595–601. [Google Scholar] [CrossRef]
- Shevkani, K.; Singh, N.; Kaur, A.; Rana, J.C. Structural and functional characterization of kidney bean and field pea protein isolates: A comparative study. Food Hydrocoll. 2015, 43, 679–689. [Google Scholar] [CrossRef]
- Shen, P.; Gao, Z.; Xu, M.; Ohm, J.-B.; Rao, J.; Chen, B. The impact of hempseed dehulling on chemical composition, structure properties and aromatic profile of hemp protein isolate. Food Hydrocoll. 2020, 106, 105889. [Google Scholar] [CrossRef]
- Fan, H.; Ai, M.; Cao, Y.; Long, J.; Li, S.; Jiang, A. Understanding the hydration of alkali-induced duck egg white gel at high temperature. LWT 2021, 142, 110976. [Google Scholar] [CrossRef]
- Dong, X.; Woo, M.W.; Quek, S.Y. The physicochemical properties, functionality, and digestibility of hempseed protein isolate as impacted by spray drying and freeze drying. Food Chem. 2024, 433, 137310. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; He, Z.; Huang, H. Secondary structure transitions of bovine serum albumin induced by temperature variation. Vib. Spectrosc. 2017, 92, 273–279. [Google Scholar] [CrossRef]
- Lin, S.; Sun, J.; Cao, D.; Cao, J.; Jiang, W. Distinction of different heat-treated bovine milks by native-PAGE fingerprinting of their whey proteins. Food Chem. 2010, 121, 803–808. [Google Scholar] [CrossRef]
- Mundi, S.; Aluko, R.E. Effects of NaCl and pH on the structural conformations of kidney bean vicilin. Food Chem. 2013, 139, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Wu, Y.; Chen, Y.; Qie, X.; Zeng, M.; Wang, Z.; Qin, F.; Chen, J.; He, Z. Analysis of the interaction between cyanidin-3-o-glucoside and casein hydrolysates and its effect on the antioxidant ability of the complexes. Food Chem. 2021, 340, 127915. [Google Scholar] [CrossRef]
- Yu, J.; Ji, H.; Chen, Y.; Zhang, Y.; Zheng, X.; Li, S.; Chen, Y. Analysis of the glycosylation products of peanut protein and lactose by cold plasma treatment: Solubility and structural characteristics. Int. J. Biol. Macromol. 2020, 158, 1194–1203. [Google Scholar] [CrossRef]
- Kaushik, P.; Dowling, K.; McKnight, S.; Barrow, C.J.; Wang, B.; Adhikari, B. Preparation, characterization and functional properties of flax seed protein isolate. Food Chem. 2016, 197, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Feyzi, S.; Milani, E.; Golimovahhed, Q.A. Grass Pea (Lathyrus sativus L.) Protein Isolate: The Effect of extraction optimization and drying methods on the structure and functional properties. Food Hydrocoll. 2018, 74, 187–196. [Google Scholar] [CrossRef]
- Feyzi, S.; Varidi, M.; Zare, F.; Varidi, M.J. Effect of drying methods on the structure, thermo and functional properties of fenugreek (Trigonella foenum graecum) protein isolate. J. Sci. Food Agric. 2018, 98, 1880–1888. [Google Scholar] [CrossRef]
- Wang, S.; Niu, L.; Zhou, B.; Peng, Y.; Yang, X.; Shen, Y.; Li, S. Drying methods affect physicochemical and functional characteristics of Clanis Bilineata Tingtauica Mell protein. Front. Nutr. 2022, 9, 1053422. [Google Scholar] [CrossRef] [PubMed]
- Gong, K.-J.; Shi, A.-M.; Liu, H.-Z.; Liu, L.; Hu, H.; Adhikari, B.; Wang, Q. Emulsifying properties and structure changes of spray and freeze-dried peanut protein isolate. J. Food Eng. 2016, 170, 33–40. [Google Scholar] [CrossRef]
- Ghribi, A.M.; Gafsi, I.M.; Blecker, C.; Danthine, S.; Attia, H.; Besbes, S. Effect of drying methods on physico-chemical and functional properties of chickpea protein concentrates. J. Food Eng. 2015, 165, 179–188. [Google Scholar] [CrossRef]
- Amagliani, L.; Silva, J.V.C.; Saffon, M.; Dombrowski, J. On the foaming properties of plant proteins: Current status and future opportunities. Trends Food Sci. Technol. 2021, 118, 261–272. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, L.; Hong, X.; Liu, Y.; Li, J. Structural and functional properties of perilla protein isolate extracted from oilseed residues and its utilization in Pickering emulsions. Food Hydrocoll. 2021, 113, 106412. [Google Scholar] [CrossRef]
Samples | Protein Content (%, Dry Weight Basis) | Color | |||
---|---|---|---|---|---|
L* | a* | b* | ΔE | ||
FD-CPI | 93.24 ± 0.30 b | 40.25 ± 0.13 b | 1.56 ± 0.49 b | 2.55 ± 0.06 b | 54.33 ± 0.11 b |
VD-CPI | 87.52 ± 0.70 a | 35.81 ± 0.10 a | 1.65 ± 0.18 b | 4.05 ± 0.09 c | 58.80 ± 0.11 c |
SD-CPI | 92.18 ± 1.46 b | 55.53 ± 0.49 c | 0.57 ± 0.12 a | 0.25 ± 0.06 a | 39.07 ± 0.48 a |
Samples | FD-CPI | VD-CPI | SD-CPI |
---|---|---|---|
-SH (µmol/g) | 5.32 ± 0.01 b | 4.86 ± 0.03 a | 5.24 ± 0.11 b |
H0 | 85.99 ± 6.79 c | 52.59± 0.01 a | 70.60 ± 7.10 b |
Particle sizes (nm) | 117.70 ± 1.66 b | 122.10 ± 4.33 b | 84.70 ± 1.22 a |
Td (°C) | 128.20 | 138.17 | 142.36 |
∆H (J/g) | 98.79 | 117.43 | 101.38 |
Samples | β-Sheet (%) | β-Turn (%) | α-Helix (%) | Random Coil (%) |
---|---|---|---|---|
FD-CPI | 42.38 | 16.20 | 26.04 | 15.38 |
VD-CPI | 44.47 | 13.53 | 22.65 | 19.35 |
SD-CPI | 33.33 | 17.82 | 27.85 | 21.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, M.; Wang, Z.; Yan, X.; Zeng, Z.; Peng, T.; Xia, J.; Zhao, J.; Wang, W.; Gong, D.; Yu, P. Effects of Drying Methods on the Physicochemical and Functional Properties of Cinnamomum camphora Seed Kernel Protein Isolate. Foods 2024, 13, 968. https://doi.org/10.3390/foods13060968
Ye M, Wang Z, Yan X, Zeng Z, Peng T, Xia J, Zhao J, Wang W, Gong D, Yu P. Effects of Drying Methods on the Physicochemical and Functional Properties of Cinnamomum camphora Seed Kernel Protein Isolate. Foods. 2024; 13(6):968. https://doi.org/10.3390/foods13060968
Chicago/Turabian StyleYe, Mengqiang, Zhixin Wang, Xianghui Yan, Zheling Zeng, Ting Peng, Jiaheng Xia, Junxin Zhao, Weiyun Wang, Deming Gong, and Ping Yu. 2024. "Effects of Drying Methods on the Physicochemical and Functional Properties of Cinnamomum camphora Seed Kernel Protein Isolate" Foods 13, no. 6: 968. https://doi.org/10.3390/foods13060968
APA StyleYe, M., Wang, Z., Yan, X., Zeng, Z., Peng, T., Xia, J., Zhao, J., Wang, W., Gong, D., & Yu, P. (2024). Effects of Drying Methods on the Physicochemical and Functional Properties of Cinnamomum camphora Seed Kernel Protein Isolate. Foods, 13(6), 968. https://doi.org/10.3390/foods13060968